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Constructing and embedding mutually orthogonal

Latin squares: reviewing both new and existing results

Diane M. Donovan, Mike Grannell, Emine Ş. Yazıcı

Abstract. We review results for the embedding of orthogonal partial Latin squares
in orthogonal Latin squares, comparing and contrasting these with results for

embedding partial Latin squares in Latin squares. We also present a new con-

struction that uses the existence of a set of t mutually orthogonal Latin squares
of order n to construct a set of 2t mutually orthogonal Latin squares of order nt.

Keywords: embedding; mutually orthogonal Latin square

Classification: 05B15

1. Introduction

In combinatorial theory the seemingly straightforward question – “When is

it possible to embed a partial combinatorial design in a complete design with

related properties?” – has generated much research, including many challenging

conjectures that have been answered to varying degrees. The Handbook of Com-

binatorial Designs [9] provides an excellent overview of this research.

In the current article we seek to collate the more recent research on the embed-

ding of orthogonal partial Latin squares in orthogonal Latin squares (definitions

provided below). The genesis of this research can be found in the study of em-

beddings for partial Latin squares, and so we begin with a brief overview of these

earlier studies. This allows us to compare and contrast the impact of imposing

the additional orthogonality condition on the size of the embedding.

In writing this review it is important to emphasize that there are a number

of equivalent representations for a Latin square, and we will review results that

arise in the associated algebraic and graph theory settings.

The different combinatorial representations for a partial Latin square will be

discussed in Section 2. In Section 3 we give a brief overview of embedding results

for partial Latin squares, extending these to orthogonal partial Latin squares in

Section 4. Section 5 documents new results on the embedding of orthogonal partial

Latin squares and a new construction for mutually orthogonal Latin squares. We
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show that the existence of a set of t mutually orthogonal Latin squares of order n

can be used to verify the existence of a set of 2t mutually orthogonal Latin squares

of order nt. These results have not appeared in the earlier literature. We conclude

the review article with open questions in Section 6.

2. Background and definitions

In discrete mathematics, the study of combinatorial designs using different

representations allows us to define and study the same discrete structure from

different perspectives. These distinct representations provide valuable insights

depending on the problem at hand. For instance, there are many equivalent rep-

resentations for Latin squares. In this article there are four equivalent representa-

tions that feature strongly. On the set N = {0, 1, . . . , n−1}, these representations

are:
◦ A Latin square of order n, denoted LS(n), is an n× n array L = [L(i, j)],

where for all i, j ∈ N , L(i, j) ∈ N is chosen in such a way that each

element of N occurs once in every row and once in every column.

◦ A quasigroup of order n, denoted (N, ◦), is defined by a binary opera-

tion “◦” closed on the set N and such that for all 1 ≤ i, j, i′, j′ ≤ n , if

i ◦ j = i′ ◦ j, then i = i′ and if i ◦ j = i ◦ j′, then j = j′.

◦ A triangulation of the complete tripartite graph Kn,n,n, where the trian-

gles form a partition of the edge set of Kn,n,n.

◦ A transversal design, denoted TD(3, n), comprises a set of 3n points par-

titioned into three n-subsets, called groups, and a set of n2 triples such

that each pair of points from different groups appears in precisely one

triple and no triple contains more than one point from each group.

It will also be useful to use the ordered triple notation for an LS; that is, the

LS L = [L(i, j)] can be represented as a set of triples of the form (i, j, L(i, j)).

As stated, the focus here is on determining the “smallest complete structure”

that contains a given partial structure. More specifically we begin with partial

Latin squares:

◦ A partial Latin square of order n, denoted PLS(n), is an n × n array

P = [P (i, j)] with cells either empty or containing P (i, j) ∈ N in such

a way that each element of N occurs at most once in every row and at

most once in every column.

The volume of the partial Latin square is the number of filled cells.

Likewise we may define partial (incomplete) quasigroups, partial triangulations

of Kn,n,n and partial transversal designs.

Example 2.1. Let N = {0, 1, 2, 3}. The following are equivalent partial systems.
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PLS(4), volume 4 Partial (N, ◦)

0

1

1

1

0 ◦ 0 = 0

1 ◦ 1 = 1

2 ◦ 2 = 1

3 ◦ 3 = 1

PTD(3, 4) Subgraph of K4,4,4

V =

2⋃
i=0

Gi, i = 0, 1, 2,

Gi = {4i+ x : x = 0, . . . , 3},
B = {{0, 4, 8}, {1, 5, 9},
{2, 6, 9}, {3, 7, 9}}

It is clear that the partial designs presented in Example 2.1 are not contained

in complete designs of the same type and order, but what happens when we allow

the order to be increased? This notion is formalized in the following definition.

◦ A PLS(n), P = [P (i, j)], is said to complete to an LS(n), L = [L(i, j)],

if the empty cells of P can be filled with elements from N to obtain the

LS(n) L. The PLS(m), P = [P (i, j)], is said to be embedded in the LS(n),

L = [L(i, j)], m < n, if for all nonempty cells (i, j) of P , P agrees with L,

that is, P (i, j) = L(i, j).

Specifically, we are interested in embedding orthogonal PLS. Here we begin

with the definition of orthogonal LS.

◦ Two LS(n), A = [A(i, j)] and B = [B(i, j)], are said to be orthogonal

if for all i, i′, j, j′ ∈ N , A(i, j) = A(i′, j′) implies B(i, j) 6= B(i′, j′).

A set of t LS(n) that are pairwise orthogonal are said to be mutually

orthogonal. Such a collection of t mutually orthogonal LS(n), A1, . . . , At,

will be denoted t-MOLS(n) and sometimes referred to as MOLS.

In this paper, it is assumed that t > 1. Now we may define orthogonal partial

Latin squares.

◦ Two PLS(n), P = [P (i, j)] and Q = [Q(i, j)], are said to be orthog-

onal, if they have the same nonempty cells and for all i, i′, j, j′ ∈ N ,

P (i, j) = P (i′, j′) implies Q(i, j) 6= Q(i′, j′). A set of t PLS(n) that are

pairwise orthogonal are said to be mutually orthogonal and will be de-

noted t-MOPLS(n). Assume that the two MOLS(n) (A,B) agree in the
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MOPLS(m) (P,Q). If m = n, we say (P,Q) can be completed to (A,B),

and if n > m we say (P,Q) can be embedded in (A,B).

These definitions are illustrated in Example 2.2.

Example 2.2. Let us consider a pair of MOPLS(4), P and Q, and a pair of

MOLS(5), A and B, as given below. The pair of MOPLS(4), (P,Q) can not be

completed, but they can be embedded in the given pair of MOLS(5), (A,B).

P Q A B

0 1 2

1 2 0

3 1

1 3

0 1 2

2 3 1

0 3

0 2

0 1 2 4 3

1 2 3 0 4

2 3 4 1 0

4 0 1 3 2

3 4 0 2 1

0 1 2 4 3

2 3 4 1 0

4 0 1 3 2

3 4 0 2 1

1 2 3 0 4

Similarly, two quasigroups (N, ◦) and (N, ∗) are said to be orthogonal if the

equations x ◦ y = z ◦ w and x ∗ y = z ∗ w together imply x = z and y = w.

A group divisible design comprises a set of points V partitioned in groups G
and a set of blocks B satisfying the property that each pair of points from dif-

ferent groups occurs in one block and no block contains more than one point

from each group. The set K = {|B| : B ∈ B} gives the possible sizes of the

blocks and if K = {k} then the design is generally referred to as a k-GDD.

A TD(k, n) is a k-GDD that contains k groups of n points. A TD(k + 2, n) is

also equivalent to a collection of k-MOLS(n), A1 = [A1(i, j)], . . . , Ak = [Ak(i, j)],

with the k + 2 groups of the TD each associated with the set N and the set

{(i, j, A1(i, j), . . . , Ak(i, j)) : 0 ≤ i, j ≤ n − 1} forming the set of n2 blocks.

Similarly, we have the equivalence between a PTD(k + 2, n) (partial transversal

design) and k-MOPLS(n). MOLS can also be readily generalized to orthogonal

arrays, see Section 3.6 in [9].

It is also worth noting that MOLS have also been studied as permutations and

complete mappings, where each row (column) defines an orthomorphism on N ;

a representation first studied by H. B. Mann in 1942, see Section 6 of [9], [17]

and [41].

Further the completion or embedding of a pair of MOPLS to a pair of MOLS,

L = [L(i, j)] and M = [M(i, j)], results in a structure where all ordered pairs

(L(i, j),M(i, j)) are distinct. However, one can also study the completion or

embedding of a pair of MOPLS in complete structures L = [L(i, j)] and M =

[M(i, j)], where the number of distinct ordered pairs (L(i, j),M(i, j)) is fixed,

say r. In this context, it is said that, a pair of LS(n) L = [L(i, j)] and M =

[M(i, j)] on N are r-orthogonal if r = |{(L(i, j),M(i, j)) : 0 ≤ i, j ≤ n− 1}|. For

further discussion see Subsection 3.8 of [9]. It is known that:
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Theorem 2.3 ([10], [58]). For n, a positive integer, a pair of r-orthogonal LS(n)

exist if and only if r ∈ {n, n2} or n+ 2 ≤ r ≤ n2 − 2, except when

1. n = 2 and r = 4;

2. n = 3 and r ∈ {5, 6, 7};
3. n = 4 and r ∈ {7, 10, 11, 13, 14};
4. n = 5 and r ∈ {8, 9, 20, 22, 23};
5. n = 6 and r ∈ {33, 36}.

Interestingly, in [5], G. B. Belyavskaya and A. D. Lumpov study these struc-

tures in terms of r-orthogonal quasigroups and document a product construc-

tion which is a generalization of the direct product construction (see Section 5).

G. B. Belyavskaya and A. D. Lumpov give conditions under which this construc-

tion can be applied and employ the method for the construction of r-orthogonal

quasigroups of composite order. They list two theorems, the first establishing the

existence of quasigroups with r-orthogonal mates and the second establishing the

existence of sets of mutually r-orthogonal quasigroups.

Theorem 2.4 ([5]). If m,n 6= 2, then there exists an LS(mn) which has an

r-orthogonal mate for r = km2 + (n − k + pt)m + (n2 − n − t)p with arbitrary

k, p, t satisfying 0 ≤ k ≤ n, 0 ≤ p ≤ m and 0 ≤ t ≤ k(n− 1).

Theorem 2.5 ([5]). If there exists a set of s+1 mutually orthogonal quasigroups

of order n and s mutually orthogonal quasigroups of order m, then there exists

s mutually r-orthogonal quasigroups of order mn for r = km2 + (n − k)m +

(n2 − n− t)p+ (2m− p)tp with arbitrary k, p, t satisfying 0 ≤ k ≤ n, 0 ≤ p ≤ m

and 0 ≤ t ≤ k(n− 1).

We will revisit r-orthogonal LS when we present a number of open questions

in Section 6.

Determining which PLS are completable is a hard problem. C. J. Colbourn

in [8] (1984) has shown that the decision problem: “Can a partial Latin square of

order n be completed to a Latin square?” is an NP-complete problem, even if there

are no more than 3 empty cells in any row or column. Adding the additional or-

thogonality condition, that is, determining if MOPLS can be completed to MOLS

does not diminish the complexity of this question. However, allowing the PLS to

be embedded in LS of increased order does change the problem making it possible

to apply a wider range of theoretical arguments. See for instance, Theorem 3.3

below where a linear order embedding of any PLS in an LS is established.
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3. Completing and embedding PLS

In 1945, M. Hall in [23] showed that every (n − r) × n array, satisfying the

property that each element of the set N occurs once in every row and at most

once in any column, could be extended to an LS(n).

Theorem 3.1 ([23]). Given a rectangle of r rows and n columns such that each

of the elements of {0, 1, 2, . . . , n − 1} occurs once in every row and no element

occurs more than once in any column, then there exist n− r rows which may be

added to the given rectangle to form an LS.

M. Hall achieved this result by showing that the (n − r) × n array could be

extended to an (n−r+1)×n array satisfying the same property. The elements to

be added to each column are determined by a system of distinct representatives

for the collection of subsets corresponding to the elements not appearing in the

given columns. This process can then be repeated until an n×n array is obtained.

This use of systems of distinct representatives can be traced back to the work of

P. Hall in [24] and earlier results by D. König, see [33]. Later in 1951, B. Ryser

in [47] extended these arguments to show that under certain initial conditions it

is always possible to complete an r×s Latin rectangle (i.e. a PLS where the filled

cells define a complete r × s subarray) to an LS(n).

Theorem 3.2 ([47]). Let T be an r×s Latin rectangle on the set N , and let N(i)

denote the number of times element i occurs in the cells of T . A necessary and

sufficient condition for T to be extended to an LS(n) is that for each i = 1, . . . , n,

N(i) ≥ r + s− n.

In 1960 T. Evans in [18] was motivated by Ryser’s work, and asked:

For each n, what is the minimum v such that there exists a PLS(n)

of volume v which is not contained in any LS(n)?

If we denote the minimum volume by mv(n), then the PLS(4) in Exam-

ple 2.2 points to the conclusion that mv(n) ≤ n. However proving that the

minimum mv(n) is n is nontrivial, with a number of papers appearing on this

topic. V. A. Nosov, V. Sachkov and V. E. Tarakanov provide a brief review of

these articles in [43], see also [2]. In 1970 C. C. Lindner in [35] solved the prob-

lem when the filled cells occur in less than n/2 rows and in 1981 B. Smetaniuk,

see [48], [12], gave a construction for the case where the filled cells intersect more

than n/2 rows.

The intricacies of this question and its solution led T. Evans and others to the

problem of establishing a finite embedding.

In this context T. Evans in [18] asked:
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For each t, what is the minimum n such that any PLS(t) can be

embedded in an LS(n)?

T. Evans settled this question in [18], showing that:

Theorem 3.3 ([18]). For each t, a PLS(t) P can be embedded in an LS(n) L for

any n ≥ 2t.

In proving this result T. Evans constructed a proxy LS(t), M , on a set N ′

disjoint from {0, 1, . . . , t − 1} and used the corresponding elements in M to fill

the empty cells of P to obtain a complete t × t array P ∗. He then showed that

the initial conditions for Ryser’s theorem (Theorem 3.2) were satisfied. Thus he

verified that P ∗ may always be embedded in an LS(n), where n ≥ 2t.

Further, T. Evans proved that this embedding was the best possible.

In many articles the authors have highlighted the allied problem of embedding

quasigroups that satisfy additional conditions. For instance, in [18] T. Evans

specifically remarks that “An incomplete loop containing n elements can be em-

bedded in a loop containing 2n elements”. A loop (N, ◦) is a quasigroup where the

addition algebraic identity x◦0 = 0◦x = x is satisfied for all x ∈ N . Quasigroups

that satisfy a specific collection of additional identities, are termed varieties. We

will say that a partial quasigroup (N, ◦) belongs to variety V if the given identities,

associated with V are satisfied.

The embedding of partial quasigroups in the varieties defined by subsets of

the set of identities I = {x2 = x, x ◦ y = y ◦ x, (y ◦ x) ◦ x = y, x ◦ (x ◦ y) = y,

x◦(y◦x) = y} have been studied extensively, with embedding results summarized

in Table 1 compiled by M. Bennett and C. C. Lindner in Subsection 2.6 of [9],

and reproduced below.

In addition to Table 1 given above, embeddings of other types of quasigroups

are also studied. A loop L is said to be an inverse property loop (IP loop) if for

all x ∈ L there is a unique element x−1 of L such that x−1(xy) = y = (yx)x−1.

Embeddings of IP-loops are discussed by C. Treash in [50] and, more recently by

M. Vodička and P. Zlatoš in [52].

The early work by T. Evans [18], A. C. Treash [51], C. C. Lindner [36] and others

has shed new light on the embedding of many combinatorial designs, including

graph decompositions.

For instance, in 1974 C. C. Lindner in [37] observed that Evans’ paper became

a “starting point for a fascinating collection of problems in the study of Latin

squares”. Further, C. C. Lindner exploited the connection between Latin squares

and quasigroups to extend Evans’ embedding result to Steiner quasigroups that

are idempotent, commutative totally symmetric quasigroups as defined above.

Steiner quasigroups are in one to one correspondence with Steiner triple sys-

tems (STS). An STS is a decomposition of the complete graph Kn into triangles.
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C. C. Lindner in [38], [39], achieved this by representing a partial STS as a par-

tial Steiner quasigroup, embedding this in a complete Steiner quasigroup which

was then translated back to an STS. In this way the partial STS is finitely em-

bedded in an STS. Other authors have extended this work to obtain embedding

for Steiner quasigroups satisfying additional identities. A summary of this work

can be found in Section 2.6 of [9]. These results have been further applied to

finitely embed cycle systems where the length of the cycle is greater than 3. In

this context a cycle system is a decomposition of the complete graph Kn into

cycles of length k. A good starting point for interested readers is [9], as well as

Rodger’s 1992 article [46]. Readers may also be interested in the recent work in

[55] and [13].

variety of partial quasigroup best possible best embedding of

of order t defined by I = embedding of size n size n, known to date

∅ all n ≥ 2t all n ≥ 2t, [18]

commutative, x ◦ y = y ◦ x
x ◦ (x ◦ y) = y all even n ≥ 2t all even n ≥ 2t, [11]

(y ◦ x) ◦ x = y

idempotent, x2 = x all n ≥ 2t+ 1 all n ≥ 2t+ 1, [3]

x2 = x, x ◦ y = y ◦ x
x2 = x, x ◦ (x ◦ y) = y all odd n ≥ 2t+ 1 all odd n ≥ 2t+ 1, [11]

x2 = x, (y ◦ x) ◦ x = y

semisymmetric, all n ≥ 2t all n ≥ 6t s.t.

x ◦ (y ◦ x) = y n ≡ 0, 3(mod 6), [40]

totally symmetric, all even n ≥ 2t+ 4 all even n ≥ 2t+ 4, [6]

x ◦ (x ◦ y) = y, (y ◦ x) ◦ x = y

Mendelsohn quasigroup, all n ≥ 2t+ 1 s.t. all n ≥ 4t s.t.

x2 = x, x ◦ (y ◦ x) = y n ≡ 0, 1(mod 3) n ≡ 0, 1(mod 3), [45]

Steiner quasigroup, x2 = x, all n ≥ 2t+ 1 s.t. all n ≥ 2t+ 1 s.t.

x ◦ (x ◦ y) = y, (y ◦ x) ◦ x = y n ≡ 1, 3(mod 6) n ≡ 1, 3(mod 6), [7]

Table 1.

But what about MOPLS? In 1960, T. Evans in [18] raised the pivotal question:

Can a pair of MOPLS(t) be embedded in a pair of MOLS(n) and

if so what is the smallest such n for each t?

T. Evans suggests that the paper by H. B. Mann and H. J. Ryser [42] on sys-

tem of distinct representatives contained “the ideas probably needed to attack this

problem”. Certainly, arguments using systems of distinct representatives have

provided insights into this problem, see for instance [26], however the breadth of

attack has been quite wide as we will see in the next section.
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4. Completing and embedding MOPLS

In Section 3 we documented results that show the minimum volume mv(n) = n,

that is, every PLS(n) of volume less than n is completable. In addition, the best

possible embedding for any PLS(t) was documented in Theorem 3.3. In this

section we extend these results and consider related questions for MOPLS:

For each n, what is the minimum µv(n) such that there exists

a pair of MOPLS(n) of volume µv(n) which is not contained in

any pair of MOLS(n)?

Example 4.1. The pair of MOPLS(4), P and Q, can not be completed to any

pair of MOLS(4). Similarly the pair of MOPLS(5), R and S, can not be com-

pleted to any pair of MOLS(5).

P Q R S

0 1

1

3

0 1

2

3

0 1

1 0

0 1

2 3

The pair of MOPLS(4) P and Q given in Example 4.1 lead to the conclusion

that µv(4) ≤ 4, but is µv(4) = 4? For n = 3 it is easy to see µv(3) = 3 and there

are no MOLS(6) rendering the question of the size of µv(6) redundant. However,

the pair of MOPLS(5) R and S in Example 4.1 indicate that µv(5) ≤ 4 = n− 1.

This is easy to see as any LS(5) containing a 2 × 2 subsquare can not have an

orthogonal mate. But what about µv(n) for n ≥ 7? An extrapolation of the

PLS(4) given in Example 4.1 suggests that µv(n) ≤ n for all n ≥ 7.

One may study sets of MOPLS(n) that are not contained in sets of MOLS(n).

In this case, the MOPLS(n) do NOT have a completion to a set of MOLS(n).

B. Stevens and E. Mendelsohn in [49] investigated (k − 2)-MOPLS(n) of volume

v as packing arrays ΠA(v; k, n). A packing array ΠA(v; k, n) is a v×k array with

entries from an n-set, so that every v× 2 subarray contains every ordered pair of

symbols at most once. B. Stevens and E. Mendelsohn asked what is the largest

volume, denoted ΠA(k, n), for which there exists a ΠA(v; k, n). They obtained

a number of bounds and investigated ΠA(k, n) for small values of n and k, see

Subsection 3.8 of [9].

In studying the completion or embedding of pair of MOPLS(t), P = [P (i, j)]

and Q = [Q(i, j)], one approach is to resolve two distinct issues; first the necessity

of completing or embedding each PLS P and Q in LS(n), A = [A(i, j)] and

B = [B(i, j)] and then the verification of the orthogonality condition for the pair
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A, B, that is, N × N = {(A(i, j), B(i, j)) : 0 ≤ i, j ≤ n − 1}. The combination

of the two issues makes this a complex problem. As a way of decoupling the

two questions one might start with a complete LS(t). However, not all LS have

orthogonal mates (such squares are termed bachelor LS). So for such squares

we ask what is the smallest n such that any LS(t) can be embedded in a pair

of MOLS(n)? A related question, studied in the early 1970’s, is the existence

of a pair of MOLS(n) that contain a pair of MOLS(t), t < n, as subsquares

occupying the same set of cells. Through a series of papers [16], [28], [54], [56],

[57], it was established that a pair of MOLS(t) can be embedded in a pair of

MOLS(n) if n ≥ 3t, where the bound of 3t is best possible. In [25] K. Heinrich

and L. Zhu completed the proof of this result by drawing on existence results for

group divisible designs. This approach of first embedding a complete LS in a set

of MOLS and then relaxing the result to embed PLS has yielded a number of

results, as we will see later in this section.

In 1991, T. Gustavsson wrote his ground-breaking Ph.D. thesis [22] where he

also studied MOPLS as PTD(m,n) and as subgraphs of m-partite graphs Kn,...,n.

Among other things, he showed that there exists a constant εm > 0 such that if n is

large enough (n is greater than some integer Nm) and the number of occurrence

of any point in the PTD(m,n) is less than εmn then the given PTD(m,n) is

completable. In terms of MOPLS this condition translates to the existence of

a constant εm > 0 such that if n is large enough and the occurrence of each row,

column and element is less than εmn in each square (in ordered triple notation),

then the set of (m − 2)-MOPLS(n) is completable to (m − 2)-MOLS(n). In his

thesis T. Gustavsson states that εm ≥ (2m)−2910−7, but does not specify how

big n needs to be. T. Gustavsson then uses this result to obtain H-decompositions

(graph decomposition) of large graphs that satisfy the necessary condition that

each vertex has high degree. This is a remarkable existence result, but cannot

be used to determine the best possible embedding, giving little insight into the

structure of the resulting transversal design or equivalently the corresponding set

of MOLS(n).

Recently, B. Barber et al. in [4] made some progress on this problem. By

restricting the occurrence of elements in the MOPLS, they were able to prove:

Theorem 4.2 ([4]). For every r ≥ 3 and every ε > 0 there exists an n0 ∈ N such

that the following holds for all n ≥ n0. Let

cr =

{
1
25 , if r = 3,

9
107r3 , if r ≥ 4.

Let T1, . . . , Tr−2 be a set of (r− 2)-MOPLS(n) (drawn in the same n× n array).

Suppose that each row and each column of the underlying array contains at most
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(cr − ε)n nonempty cells and that in each of r − 2 arrays each element of N

occurs at most (cr − ε)n times. Then T1, . . . , Tr−2 can be completed to a set of

MOLS(n).

We will discuss this result further in the latter part of this section.

In 1976 C. C. Lindner in [39] gave the first finite embedding result for a set of

k-MOPLS(n), P1, P2, . . . , Pk. C. C. Lindner proved:

Theorem 4.3 ([39]). Any pair of MOPLS can be finitely embedded in a pair of

MOLS.

Lindner’s approach was to take all k PLS and fill the empty cells with dis-

tinct elements, relabelling elements in filled cells to ensure that any 2 of the k

n × n arrays contained distinct elements. He then represented these arrays as

PTD(k′, n′), where n′ ≥ n, and k′ ≥ k + 2 is a power of a prime.

Here the blocks of the transversal design take the form (i, j, P1(i, j), P2(i, j),

P3(i, j), . . . , Pk(i, j)) for each cell (i, j). This presentation allowed C. C. Lindner

to apply an earlier result due to R. W. Quackenbush, see [44], who made use of

the following result due to B. Ganter, see [21]. Here a balanced incomplete block

design is a decomposition of the complete graph Kn into complete subgraphs Kq.

Theorem 4.4 ([21]). Every finite partial balanced incomplete block design with

block size q, where q is a power of a prime, can be embedded in a finite balanced

incomplete block design of the same block size.

However there is no indication of the size of the embedding only that it is finite.

Further investigations were made by J. W. Hilton, C. A. Rodgers and R. K. Wo-

jciechowski’s in [3], in 1992, when they formulated necessary conditions for a pair

of orthogonal Latin rectangles to be embedded in a pair of MOLS.

Since not every LS has an orthogonal mate it is reasonable to return to the

investigation of the embedding of a single LS in a pair of MOLS. It is this problem

that P. Jenkins in [30] addressed in 2006 proving:

Theorem 4.5 ([30]). Let L be an LS(n), n ≥ 3 and n 6= 6. Then L can be

embedded in an LS(n2) for which there exists an orthogonal mate.

P. Jenkins took S = [S(i, j)] and T = [T (i, j)], a pair of MOLS(n), such that

S(0, 0) = 0, and strategically replaced the elements in these squares by carefully

chosen n × n arrays. To this end, the element S(i, j) = 0 is replaced by a copy

of L. In all other cells of S an element S(i, j) is replaced by a copy of the LS

corresponding to the cyclic group, Cn, of order n on the set of elements {nx,
nx+ 1, . . . , nx+n− 1}. Then the elements of T are replaced by permuted copies

of an n×n array, A, containing all elements of {0, 1, . . . , n2−1} in lexicographical

order.
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Thus S and T are “inflated” to a pair of n2 × n2 arrays, denoted U and V .

By using the orthogonality condition (i.e. the ordered pairs (S(i, j), T (i, j)) are

all distinct) to determine the permutations applied to A, it is possible to show

that U and V are a pair of MOLS(n2). An example of the construction has been

included, see Example 4.6.

Example 4.6. Let n = 4, L be an LS(4), S and T be MOLS(4), A be a 4 × 4
array containing the elements of the set {0, . . . , 15} and C4 be the cyclic group of
order 4. Then L is embedded in the top left corner of U , an LS(42) which has an
orthogonal mate V .

L S T

0 3 1 2

3 0 2 1

1 2 3 0

2 1 0 3

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

0 1 2 3

2 3 0 1

3 2 1 0

1 0 3 2

A C4

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

U

0 3 1 2 4 5 6 7 8 9 10 11 12 13 14 15

3 0 2 1 5 6 7 4 9 10 11 8 13 14 15 12

1 2 3 0 6 7 4 5 10 11 8 9 14 15 12 13

2 1 0 3 7 4 5 6 11 8 9 10 15 12 13 14

4 5 6 7 0 3 1 2 12 13 14 15 8 9 10 11

5 6 7 4 3 0 2 1 13 14 15 12 9 10 11 8

6 7 4 5 1 2 3 0 14 15 12 13 10 11 8 9

7 4 5 6 2 1 0 3 15 12 13 14 11 8 9 10

8 9 10 11 12 13 14 15 0 3 1 2 4 5 6 7

9 10 11 8 13 14 15 12 3 0 2 1 5 6 7 4

10 11 8 9 14 15 12 13 1 2 3 0 6 7 4 5

11 8 9 10 15 12 13 14 2 1 0 3 7 4 5 6

12 13 14 15 8 9 10 11 4 5 6 7 0 3 1 2

13 14 15 12 9 10 11 8 5 6 7 4 3 0 2 1

14 15 12 13 10 11 8 9 6 7 4 5 1 2 3 0

15 12 13 14 11 8 9 10 7 4 5 6 2 1 0 3
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V

0 1 2 3 15 12 13 14 10 11 8 9 5 6 7 4

4 5 6 7 3 0 1 2 14 15 12 13 9 10 11 8

8 9 10 11 7 4 5 6 2 3 0 1 13 14 15 12

12 13 14 15 11 8 9 10 6 7 4 5 1 2 3 0

14 15 12 13 1 2 3 0 4 5 6 7 11 8 9 10

2 3 0 1 5 6 7 4 8 9 10 11 15 12 13 14

6 7 4 5 9 10 11 8 12 13 14 15 3 0 1 2

10 11 8 9 13 14 15 12 0 1 2 3 7 4 5 6

9 10 11 8 6 7 4 5 3 0 1 2 12 13 14 15

13 14 15 12 10 11 8 9 7 4 5 6 0 1 2 3

1 2 3 0 14 15 12 13 11 8 9 10 4 5 6 7

5 6 7 4 2 3 0 1 15 12 13 14 8 9 10 11

7 4 5 6 8 9 10 11 13 14 15 12 2 3 0 1

11 8 9 10 12 13 14 15 1 2 3 0 6 7 4 5

15 12 13 14 0 1 2 3 5 6 7 4 10 11 8 9

3 0 1 2 4 5 6 7 9 10 11 8 14 15 12 13

Once this embedding was established, P. Jenkins was able to relax the initial

conditions and work with PLS. P. Jenkins returned to PLS and used Evans’ result

(Theorem 3.3), to embed a PLS(t) in an LS(n), where n ≥ 2t, and subsequently

applied Theorem 4.5 to prove:

Theorem 4.7 ([30], [31]). If t ≥ 4, then a PLS(t) can be embedded in an LS(4t2)

which has an orthogonal mate.

Jenkins’ result naturally extends to idempotent MOPLS:

Theorem 4.8 ([30], [31]). An idempotent PLS(t), t ≥ 3, can be embedded in an

idempotent LS((2t+ 1)2), which has an idempotent orthogonal mate.

Further, these ideas proved to be valuable for embeddings of a class of block

designs with block size 4: a K4-design (X,B) is a decomposition of the edge set

of the complete graph Kn on vertex set X into a set B of copies of K4. P. Jenkins

began by defining a free vertex of a partial K4-design (X,P ), to be x ∈ X such

that point x occurs in exactly one block of P . In [29], Jenkins used the existence

of group divisible designs with block size 4 to obtain a cubic embedding of any

partial K4-design with the property that every block in the partial design contains

at least two free vertices.

In 2014, D. M. Donovan and E. Ş. Yazıcı in [15] revisited Jenkins’ work, ex-

tending it to obtain a polynomial order embedding of a pair of MOPLS. Their
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approach was to begin with pair of MOPLS, P and Q, such that all the elements

in P are distinct. From there they used techniques similar to Jenkins to prove:

Theorem 4.9 ([15]). Suppose 2m ≥ 2n. Let P and Q be a pair of MOPLS(n),

such that each element of N occurs in at most one cell of P . Then P and Q can

be embedded in a pair of MOLS(22m).

Their proof begins by employing Evans’ result (Theorem 3.3) to embed Q in

an LS(2m) denoted B, where 2m ≥ 2n. Then the PLS P is completed to an

2m × 2m array, denoted A, containing all elements in the set {0, 1, . . . , 22m − 1}.
The significance of 2m is that the cells of Cayley table of the elementary Abelian

2-group are “inflated” with permuted copies of A and B. The nature of the

permutations is determined by the binary operation of this underlying elementary

Abelian 2-group of order 2m. In this way D. M. Donovan and E. Ş. Yazıcı avoid

the necessity for the pair of MOLS S and T in Jenkins’ construction.

The use of the elementary Abelian 2-group also allows D. M. Donovan and E. Ş.

Yazıcı in [15] to remove the restriction that all the elements in P are distinct to

obtain a more general embedding than that given in Theorem 4.9, but at the price

of increasing the order of the embedding.

Theorem 4.10 ([15], [14]). Let P and Q be a pair of MOPLS(n). Then P and Q

can be embedded in a pair of MOLS(k4) and any order greater than or equal

to 3k4 where 2a = k ≥ 2n > 2a−1 for some integer a.

More recently, D. Donovan, M. Grannell and E. Ş. Yazıcı in [14] have capital-

ized on these techniques to develop a construction for embedding a PLS(n) in

a Latin square which has many orthogonal mates, as well as embedding a pair of

MOPLS(n) in a set of many MOLS. While we state the results here, we will leave

a fuller description of the methods to Section 5 where we give new generalizations

of these constructions.

Theorem 4.11 ([14]). Let P be a PLS(t), t ≥ 3. Then P can be embedded

in B, an LS(n) with n ≤ 16t2, which belongs to a set of at least 2t MOLS(n2).

Furthermore if P is idempotent, then B can be constructed to be idempotent.

Theorem 4.12 ([14]). For any t ≥ 2, a pair of MOPLS(n) can be embedded in

a set of t MOLS of polynomial order with respect to n.

In [14] D. Donovan, M. Grannell and E. Ş. Yazıcı compared these results to

the result given by B. Barber et al. in [4] further interpreting Theorem 4.2 which

states that for any s ∈ N, there exists k0 ∈ N such that for any n ∈ N, any set of

s-MOPLS(n) can be embedded in a set of s-MOLS(m) for every m ≥ k0n. That

there is such a k0 is an important existence result because it gives a linear order
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embedding. However, the proof given in [4] does not yield an estimate for the best

(i.e., lowest) value of k0. For s = 1, Evans’ result shows that k0 = 2 is the best

possible value. For s ≥ 2, the proof given in [4] requires that k0 > 107(s+ 2)3/9

and being an existence result, there is little information about the structure of

the resulting set of MOLS. For s = 2 and small n, certainly n ≤ 113 and possibly

much larger, [14] gives a tighter embedding than that of [4], and it more closely

specifies the structure of the resulting pair of MOLS.

Other results which advance our understanding of embedding of MOPLS can

be found in papers on the enumeration of sets of MOLS. Specifically, in 2019

S. Boyadzhiyska, S. Das and T. Szabó remarked that dividing the number of s-

MOLS(n) by the number of (s+ 1)-MOLS(n) gives a lower bound on the average

number of extensions of an s-MOLS(n) to an (s+ 1)-MOLS(n).

This computation is made possible by earlier enumeration results of Z. Luria,

see [34], and P. Keevash, see [32], namely:

Theorem 4.13 ([32], [34]). For every fixed k ∈ N, the number of k-MOLS of

order n is (
(1 + o(1))

nk

e(k+2
2 )−1

)n2

.

S. Boyadzhiyska, S. Das and T. Szabó calculated that the average number of

extensions of an s-MOLS to an (s+ 1)-MOLS(n) is at least(
(1 + o(1))

n

es+2

)n2

.

This result then gives the average number of embeddings of a set of s-MOLS

in a set of (s+ 1)-MOLS(n).

5. Sets of many MOLS

In this section we revisit the work of D. Donovan, M. Grannell and E. Ş.

Yazıcı [14]. They build on the following well know fact:

Lemma 5.1. Given a pair of MOLS(m), A = [A(p1, q1)] and A′ = [A′(p1, q1)],

and a pair of MOLS(n), B = [B(p2, q2)] and B′ = [B′(p1, q2)], there exists a pair

of MOLS(mn), A⊗B and A′⊗B′, where the element in cell ((p1, p2), (q1, q2)) is

(A(p1, q1), B(p2, q2)) in A⊗B and (A′(p1, q1), B′(p2, q2)) in A′ ⊗B′.

But in addition to taking direct products D. Donovan, M. Grannell and E. Ş.

Yazıcı also inflated the cells of A with copies of B where the elements in either

the rows or the columns of B have been permuted. By carefully choosing the

permutation they could ensure that the orthogonality of the n2 × n2 arrays was

maintained. A generalization of these results is presented in Theorem 5.2.
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Let n and t be positive integers. To simplify the exposition, we will abuse

notation and use p1p2 . . . pt to represent (p1, p2, . . . , pt) and write Aαi to repre-

sent Aα,i.

Theorem 5.2. For 1 ≤ α ≤ t, let

Aα = {Aα1, . . . Aαt} and C = {C1, . . . , Ct},

represent a collection of t+ 1, not necessarily distinct, sets of t-MOLS(n).

Then, for 1 ≤ u ≤ t and 1 ≤ v ≤ t, the nt × nt arrays

Xu = A1u ⊗A2u ⊗ · · · ⊗Atu,

Yv =
{(
p1p2 . . . pt, q1q2 . . . qt,

(
Cv(p2, A11(p1, q1)), Cv(p3, A22(p2, q2)), . . . ,

Cv(pt, A(t−1)(t−1)(pt−1, qt−1)), Cv(q1, Att(pt, qt))
))}

form a set of 2t-MOLS(nt).

Proof: The proof that the arrays Xu and Yv are LS, of order nt, is fairly straight-

forward and omitted here. Further, since the arrays Xu have been obtained by

taking products of MOLS, these t squares are pairwise mutually orthogonal.

Thus we are required to prove that the set of arrays Yv form a set of t-

MOLS(nt) and pairwise Yv and Xu are orthogonal.

For any 1 ≤ u ≤ t and any 1 ≤ v, v′ ≤ t with v 6= v′, consider Yv,Yv′ or Xu,Yv.
Assume that p1 . . . pt 6= p′1 . . . p

′
t and q1 . . . qt 6= q′1 . . . q

′
t; that is, (p1 . . . pt,

q1 . . . qt) and (p′1 . . . p
′
t, q
′
1 . . . , q

′
t) are distinct cells. Then assume that in Yv the

entries in these cells are equal as are the entries in Yv′ .
It follows that

Cv(p2, A11(p1, q1)) = Cv(p
′
2, A11(p′1, q

′
1)),(1)

Cv(p3, A22(p2, q2)) = Cv(p
′
3, A22(p′2, q

′
2)),(2)

...

Cv(pt, A(t−1)(t−1)(pt−1, qt−1)) = Cv(p
′
t, A(t−1)(t−1)(p

′
t−1, q

′
t−1)),(3)

Cv(q1, Att(pt, qt)) = Cv(q
′
1, Att(p

′
t, q
′
t)), and,(4)

Cv′(p2, A11(p1, q1)) = Cv′(p
′
2, A11(p′1, q

′
1)),(5)

Cv′(p3, A22(p2, q2)) = Cv′(p
′
3, A22(p′2, q

′
2)),(6)

...

Cv′(pt, A(t−1)(t−1)(pt−1, qt−1)) = Cv′(p
′
t, A(t−1)(t−1)(p

′
t−1, q

′
t−1)),(7)

Cv′(q1, Att(pt, qt)) = Cv′(q
′
1, Att(p

′
t, q
′
t)).(8)
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Since v 6= v′, by assumption Cv is orthogonal to Cv′ and Equations (1) and (5)

imply

p2 = p′2,(9)

A11(p1, q1) = A11(p′1, q
′
1).(10)

Continuing in this manner we get:

p3 = p′3,(11)

A22(p2, q2) = A22(p′2, q
′
2),(12)

p4 = p′4,(13)

A33(p3, q3) = A33(p′3, q
′
3),(14)

...

pt = p′t,(15)

A(t−1)(t−1)(pt−1, qt−1) = A(t−1)(t−1)(p
′
t−1, q

′
t−1),(16)

q1 = q′1,(17)

Att(pt, qt) = Att(p
′
t, q
′
t).(18)

Further Equation (9) substituted into Equation (12) implies q2 = q′2, with

a similar argument verifying that q3 = q′3, . . . , qt = q′t and then Equation (17)

substituted into Equation (10) implies p1 = p′1.

Thus we have shown that Yv and Yv′ , where v 6= v′, are orthogonal LS(nt).

Next assume that the entries in cells (p1 . . . pt, q1 . . . qt) and (p′1 . . . p
′
t, q
′
1 . . . , q

′
t)

of Xu are equal, as are the entries of Yv.
Thus for i = 1, . . . , t and j = 1, . . . , t− 1

Aiu(pi, qi) = Aiu(p′i, q
′
i), and,(19)

Cv(pj+1, Ajj(pj , qj)) = Cv(p
′
j+1, Ajj(p

′
j , q
′
j)),(20)

Cv(q1, Att(pt, qt)) = Cv(q
′
1, Att(p

′
t, q
′
t)).(21)

In Equation (19) set i = u and substitute into Equation (20) where j = u to get

pu+1 = p′u+1. Then returning to Equation (19) with i = u+ 1 gives qu+1 = q′u+1

and so A(u+1)(u+1)(pu+1, qu+1) = A(u+1)(u+1)(p
′
u+1, q

′
u+1).

Using the same argument when substituting into Equation (20) with j =

u + 1, . . . , t − 1 gives pu+2 = p′u+2 up to pt = p′t, qu+2 = q′u+2 up to qt = q′t and

A(u+2)(u+2)(pu+2, qu+2) = A(u+2)(u+2)(p
′
u+2, q

′
u+2) up to Att(pt, qt) = Att(p

′
t, q
′
t).

When this is substituted into Equation (21) we obtain q1 = q′1 which when sub-

stituted into Equation (19) with i = 1 gives p1 = p′1. So A11(p1, q1) = A11(p′1, q
′
1).
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Finally picking up the above argument at the substitution into Equation (20)

with j = 1, . . . , u − 2 gives p2 = p′2 up to pu−1 = p′u−1 and q2 = q′2 up to

qu−1 = q′u−1.

Hence for 1 ≤ u, v ≤ t, Xu and Yv are orthogonal. �

6. Conclusions and open questions

It is natural to extend transversal designs TD(3, n) to transversal designs

TD(k, n) with block size k ≥ 3, or equivalently the decomposition of the complete

tripartite graph Kn,n,n into triangles to decompositions of the k-partite graph

Kn,...,n into Kk. In the same way it is natural to extend LS(n) to sets of (k− 2)-

MOLS(n). However, imposing this orthogonality condition significantly increases

the complexity, making it harder to construct and determine the properties of

MOLS, for instance in determining the existence question for 3-MOLS(10) or the

study of the smallest possible embedding for MOPLS. This leaves us with many

open questions, some of which we state or restate below.

Q1. For each n, what is the minimum volume µv(n) such that all pairs of

MOPLS(n) of volume less than µv(n) can be completed to a pair of

MOLS(n)?

Q2. For each t, what is the smallest n such that any pair of MOPLS(t) can

be embedded in a pair of MOLS(n)?

Q3. For each t, what is the smallest n such that any pair of MOPLS(t) can

be embedded in k-MOLS(n) for k ≥ 3?

Q4. For each t, what is the smallest n such that any k-MOPLS(t), k ≥ 3, can

be embedded in k-MOLS(n)?

Q5. What are the constraints on n and r such that a pair of MOPLS(t) of

volume r can be embedded in a pair of r-orthogonal LS(n)?

Q6. For each t and each admissible r, what is the smallest n such that an

r-orthogonal LS(t) can be embedded in a pair of r-orthogonal LS(n)?

Recently, in [19] R. M. Falcón, Ó. J. Falcón and J. Núñez gave results

on the existence of orthogonal partial quasigroups (N, ◦) that are totally

conjugate orthogonal, in that the six conjugates are distinct and pairwise

orthogonal. The six conjugates are the partial quasigroups defined by

the binary operations “◦, ◦2, ◦3, ◦4, ◦5, ◦6” on N , where given x ◦ y = z,

y ◦2 x = z, x ◦3 z = y, z ◦4 x = y, z ◦5 y = x, y ◦6 z = x. This work leads

to the following question.

Q7. What is the smallest size of the embedding for the totally conjugate or-

thogonal partial quasigroups of small orders given in [19] and what is the
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smallest n such that totally conjugate orthogonal partial quasigroup, of

order t, can be embedded in a totally conjugate orthogonal quasigroup of

order n?
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[14] Donovan D., Grannell M., Yazıcı E. Ş., Embedding partial Latin squares in Latin squares
with many mutually orthogonal mates, Discrete Math. 343 (2020), no. 6, 111835, 6 pages.
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