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Abstract. We study conformal and Killing vector fields on the unit tangent bundle, over
a Riemannian manifold, equipped with an arbitrary pseudo-Riemannian g-natural metric.
We characterize the conformal and Killing conditions for classical lifts of vector fields and
we give a full classification of conformal fiber-preserving vector fields on the unit tangent
bundle endowed with an arbitrary pseudo-Riemannian Kaluza-Klein type metric.

Keywords: conformal vector field; unit tangent bundle; g-natural metric

MSC 2020 : 53C07, 53C24, 53C25

1. Introduction and main results

A smooth vector field ξ on a (pseudo-)Riemannian manifold (M, g) is said to be

a conformal vector field if there exists a smooth function f onM , called the potential

function of ξ, that satisfies Lξg = 2fg, where Lξg is the Lie derivative of g with

respect to ξ, that is, the flow of the vector field ξ consists of conformal transformations

of the Riemannian manifold (M, g). When f is constant (in particular f = 0), the

flow of ξ is given by homothetic (isometric) transformations of (M, g), and X is called

a homothetic (Killing) vector field.

Conformal vector fields are considered by specialists as useful tools for under-

standing the geometry of a pseudo-Riemannian manifold. For instance, they have

shown their efficiency to characterize some classical geometric spaces (see [15] and

the references therein). Furthermore, like all symmetries, they have many interest-

ing applications in physics (see [19]). In this context, we can find various studies

focusing on conformal or Killing vector fields on some special pseudo-Riemannian

manifolds. For example, in the framework of the Riemannian geometry of tangent

bundles, Killing and conformal vector fields had been classified on tangent bundles of
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Riemannian manifolds, equipped with the Sasaki metric (see [28] and [29]) and the

Cheeger-Gromoll metric (see [8] and [18]), respectively. When the tangent bundle is

endowed with an arbitrary g-natural metric, it is not easy to find a full classifica-

tion of conformal or Killing vector fields, but we can find some partial results on the

subject (see [17] for Killing vector fields and [2], [20], [25] for conformal vector fields).

Concerning the unit tangent bundle T1M of a Riemannian manifold (M, g),

equipped with the Sasaki metric, Konno succeeded in giving a classification of fiber-

preserving Killing vector fields (see [22]) and a full classification of Killing vector

fields in the case when the base manifold is three-dimensional (see [23]). At the

best of our knowledge, conformal vector fields on unit tangent bundles had not been

studied yet, even in the case of the Sasaki metric.

In this paper, we are interested in the study of conformal/Killing vector fields on

the unit tangent bundle equipped with an arbitrary pseudo-Riemannian g-natural

metric, i.e. a metric determined by four fixed constants a, b, c, d, a 6= 0, a(a+ c) −
b2 6= 0, a+ c+ d 6= 0, as follows:

(1.1) G̃(x,u)(X
h, Y h) = (a+ c)gx(X,Y ) + dgx(X,u)g(Y, u),

G̃(x,u)(X
h, Zv) = bgx(X,Z),

G̃(x,u)(Z
v,W v) = agx(Z,W )

for all (x, u) ∈ T1M , X,Y ∈ Mx and Z,W ∈ {u}⊥ ⊂ Mx, where X
h and Y h (or Zv

and W v) are the horizontal (or vertical) lifts to T1M of X and Y (or Z and W ).

When b = d = 0, then G̃ is said to be a Kaluza-Klein metric, and when b = 0 it is

said to be a Kaluza-Klein type metric.

However, it turns out that it is difficult to give a full classification of conformal or

Killing vector fields on the unit tangent bundle, endowed with an arbitrary pseudo-

Riemannian g-natural metric. Hence, we will focus on three questions:

⊲ to give necessary conditions for horizontal, tangential and complete lifts of a vector

field to the unit tangent bundle to be conformal or Killing;

⊲ to find a full classification of fiber-preserving conformal vector fields on the unit

tangent bundle, endowed with a Kaluza-Klein type metric;

⊲ to find some examples of non-fiber preserving conformal or Killing vector fields on

the unit tangent bundle, endowed with a Kaluza-Klein type metric.

For tangential lifts of vector fields on M to T1M , i.e. the tangential components

of vertical lifts to T1M of vector fields on M , we have the following result:

Theorem 1.1. Let (M, g) be a Riemannian manifold, G̃ a pseudo-Riemannian

g-natural metric on T1M, and ξ a nonzero vector field on M . Then the tangential

lift ξt of ξ to T1M is never conformal on (T1M, G̃).

76



As concerns the horizontal lifts to T1M of vector fields on M , we get:

Theorem 1.2. Let (M, g) be a Riemannian manifold, G̃ a pseudo-Riemannian

g-natural metric on T1M , ξ a vector field on M , and ξh its horizontal lift to T1M .

Then the following assertions are equivalent

(i) ξh is a conformal vector field on (T1M, G̃);

(ii) ξh is a Killing vector field on (T1M, G̃);

(iii) either: G̃ is a Kaluza-Klein metric on T1M , ξ is a Killing vector field on (M, g)

and R(ξ, .). = 0, R being the curvature tensor of (M, g),

or: ξ is parallel.

Corollary 1.1. Let (M, g) be a flat manifold. Then, for every pseudo-Riemannian

Kaluza-Klein metric G̃ on T1M , a vector field ξ is a Killing vector field on (M, g) if

and only if ξh is a Killing vector field on (T1M, G̃).

When we take the tangential component of the complete lift ξc to T1M of a vector

field ξ on M , we obtain the complete lift ξc̄ to T1M of ξ. For this special kind of

vector fields, we have:

Theorem 1.3. Let (M, g) be a Riemannian manifold and G̃ a pseudo-Riemannian

g-natural metric on T1M . Suppose that dimM > 2 and let ξ be a vector field

on M and ξc̄ its complete lift vector field to T1M . Then the following assertions are

equivalent

(i) ξc̄ is a conformal vector field on (T1M, G̃);

(ii) ξc̄ is a Killing vector field on (T1M, G̃);

(iii) ξ is a Killing vector field on (M, g).

Concerning the geodesic flow vector field on T1M , we can assert the following:

Theorem 1.4. Let G̃ be a pseudo-Riemannian g-natural metric on T1M given

by (1.1) and ζ the geodesic flow vector field on T1M . The following assertions are

equivalent

(i) ζ is conformal on (T1M, G̃);

(ii) ζ is a Killing vector field on (T1M, G̃);

(iii) G̃ is of Kaluza-Klein type and the base manifold (M, g) has constant sectional

curvature (a+ c)/a.

As a corollary, we have the following characterization of Riemannian manifolds of

non zero constant sectional curvatures by means of the conformality of its geodesic

flow vector field with respect to a pseudo-Riemannian Kaluza-Klein type metric

on T1M :
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Corollary 1.2. A Riemannian manifold (M, g) has a nonzero constant sec-

tional curvature if and only if the geodesic flow vector field on T1M is a conformal

(or Killing) vector field with respect to a pseudo-Riemannian Kaluza-Klein type

metric on T1M .

A vector field V on T1M is called fiber-preserving if its flow consists of local fiber

preserving transformations, i.e., local diffeomorphisms on T1M preserving fibers.

Horizontal, tangential and complete lifts to T1M of vector fields on M are examples

of fiber-preserving vector fields, while the geodesic flow vector field is not fiber-

preserving. Another non classical example of fiber-preserving vector field on T1M is

the vector field ι̃P , whose value at (x, u) ∈ T1M is the tangential lift at (x, u) of the

vector P (u) ∈ Mx, where P is a (1, 1)-tensor field on M .

When we restrict ourselves to pseudo-Riemannian Kaluza-Klein type metrics, we

can give a full classification of fiber-preserving conformal vector fields on the unit

tangent bundles, namely:

Theorem 1.5. Let (T1M, G̃) be the tangent bundle of a Riemannian mani-

fold (M, g) endowed with a pseudo-Riemannian g-natural metric G̃ of Kaluza-Klein

type, i.e. of the form (3.5) with b = 0, and let V be a fiber-preserving vector field on

(T1M, G̃). Then the following assertions are equivalent

(i) V is a conformal vector field on (T1M, G̃);

(ii) V is a Killing vector field on (T1M, G̃);

(iii) one of the following cases occurs:

(1) G̃ is a Kaluza-Klein metric and V = ξc̄ + ĩP , where ξ is a Killing vector

field on (M, g) and P is a skew-symmetric parallel (1, 1)-tensor field onM ;

(2) V = ξc̄, where ξ is a Killing vector field on (M, g).

When we analyze the classifications of Killing vector fields on the tangent bundle

endowed with the Sasaki metric or the Cheeger-Gromoll metric (see [8] and [29]), we

realize that the class of such vector fields is generated by three types of lifted vector

fields from the base manifold, two of them are fiber-preserving and the third is non-

fiber-preserving. Since Theorem 1.5 gives the full classification of fiber-preserving

conformal vector fields on T1M , equipped with a pseudo-Riemannian g-natural met-

ric of Kaluza-Klein type, it is worthwhile to consider a large class of (non-fiber-

preserving) vector fields on T1M and investigate their conformality.

For any real number λ and any vector field ξ on M , we define a vector field ∗̄ξλ
on T1M by

∗̄ξλ(x, u) := λξt(x, u) + h{C(ξ)(u)} for all (x, u) ∈ T1M,
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where C(ξ) is the (1, 1)-tensor field on M defined by g(C(ξ)Y, Z) = −g(Y,∇Zξ) for

all vector fields Y and Z on M , ∇ being the Levi-Civita connection of (M, g), and

h{C(ξ)(u)} is expressed, in local coordinates, as h{C(ξ)(u)} =
∑
i

ui[C(ξ)(∂/∂xi)]h.

Then we have:

Theorem 1.6. Let (M, g) be a space of constant sectional curvature k of dimen-

sion n > 2, and G̃ a pseudo-Riemannian g-natural metric on T1M of Kaluza-Klein

type, i.e. of the form (3.5) with b = 0, and d 6= ak. Let λ ∈ R and let ξ be a nonzero

vector field on M . Then the following assertions are equivalent

(i) ∗̄ξλ is a nonzero conformal vector field on (T1M, G̃);

(ii) ∗̄ξλ is a nonzero Killing vector field on (T1M, G̃);

(iii) λ = 0, k = (a+ c)/a and ∗̄ξ0 is, up to a nonzero real factor, the geodesic flow
vector field on T1M .

2. Preliminaries

Let (M, g) be a (pseudo-)Riemannian manifold with a Levi-Civita connection ∇
and a curvature tensor R. Recall that a smooth vector field ξ on (M, g) is conformal

if there exists a smooth function f on M , called the potential function of ξ, that

satisfies

(2.1) Lξg = 2fg,

where Lξg is the Lie derivative of g with respect to ξ, i.e.

(2.2) g(∇Xξ, Y ) + g(X,∇Y ξ) = 2fg(X,Y ) for all X,Y ∈ X(M),

or equivalently,

(2.3) g(∇Xξ,X) = fg(X,X) for all X ∈ X(M).

We have the following classical result (see [15] for the Riemannian case whose

generalization to the pseudo-Riemannian case is straightforward):

Lemma 2.1. Let ξ be a conformal vector field on a (pseudo-)Riemannian mani-

fold (M, g) with potential function f . Then we have

(2.4) R(ξ,X)Y +∇2ξ(Y,X) = X(f)Y + Y (f)X − gradfg(X,Y )
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for all X,Y ∈ X(M), where gradf denotes the gradient of f and ∇2ξ is the sec-

ond covariant derivative of ξ given by ∇2ξ(Y,X) = ∇X∇Y ξ − ∇∇XY ξ for all

X,Y ∈ X(M).

In particular, if f is constant, i.e. ξ is a homothetic or a Killing vector field, then

we get

(2.5) R(ξ,X)Y +∇2ξ(Y,X) = 0

for all X,Y ∈ X(M).

Now, we recall some basic facts and formulas and fix notation about tangent

bundles. For more detail, we refer to [31], [32] for classical lifts of vector fields

on tangent bundles and [16] for the geometry of tangent bundles of Riemannian

manifolds.

Let (M, g) be an n-dimensional Riemannian manifold and ∇ the Levi-Civita con-
nection of g. We will denote by Mx the tangent space of M at a point x ∈ M and

by p : TM → M the bundle projection. The tangent space of TM at any point

(x, u) ∈ TM splits into the horizontal and vertical subspaces with respect to ∇:

(TM)(x,u) = H(x,u) ⊕ V(x,u).

For (x, u) ∈ TM and X ∈ Mx, there exists a unique vector X
h ∈ H(x,u) such

that p∗X
h = X , where p : TM → M is the natural projection. We call Xh the

horizontal lift of X to the point (x, u) ∈ TM . The vertical lift of a vector X ∈ Mx

to (x, u) ∈ TM is a vector Xv ∈ V(x,u) such that X
v(df) = Xf for all functions f

onM . Here we consider 1-forms df onM as functions on TM (i.e., (df)(x, u) = uf).

Observe that the map X → Xh is an isomorphism between the vector spaces Mx

and H(x,u). Similarly, the map X → Xv is an isomorphism between the vector

spaces Mx and V(x,u). Obviously, each tangent vector Z̃ ∈ (TM)(x,u) can be written

in the form Z̃ = Xh + Y v, where X,Y ∈ Mx are uniquely determined vectors.

Horizontal and vertical lifts of vector fields on M are defined in the correspond-

ing way. Each system of local coordinates {(U ; xi, i = 1, . . . , n)} in M induces

on TM a system of local coordinates {(p−1(U) ; xi, ui, i = 1, . . . , n)}. Let X =∑
i

X i(∂/∂xi)x be the local expression in {(U ; xi, i = 1, . . . , n)} of a vector X in

Mx, x ∈ M . Then the horizontal lift Xh and the vertical lift Xv of X are given,

with respect to the induced coordinates, by

(2.6) Xh =
∑

i

X i ∂

∂xi
−

∑

i,j,k

Γi
jku

jXk ∂

∂ui
,
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and

(2.7) Xv =
∑

i

X i ∂

∂ui
,

where (Γi
jk) denote the Christoffel’s symbols of g.

Next, we introduce some notation which will be used describing vectors ob-

tained from lifted vectors by basic operations on TM . Let T be a tensor field of

type (1, s) on M . If X1, X2, . . . , Xs−1 ∈ Mx, then h{T (X1, . . . , u, . . . , Xs−1)} and
v{T (X1, . . . , u, . . . , Xs−1)}) are horizontal and vertical vectors at (x, u) which are
introduced by the formulas

h{T (X1, . . . , u, . . . , Xs−1)} =
∑

uλ
(
T
(
X1, . . . ,

( ∂

∂xλ

)

x
, . . . , Xs−1

))h
,

v{T (X1, . . . , u, . . . , Xs−1)} =
∑

uλ
(
T
(
X1, . . . ,

( ∂

∂xλ

)

x
, . . . , Xs−1

))v

.

In particular, if T is the identity tensor of type (1, 1), then we obtain the geodesic flow

vector field at (x, u), ζ(x,u) =
∑

uλ(∂/∂xλ)h(x,u), and the canonical vertical vector

at (x, u), U(x,u) =
∑

uλ(∂/∂xλ)v(x,u).

Moreover h{T (X1, . . . , u, . . . , u, . . . , Xs−1)} and v{T (X1, . . . , u, . . . , u, . . . , Xs−1)}
are introduced in a similar way.

The bracket operation of vector fields on the tangent bundle is given by

[Xh, Y h](x,u) = [X,Y ]h(x,u) − v{R(Xx, Yx)u},(2.8)

[Xh, Y v](x,u) = (∇XY )v(x,u),(2.9)

[Xv, Y v](x,u) = 0(2.10)

for all vector fields X and Y on M .

Besides vertical and horizontal lifts of vector fields, there are many other special

vector fields on the tangent bundle of a manifold obtained by some “lifting” technics

of tensor fields on the base manifold. When the base manifold is Riemannian, these

special vector fields can be expressed by means of some vertical and horizontal vector

fields. We give here two of such special vector fields (see [31] for definitions):

(a) The complete lift Xc to TM of a vector field X on M is expressed as

(2.11) Xc
(x,u) = Xh

(x,u) + v{∇uX}

for all (x, u) ∈ TM .
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(b) The vector field ιP on TM defined from a (1, 1)-tensor field P on M and

expressed as

(2.12) (ιP )(x,u) = v{P (u)}

for all (x, u) ∈ TM . If P is the field I of identity endomorphisms, then ιI = U .
It is easy to see that Xc = Xh + ι(∇X).

3. g-natural metrics

In this section, we recall some basic facts about g-natural metrics on tangent

bundles and their induced metrics on unit tangent bundles. For more elaborate

expositions, we refer to [1], [9], [10], [24] for the construction of g-natural metrics on

tangent bundles and the basic properties and [3], [4], [5], [6], [7] for g-natural metrics

on unit tangent bundles.

3.1. g-natural metrics on tangent bundles. As a Riemannian manifold, the

tangent bundle TM of a Riemannian manifold (M, g) were classically endowed with

the well-known Sasaki metric gs, which is defined by

gs(Xh, Y h) = gs(Xv, Y v) = g(X,Y ), gs(Xh, Y v) = 0

for all X,Y ∈ X(M) (see [16], [26]).

Other (classes of) metrics have been then considered and the more general class is

that of g-natural metrics which encompasses almost all the metrics previously consid-

ered. As their name suggests, those metrics arise from a very ‘natural’ construction

starting from a Riemannian metric g over M . For more details about the concept

of naturality and related notions, we refer to [21]. Such metrics are characterized as

follows:

Proposition 3.1 ([10]). For any g-natural metric G on the tangent bundle TM

of a Riemannian manifold (M, g) there exist six smooth functions αi, βi : R
+ → R,

i = 1, 2, 3, such that

(3.1) G(x,u)(X
h, Y h) = (α1 + α3)(r

2)gx(X,Y ) + (β1 + β3)(r
2)gx(X,u)gx(Y, u),

G(x,u)(X
h, Y v) = G(x,u)(X

v, Y h)

= α2(r
2)gx(X,Y ) + β2(r

2)gx(X,u)gx(Y, u),

G(x,u)(X
v, Y v) = α1(r

2)gx(X,Y ) + β1(r
2)gx(X,u)gx(Y, u)

for every u,X, Y ∈ Mx, where r
2 = gx(u, u).
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Put φi(t) = αi(t) + tβi(t), α(t) = α1(t)(α1 + α3)(t) − α2
2(t) and φ(t) = φ1(t)×

(φ1 + φ3)(t)− φ2
2(t) for all t ∈ R

+. It it easily seen (see [9]) that G is

⊲ non-degenerate if and only if

α(t) 6= 0, φ(t) 6= 0 for all t ∈ R
+;

⊲ Riemannian if and only if

α1(t) > 0, φ1(t) > 0, α(t) > 0, φ(t) > 0 for all t ∈ R
+.

As said before, the wide class of g-natural metrics includes several well known

metrics (Riemannian and pseudo-Riemannian) on TM . In particular:

⊲ Sasaki metric gs is obtained for α1 = 1 and α2 = α3 = β1 = β2 = β3 = 0 in (3.1).

⊲ Kaluza-Klein metrics (in the sense of [11]) are obtained for α2 = β2 = β1+β3 = 0

in (3.1) (see Remark 3.1 below).

⊲ Metrics of Kaluza-Klein type are defined by the geometric condition of orthogonal-

ity between horizontal and vertical distributions, see [13], [14]. Thus, a g-natural

metric G is of Kaluza-Klein type if α2 = β2 = 0 in (3.1).

Remark 3.1. The terminology “Kaluza-Klein metric” in the framework of tan-

gent bundles originates from the paper [11], in which the authors referred to the

paper of Wood, see [30]. To know how the authors of [11] derived this terminology

from [30], we contacted Loubeau, one of the authors, who confessed that the use

of the terminology is decidedly a bit excessive and that one might use, instead, the

terminology “Generalized Kaluza-Klein metric”. Indeed, Wood defined the concept

of Kaluza-Klein metric on principal bundles and then on their associated bundles,

see [30]. When we consider the tangent bundles as associated bundles, then we find

that Kaluza-Klein metrics, in the sense of Wood, are those characterized by the

following properties:

(1) the projection p : TM → M is a Riemannian submersion;

(2) horizontal and vertical distributions are orthogonal;

(3) the metric on the fibers is induced by an arbitrary fiber metric.

Kaluza-Klein metrics on tangent bundles, as defined in [11], are rather g-natural

metrics which preserve condition 2 and generalize condition 1 to the case when p is

a conformal submersion. So we can define Kaluza-Klein metrics on tangent bundles,

in the sense of [11], as metrics characterized by the following properties:

(1) the metric is g-natural;

(2) the projection p : TM → M is a conformal submersion;

(3) horizontal and vertical distributions are orthogonal.

Currently, the terminology “Kaluza-Kleinmetric” for tangent bundles is commonly

used by geometers in the sense of [11], and so it is appropriate to adopt it.
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3.2. g-natural metrics on unit tangent bundles. The unit tangent bundle

over a Riemannian manifold (M, g) is the hypersurface of TM , given by

T1M = {(x, u) ∈ TM ; gx(u, u) = 1}.

We will denote by p1 : T1M → M the bundle projection. The tangent space of T1M

at a point (x, u) ∈ T1M is given by

(3.2) (T1M)(x,u) = {Xh + Y v ; X ∈ Mx, Y ∈ {u}⊥ ⊂ Mx}.

By definition, g-natural metrics on the unit tangent bundle are the metrics induced

on the hypersurface T1M by the corresponding g-natural metrics on TM . As proved

in [6] for the Riemannian case, and extended to pseudo-Riemannian settings in [12],

if a g-natural metric G̃ on T1M is induced from a g-natural metric G on TM given

by (3.1), then G̃ is completely determined by the values of four real constants

a := α1(1), b := α2(1), c := α3(1), d := (β1 + β3)(1),

i.e., by virtue of (3.2), G̃ is completely determined by (1.1).

By simple calculation, using the Schmidt’s orthonormalization process, it is easy

to check that the vector field on TM defined by

(3.3) N(x,u) =
1√
ϕφ

[−bh{u}+ ϕv{u}]

for all (x, u) ∈ TM , is normal to (T1M, G̃) and unitary at any point of T1M , where

ϕ := a+ c+ d and φ = φ(1) = aϕ− b2.

For (x, u) ∈ T1M and X ∈ Mx, since the horizontal lift X
h
(x,u) is tangent to T1M ,

we can talk about the horizontal lift to T1M of a vector tangent to M at a point

of T1M . Similarly, we define the horizontal lift of a vector field X ∈ X(M) as the

restriction to T1M of the horizontal lift of X to TM .

On the other hand, for (x, u) ∈ T1M andX ∈ Mx, X
v
(x,u) is not necessarily tangent

to T1M . We define the tangential lift X
t with respect to G, of X to (x, u) as the

tangential projection of the vertical lift of X to (x, u) with respect to N , that is,

(3.4) Xt
(x,u) = Xv

(x,u) − g(u,X)v{u}+ b

ϕ
g(u,X)h{u}.

If X is orthogonal to u, then Xt
(x,u) = Xv

(x,u). For a vector field X on M , we define

it tangential lift to T1M accordingly.
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Let T be a tensor field of type (1, s) on M . If X1, X2, . . . , Xs−1 ∈ Mx and

(x, u) ∈ T1M , we define t{T (X1, . . . , u, . . . , Xs−1)} as the tangential projection of
v{T (X1, . . . , u, . . . , Xs−1)} on (T1M)(x,u) with respect to N , given by the formula

t{T (X1, . . . , u, . . . , Xs−1)} =
∑

uλ
(
T
(
X1, . . . ,

( ∂

∂xλ

)

x
, . . . , Xs−1

))t
.

Moreover, t{T (X1, . . . , u, . . . , u, . . . , Xs−1)} is introduced in a similar way.
It is then easy to see that the tangent space (T1M)(x,u) of T1M at (x, u) is spanned

by vectors of the formXh
(x,u) and Y

t
(x,u), whereX,Y ∈ Mx. It follows then, from (1.1)

and (3.4), that g-natural metrics on T1M admit the following explicit description.

Proposition 3.2. Let (M, g) be a Riemannian manifold. For every pseudo-

Riemannian metric G̃ on T1M induced from a g-natural G on TM there exist four

constants a, b, c and d, satisfying the inequalities

a 6= 0, α := a(a+ c)− b2 6= 0, ϕ := a+ c+ d 6= 0,

such that

(3.5) G̃(x,u)(X
h, Y h) = (a+ c)gx(X,Y ) + dgx(X,u)g(Y, u),

G̃(x,u)(X
h, Y t) = bgx(X,Y ),

G̃(x,u)(X
t, Y t) = agx(X,Y )− φ

a+ c+ d
gx(X,u)gx(Y, u)

for all (x, u) ∈ T1M , and X,Y ∈ Mx. Furthermore, G̃ is Riemannian if a > 0, α > 0

and ϕ > 0.

In particular, the Sasaki metric on T1M corresponds to the case, where a = 1

and b = c = d = 0; Kaluza-Klein metrics are obtained when b = d = 0; metrics of

Kaluza-Klein type are given by the case b = 0.

4. Some special vector fields on unit tangent bundles

4.1. Tangential components on T1M of vector fields on TM . For any vector

field Z on TM we define the tangential component tan{Z} of its restriction Z|T1M

to T1M with respect to G, by tan{Z} := Z|T1M −G(Z|T1M , N)N , obtaining a vector

field on T1M . Horizontal and tangential lifts to T1M of vector fields on M are

examples of such construction. Another example is the restriction to T1M of the

geodesic vector field ζ on TM , which is always tangent to T1M . It defines the so-

called geodesic flow vector field on T1M , see [27], which we denote also by ζ. Other

interesting examples are the following:
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⊲ The tangential component with respect to G of the complete lift Xc of X , which

we call the complete lift to T1M of X , and denote by X c̄. It is given by

(4.1) X c̄
(x,u) = Xh

(x,u) + t{∇uX}

for all (x, u) ∈ T1M .

⊲ The tangential component with respect to G of the vector field ιP on TM , which

we denote by ι̃P . It is given by

(4.2) (ι̃P )(x,u) = t{P (u)}

for all (x, u) ∈ T1M .

⊲ For any vector field ξ on M and any real function f defined on R
+, we define

a vector field ∗ξf on TM in the following manner: ∗ξf := f(r2)ξv + ξ♭U + ∗C(ξ),

where r2 is the squared norm function on TM , ξ♭ is the 1-form on M dual to ξ

with respect to g, C(ξ) is the (1, 1)-tensor field on M defined by g(C(ξ)Y, Z) =

−g(Y,∇Zξ) for all vector fields Y and Z on M and the operator ∗ acts on (1, 1)-

tensor fields on M as ∗P (x, u) := h{P (u)} for all (x, u) ∈ TM . Explicitly, for

(x, u) ∈ TM ,

(4.3) ∗ξf (x, u) := f(‖u‖2)ξv(x, u) + g(ξx, u)v{u}+ h{C(ξ)(u)}.

It is easy to see that if we restrict ourselves to T1M , then the first summand in (4.3)

depends only on f(1). On the other hand, if we take the tangential component of

the vector field ∗ξf(x, u), restricted to T1M , then we can assume that the second

summand in (4.3) vanishes identically. So, to define such type of vector fields,

on T1M , it suffices to choose a real constant λ and a vector field ξ on M . In this

case, the tangential component ∗̄ξλ of the restriction of ∗ξλ to T1M is defined by

(4.4) ∗̄ξλ(x, u) := λξt(x, u) + h{C(ξ)(u)} for all (x, u) ∈ T1M.

Lemma 4.1. If ξ ∈ X(M) is parallel, then C(ξ) = 0 and ∗̄ξλ = λξt.

4.2. Fiber-preserving vector fields on T1M . A vector field V on T1M is called

fiber-preserving if its flow consists of local fiber preserving transformations, i.e. local

diffeomorphisms on T1M preserving fibers, i.e. if [V,W ] is vertical for any vertical

vector field W on T1M .
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For any vector field V on T1M, there is a vector field V on TM which extends V .

For a local coordinates system (U, x1, . . . , xn) ofM, V can be expressed in the induced

coordinate system of TM as

V |p−1(U) =
∑

i

Ai
( ∂

∂xi

)h
+
∑

i

Bi
( ∂

∂xi

)v
,

where Ai and Bi are smooth functions on p−1(U). Since V is tangent to T1M at

any point of T1M, we should have
∑
i,j

gij(x)B
i(x, u)uj = 0 for all (x, u) ∈ p−1

1 (U) =

p−1(U) ∩ T1M expressed locally as u =
∑
i

ui∂/∂xi. If we denote the restrictions

to p−1
1 (U) of Ai and Bi by the same notation, we can write

(4.5) V |p−1
1 (U) =

∑

i

Ai
( ∂

∂xi

)h
+
∑

i

Bi
( ∂

∂xi

)t
.

We have then:

Lemma 4.2. A vector field V on T1M is fiber preserving if and only if

h{[V,Xt]} = 0 for all X ∈ X(M), where h stands for the horizontal component

and Xt is the tangential lift of X with respect to any Riemannian g-natural metric

of Kaluza-Klein type.

P r o o f. The necessary condition is obvious since any tangential lift with re-

spect to any Riemannian g-natural metric of Kaluza-Klein type is a vertical vector

field on T1M . Conversely, any vertical vector field W on T1M can be expressed

locally as W =
∑
i

W i(∂/∂xi)t, where each W i is a C∞-function on the coordi-

nate neighborhood in T1M . The local expression of [V,W ] is
∑
i

V (W i)(∂/∂xi)t +∑
i

W i[V, (∂/∂xi)t], which is clearly tangential and thus vertical. �

As a corollary, we get:

Lemma 4.3. Let G̃ be a pseudo-Riemannian g-natural metric of Kaluza-Klein

type. A vector field V on T1M is fiber preserving if and only if its horizontal com-

ponent is a horizontal lift of a vector field on M .

P r o o f. Taking into account the local expression (4.5) of V and using Lemma 5.2

below (with b = 0), we obtain h{[V,Xt](x,u)} = −∑
i

Xt
(x,u)(A

i)(∂/∂xi)h(x,u). Then

h{[V,Xt](x,u)} = 0 if and only if

(4.6) Xt
(x,u)(A

i) = 0
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for all i = 1, . . . , n, (x, u) ∈ T1M and X ∈ Mx. It follows that for X ⊥ u we have

Xt
(x,u)(A

i) = 0, i.e., (dAi)(x,u)(X
t
(x,u)) = 0 for all X ⊥ u. If we denote by Ai

x the

restriction of Ai to the fiber SxM := T1M ∩Mx, we then have

(4.7) (dAi
x)(x,u)(X

t
(x,u)) = (dAi)(x,u)(X

t
(x,u)) = 0

for all X ∈ Mx such that g(X,u) = 0. But dAi
x is a linear form defined on the tangent

space (SxM)(x,u) = {Xt
(x,u)/X ∈ Mx, g(X,u) = 0}. Thus, by (4.7) it follows that

(dAi
x)(x,u) vanishes identically on (SxM)(x,u). We conclude that the restriction Ai

x

is constant on SxM. Therefore, for any x ∈ M, there is a C∞-function ξi on M such

that

(4.8) Ai(x, u) = ξi(x)

for all (x, u) ∈ T1M . �

4.2.1. An extension to TM of fiber-preserving vector fields on T1M . In

this subsection, we restrict ourselves to Kaluza-Klein metrics on T1M . Let G̃ be

a Kaluza-Klein metric on T1M , i.e. with b = d = 0, and consider the metric G

on TM extending G̃, given by (3.1) with α1 = a, α3 = c and α2 = β1 = β2 = β3 = 0.

To extend fiber-preserving vector fields on T1M to vector fields on TM , we use the

technics from [22].

Let Z be a fiber-preserving vector field on T1M . Then it is known that Z is

projectable to a vector field Z on M , i.e. such that (dp1)u(Zu) = Zx for all x ∈ M

and u ∈ SxM . For all r > 0, let us define the immersions jr : T1M → TM and

j0 : M → TM , respectively, by jr(u) = ru for all u ∈ T1M , and j0(x) = 0x for all

x ∈ M , where 0x denotes the zero vector in Mx. We define a vector field Z on TM

extending Z (see [22]) by

Zru :=

{
(djr)u(Zu) for r > 0,

(dj0)x(Zx) for r = 0

for all x ∈ M and u ∈ SxM . We denote by Z the restriction of Z to TM \ σ0, which

is clearly a vector field on TM \ σ0, where σ0 := j0(M) is the zero section of TM .

For the horizontal and tangential lifts to T1M of vector fields on M , the preceding

extensions become as follows:

Lemma 4.4. Let X , Y ∈ X(M). Then

(a) Xh = X and Xt = 0;

(b) Xh = Xh;
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(c) Xt
↾σ0 = 0 and Xt = r.Xt, where the quantity Xt on the right hand side of the

second identity is the tangential lift with respect to the corresponding tangent

bundle, i.e. Xt
ru := [X − r−2g(X,u)u]vru for all u ∈ T1M and r > 0.

We have then the following:

Lemma 4.5. Let Z, X and Y fiber-preserving vector fields on T1M , then

(4.9) (LZG(X,Y ))ru = (1 − r2)(a+ c)(LZg(X,Y ))x + r2(LZG̃(X,Y ))u

for all x ∈ M , u ∈ SxM and r > 0.

P r o o f. Putting X = Xh
1 +Xt

2 and Y = Y h
1 + Y t

2 and using Lemma 4.4, we have

for all x ∈ M , u ∈ SxM and r > 0

Gru(X,Y ) = (a+ c)gx(X1, Y1) + r2a
(
gx(X2, Y2)−

1

r2
gx(X2, u)gx(Y2, u)

)

= (1 − r2)(a+ c)gx(X,Y ) + r2G̃u(X,Y ),

since X = X1 and Y = Y1. We deduce then that

Zru(G(X,Y )) = (1− r2)(a+ c)Zx(g(X,Y )) + r2Zu(G̃(X,Y )),

Gru([Z,X ], Y ) = (1− r2)(a+ c)gx([Z,X], Y ) + r2G̃u([Z,X ], Y ),

Gru(X, [Z, Y ]) = (1− r2)(a+ c)gx(X, [Z, Y ]) + r2G̃u(X, [Z, Y ]).

The identity (4.9) follows then from the three preceding formulas. �

5. Some operations on vector fields on unit tangent bundles

Lemma 5.1 ([2]). For all X,Y ∈ X(M), f ∈ C∞(M) and (x, u) ∈ T1M , we have

Xh(ui) = −
∑

j,k

Γi
jkX

juk and(i)

Xt(ui) = X i − g(X,u)ui − b

ϕ
g(X,u)

∑

j,k

Γi
jku

juk for all i = 1, . . . , n;

Xh(f ◦ p1) = X(f) ◦ p1;(ii)

Xt(f ◦ p1) =
b

ϕ
g(X,u)u(f);(iii)

Xh
(x,u)(g(Y, .)) = g(∇Xx

Y, u);(iv)

Xt
(x,u)(g(Y, .)) = g(Xx, Yx)− g(Xx, u)g(Yx, u) +

b

ϕ
g(Xx, u)g(∇uY, u).(v)
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Lemma 5.2. For all X,Y ∈ X(M) and (x, u) ∈ T1M , we have

[Xh, Y h](x,u) = [X,Y ]h(x,u) − t{R(Xx, Yx)u},(i)

[Xh, Y t](x,u) =
−b

ϕ
g(Yx, u)h{∇uX}+ (∇Xx

Y )t(x,u)(ii)

− b

ϕ
g(Yx, u)t{R(Xx, u)u},

[Xt, Y t](x,u) =
b

ϕ
[g(Yx, u)X

h
(x,u) − g(Xx, u)Y

h
(x,u)](iii)

+
b

ϕ
[g(Xx, u)t{∇uY } − g(Yx, u)t{∇uX}]

+
(b2d
ϕα

− 1
)
[g(Yx, u)X

t
(x,u) − g(Xx, u)Y

t
(x,u)].

P r o o f. Follows easily from (2.8)–(2.10), using (3.4) and Lemma 5.1. �

Lemma 5.3. For all ξ ∈ X(M), (x, u) ∈ TM and X,Y ∈ Mx, we have

(LξtG̃)(x,u)(X
h, Y h)

= b
{
g(∇Xξ, Y ) + g(∇Y ξ,X)− 2b

ϕ
g(ξx, u)g(R(X,u)u, Y )

}

+ d{g(ξx, X)g(Y, u) + g(ξx, Y )g(X,u)− 2g(ξx, u)g(X,u)g(Y, u)},
(LξtG̃)(x,u)(X

h, Y t)

= a{g(∇Xξ, Y )− g(Y, u)g(∇Xξ, u)}

+
b

ϕ
{bg(Y, u)g(∇uξ, Y )− g(ξx, u)g(R(X,u)u, Y )}

+
bd

αϕ
(α− b2){g(ξx, X)g(Y, u)− g(ξx, u)g(X,Y )},

(LξtG̃)(x,u)(X
t, Y t)

=
ab

ϕ
{g(X,u)g(∇uξ, Y ) + g(Y, u)g(∇uξ,X)− 2g(X,u)g(Y, u)g(∇uξ, u)}

− b2φ

αϕ
{g(X, ξx)g(Y, u)g(Y, ξx)g(X,u)− 2g(X,Y )g(ξx, u)}

− 2ag(ξx, u){g(X,Y )− g(X,u)g(Y, u)}.

P r o o f. Extending the vectors X , Y to vector fields on M , which we denote

by X , Y , we have by definition of the Lie derivative

(5.1) (LξtG̃)(x,u)(X
h, Y h) = ξt(x,u)(G̃(Xh, Y h))− G̃(Xh, [ξt, Y h](x,u))

− G̃(Y h, [ξt, Xh](x,u)).

90



Using (3.5) and (iii) and (iv) of Lemma 5.1, we obtain

(5.2) ξt(x,u)(G̃(Xh, Y h)) = ξt(x,u)((a+ c)g(X,Y ) ◦ p1 + dg(X, .)g(Y , .))

= (a+ c)ξt(x,u)(g(X,Y ) ◦ p1)
+ d[g(X,u)ξt(x,u)(g(Y , .)) + g(Y, u)ξt(x,u)(g(X, .))]

=
(a+ c)b

ϕ
g(ξx, u)u(g(X,Y ))

+ d
[
g(X,u)g(ξx, Y ) + g(Y, u)g(ξx, X)− 2g(ξx, u)g(X,u)g(Y, u)

+
b

ϕ
g(ξx, u)(g(X,u)g(∇uY , u) + g(Y, u)g(∇uX,u))

]
.

On the other hand, using (ii) of Lemma 5.2 and (3.5), we have

(5.3) G̃(Xh, [ξt, Y h](x,u)) =
b

ϕ
g(ξx, u)G̃(Xh, h{∇uY })− G̃(Xh, t{∇Y ξ})

+
b

ϕ
g(ξx, u)G̃(Xh, t{R(Y, u)u})

= − bg(X,∇Y ξ) +
b

ϕ
g(ξx, u)

× [(a+ c)g(X,∇uY ) + dg(X,u)g(∇uY, u) + bg(X,R(Y, u)u)],

and

(5.4) G̃(Y h, [ξt, Xh](x,u)) = −bg(Y,∇Xξ)

+
b

ϕ
g(ξx, u)[(a+ c)g(Y,∇uX) + dg(Y, u)g(∇uX,u) + bg(Y,R(X,u)u)].

Substituting from (5.2)–(5.4) into (5.1), we obtain the first identity of the lemma.

The other two identities follow in the same way using (3.5) and the appropriate

formulas from Lemmas 5.1 and 5.2. �

Now, using the same arguments, we get the following two lemmas:

Lemma 5.4. For all ξ ∈ X(M), (x, u) ∈ TM and X,Y ∈ Mx, we have

(LξhG̃)(x,u)(X
h, Y h) = (a+ c){g(∇Xξ, Y ) + g(∇Y ξ,X)}

− bg(R(ξx, X)Y +R(ξx, Y )X,u) + d{g(∇Xξ, u)g(Y, u) + g(∇Y ξ, u)g(X,u)},
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(LξhG̃)(x,u)(X
h, Y t) = ag(R(ξx, X)u, Y ) + bg(∇Xξ, Y )

+
b

ϕ
g(Y, u){(a+ c)g(∇uξ,X) + dg(X,u)g(∇uξ, u) + bg(R(ξx, u)u,X)},

(LξhG̃)(x,u)(X
t, Y t) =

b2

ϕ
{g(X,u)g(∇uξ, Y ) + g(Y, u)g(∇uξ,X)}

+
ab

ϕ
{g(X,u)g(R(ξx, u)u, Y ) + g(Y, u)g(R(ξx, u)u,X)}.

Lemma 5.5. For all ξ ∈ X(M), (x, u) ∈ TM and X,Y ∈ Mx, we have

(Lξc̄G̃)(x,u)(X
h, Y h) = (a+ c){g(∇Xξ, Y ) + g(∇Y ξ,X)}

+ b{g(∇2ξ(u,X) +R(ξx, X)u, Y ) + g(∇2ξ(u, Y ) +R(ξx, Y )u,X)}
+ d{[g(∇uξ, Y ) + g(∇Y ξ, u)]g(X,u) + [g(∇uξ,X) + g(∇Xξ, u)]g(Y, u)}

− 2g(∇uξ, u)
{b2

ϕ
g(R(X,u)u, Y ) + dg(Y, u)g(X,u)

}
,

(Lξc̄G̃)(x,u)(X
h, Y t) = ag(R(ξx, X)u+∇2ξ(u,X), Y ) + b{g(∇Xξ, Y ) + g(∇Y ξ,X)}

− b

ϕ
g(∇uξ, u)

{
g(R(X,u)u, Y ) +

d

α
(α− b2)g(X,Y )

}
,

(Lξc̄G̃)(x,u)(X
t, Y t) = a{g(∇Xξ, Y ) + g(∇Y ξ,X)}+ 2

(b2φ
αϕ

− a
)
g(∇uξ, u)g(X,Y ).

Finally, we have

Lemma 5.6. For all (x, u) ∈ T1M and X,Y ∈ Mx, we have

(LζG̃)(x,u)(X
h, Y h) = − 2bg(R(u,X)Y, u),

(LζG̃)(x,u)(X
h, Y t) = (a+ c)[g(X,Y )− g(X,u)g(Y, u)] + ag(R(u,X)u, Y ),

(LζG̃)(x,u)(X
t, Y t) = 2b[g(X,Y )− g(X,u)g(Y, u)].

P r o o f. Using the local expression ζ =
∑
i

ui(∂/∂xl)h of ζ, we have

(5.5) (LζG̃)(x,u)(X
h, Y h)

=
∑

i

ui(L(∂/∂xi)hG̃)(x,u)(X
h, Y h) +

∑

i

G̃
(
Xh, Y h(ui)

( ∂

∂xi

)h
(x,u)

)

+
∑

i

G̃
(
Y h, Xh(ui)

( ∂

∂xi

)h
(x,u)

)
.

92



Using the first identity of Lemma 5.4, we obtain

(5.6)
∑

i

uiL(∂/∂xi)h
(x,u)

G̃(Xh, Y h)

= (a+ c)
∑

i

ui
{
g(∇X

( ∂

∂xi

)
, Y ) + g

(
∇Y

( ∂

∂xi

)
, X

)}

− b
∑

i

uig
(
R
(( ∂

∂xi

)

x
, X

)
Y +R

(( ∂

∂xi

)

x
, Y

)
X,u

)

+ d
∑

i

ui
{
g
(
∇X

( ∂

∂xi

)
, u

)
g(Y, u) + g

(
∇Y

( ∂

∂xi

)
, u

)
g(X,u)

}

= (a+ c){g(∇XU, Y ) + g(∇Y U,X)} − 2bg(R(u,X)Y, u)

+ d{g(∇XU, u)g(Y, u) + g(∇Y U, u)g(X,u)},

where U is the local vector field onM given by U :=
∑
i

ui∂/∂xi. Notice that using U

and the identities (i) of Lemma 5.1, we have

∑

i

Xh(ui)
∂

∂xi
= −∇XU,(5.7)

∑

i

Xt(ui)
∂

∂xi
= X − g(X,u)U − b

ϕ
∇UU.(5.8)

Using (5.7) and (3.5), we have

(5.9)
∑

i

G̃
(
Xh, Y h(ui)

( ∂

∂xi

)h
(x,u)

)
= − G̃(Xh, (∇Y U)h(x,u))

= − (a+ c)g(X,∇Y U)− dg(X,u)g(∇Y U), u),

and

(5.10)
∑

i

G̃
(
Y h, Xh(ui)

( ∂

∂xi

)h
(x,u)

)
= −(a+c)g(Y,∇XU)−dg(Y, u)g(∇XU), u).

Substituting from (5.6), (5.9) and (5.10) into (5.5), we obtain the first formula of the

lemma. The other two formulas can be proved similarly using the second and third

identities of Lemma 5.4, (5.7), (5.9) and (3.5). �

Lemma 5.7. Let V be a fiber-preserving vector field on T1M expressed, locally,

as V = ξh +
∑
i

Bi(∂/∂xi)t, where ξ ∈ X(M). For all (x, u) ∈ T1M , X,Y ∈ Mx, we
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have

(LV G̃)(x,u)(X
h, Y h)

= (a+ c){g(∇Xξ, Y ) + g(∇Y ξ,X)}+ d{g(∇Xξ, u)g(Y, u) + g(∇Y ξ, u)g(X,u)

+ g(K(V(x,u)), X)g(Y, u) + g(K(V(x,u)), Y )g(X,u)},
(LV G̃)(x,u)(X

h, Y t)

= a

{
g(R(ξx, X)u, Y ) +

∑

i

Bi(x, u)g
(
∇X

∂

∂xi
, Y

)
+

∑

i

Xh(Bi)g
( ∂

∂xi
(x), Y

)}
,

(LV G̃)(x,u)(X
t, Y t)

= a
∑

i

{
Xt(Bi)g

( ∂

∂xi
(x), Y − g(Y, u)u

)
+ Y t(Bi)g

( ∂

∂xi
(x), X − g(X,u)u

)}
,

where all the lifts are taken at (x, u) andK : TTM → TM is the connection map cor-

responding to the Levi-Civita connection ∇ of (M, g), characterized by K(Xh) = 0

and K(Xv) = X for all X ∈ TM .

P r o o f. We have

(5.11) (LV G̃)(x,u)(X
h, Y h) = (LξhG̃)(x,u)(X

h, Y h)

+
∑

i

Bi(x, u)(L(∂/∂xi)tG̃)(x,u)(X
h, Y h)

+
∑

i

Xh(Bi)G̃
(( ∂

∂xi

)t
(x,u)

, Y h
)
+
∑

i

Y h(Bi)G̃
(
Xh,

( ∂

∂xi

)t
(x,u)

)

= Lξh
(x,u)

G̃(Xh, Y h) +
∑

i

Bi(x, u)L(∂/∂xi)t
(x,u)

G̃(Xh, Y h),

since b = 0. Using the first identity of Lemma 5.3 with b = 0 and the fact that∑
i,j

gij(x)B
i(x, u)uj = 0, we obtain

(5.12)
∑

i

Bi(x, u)(L(∂/∂xi)tG̃)(x,u)(X
h, Y h)

= d
∑

i

Bi(x, u)
[
g
(( ∂

∂xi

)

x
, X

)
g(Y, u) + g

(( ∂

∂xi

)

x
, Y

)
g(X,u)

]
.

On the other hand, it is easy to see that K(Xt
(x,u)) = X − g(X,u)u for all (x, u) ∈

T1M and X ∈ Mx. Hence K(V(x,u)) =
∑
i

Bi(x, u)∂/∂xi(x) for all (x, u) ∈ p−1
1 (U).

We deduce then that

(5.13)
∑

i

Bi(x, u)(L(∂/∂xi)tG̃)(x,u)(X
h, Y h)

= d[g(K(V(x,u)), X)g(Y, u) + g(K(V(x,u)), Y )g(X,u)].
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Substituting from (5.13) and the first identity of Lemma 5.4 (with b = 0) into (5.11),

we obtain the first identity of our lemma. The second and third identities follow in

a similar way. �

As a corollary of Lemma 5.7, it is easy to conclude:

Lemma 5.8. Let G̃ be a Kaluza-Klein metric on T1M , i.e. b = d = 0. Then V is

a Killing vector field on (T1M, G̃) if and only if it is Killing on (T1M, g̃s), where g̃s

is the Sasaki metric on T1M .

In the same way as before, using Lemmas 5.1 and 5.2, we have:

Lemma 5.9. If ξ is a vector field on M , λ ∈ R, (x, u) ∈ TM and X,Y ∈ Mx, we

have

(L∗̄ξλG̃)(x,u)(X
h, Y h)

= − (a+ c)g(∇2ξ(X,Y ) +∇2ξ(Y,X), u)

− d[g(X,u)g(∇2ξ(Y, u) +∇2ξ(u, Y ), u) + g(Y, u)g(∇2ξ(X,u) +∇2ξ(u,X), u)]

+ λd[g(ξx, X)g(Y, u) + g(ξx, Y )g(X,u)− 2g(ξx, u)g(X,u)g(Y, u)],

(L∗̄ξλG̃)(x,u)(X
h, Y t)

= [(a+ c) + aλ][g(∇Xξ, Y )− g(Y, u)g(∇Xξ, u)]

+ dg(X,u)[g(∇uξ, Y )− g(Y, u)g(∇uξ, u)] + ag(R(C(ξx)(u), X)u, Y ),

(L∗̄ξλG̃)(x,u)(X
t, Y t) = −2aλ[g(X,Y )− g(X,u)g(Y, u)]g(ξx, u).

6. Proofs of the main results

If we consider the unit tangent bundle endowed with a pseudo-Riemannian

g-natural metric G̃, we can give the following useful characterization of conformal

vector fields:

Lemma 6.1. A vector field V on T1M is conformal with respect to G̃, if and only

if there is a smooth function f̃ on T1M such that the identities

(6.1) (LV G̃)(x,u)(X
h, Y h) = 2f̃(x, u)G̃(Xh, Y h),

(LV G̃)(x,u)(X
h, Y t) = 2f̃(x, u)G̃(Xh, Y t),

(LV G̃)(x,u)(X
t, Y t) = 2f̃(x, u)G̃(Xt, Y t)

hold for all (x, u) ∈ T1M and X,Y ∈ Mx.
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P r o o f. Follows from the fact that every tangent vector to T1M can be decom-

posed into a sum of horizontal and tangential lifts of vectors on M . �

P r o o f of Theorem 1.1. Suppose that ξt is a conformal vector field, that is, there

is a C∞-function f̃ on T1M such that LξtG̃ = 2f̃ G̃. In particular, we have

(6.2) (LξtG̃)(x,u)(X
t, Y t) = 2af̃(x, u)[g(X,Y )− g(X,u)g(Y, u)]

for all (x, u) ∈ T1M and X,Y ∈ Mx. Substituting from the third equation of

Lemma 5.3 into (6.2) and taking X ⊥ u and Y = X (or X = u and Y ⊥ u), we

obtain

(6.3) f̃(u) =
[ b2φ

aαϕ
− 1

]
g(ξx, u) for all u ∈ Mx

or, respectively,

(6.4)
ab

ϕ
g(∇uξ, Y )− b2φ

αϕ
g(ξx, u) = 0 for all Y ⊥ u.

On the other hand, we have

(6.5) (LξtG̃)(x,u)(X
h, Y t) = 2bf̃(x, u)g(X,Y )

for all (x, u) ∈ TM and X,Y ∈ Mx. Substituting from the second equation of

Lemma 5.3 into (6.5) and taking X = u and Y ⊥ u, we obtain

(6.6) g(∇uξ, Y ) = 0 for all Y ⊥ u.

We deduce from (6.4) and (6.6) that

(6.7)
b2φ

αϕ
g(ξx, u) = 0 for all Y ⊥ u.

For b 6= 0, (6.7) implies that g(ξx, u) = 0 for all Y ⊥ u. Since u is arbitrary, we

have ξx = 0, and hence ξ = 0.

For b = 0, (6.3) is equivalent to

(6.8) f̃(u) = −g(ξx, u) for all u ∈ Mx.

Since by conformality of ξ,

(6.9) (LξtG̃)(x,u)(X
h, Y h) = 2f̃(x, u)[(a+ c)g(X,Y ) + dg(X,u)g(Y, u)]

for all (x, u) ∈ TM andX,Y ∈ Mx, substituting from the first equation of Lemma 5.3

into (6.9) and taking X = Y = u, we obtain f̃ = 0, i.e., ξ is a Killing vector field. So

by virtue of (6.8) we have g(ξx, u) = 0 for all u ∈ T1M . We conclude that ξ = 0. �
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P r o o f of Theorem 1.2. (i) → (iii): Suppose that ξh is a conformal vector field,
that is, there is a C∞-function f̃ on T1M such that LξhG̃ = 2f̃ G̃. In particular, we

have

(6.10) (LξhG̃)(x,u)(X
t, Y t) = 2af̃(x, u)[g(X,Y )− g(X,u)g(Y, u)]

for all (x, u) ∈ T1M and X,Y ∈ Mx. Substituting from the third equation of

Lemma 5.4 into (6.10) and taking X = Y = u, we obtain

(6.11)
b2

ϕ
g(∇uξ, u) = 0.

Case 1 : b 6= 0. We claim that ξ is parallel. Indeed, from the preceding equation, we

have

(6.12) g(∇uξ, u) = 0 for all u ∈ TM.

Hence, by (2.3), ξ is a Killing vector field on (M, g).

On the other hand,

(6.13) (LξhG̃)(x,u)(X
h, Y h) = 2f̃(x, u)[(a+ c)g(X,Y ) + dg(X,u)g(Y, u)]

for all (x, u) ∈ TM and X,Y ∈ Mx. Then substituting from the first equation of

Lemma 5.4 into (6.13) and taking X = Y = u, we obtain by virtue of (6.12)

(6.14) f̃(u) =
a+ c

ϕ
g(∇uξ, u) = 0 for all u ∈ T1M.

Hence ξh is a Killing vector field on (T1M, G̃).

Now, substituting again from the first equation of Lemma 5.4 into (6.13) and

taking X ⊥ u and Y = X , we obtain by virtue of b 6= 0 that g(R(ξx, X)X,u) = 0

for all u ⊥ X . Since g(R(ξx, X)X,X) = 0, we have

(6.15) R(ξx, X)X = 0 for all X ∈ Mx.

Since ξh is a Killing vector field on (T1M, G̃), we have in particular

(6.16) (LξhG̃)(x,u)(X
h, Y t) = 0.

Substituting from the second equation of Lemma 5.4 into (6.16) and taking X = u

and Y ⊥ u, we have by virtue of (6.15) and the inequality b 6= 0 that g(∇uξ, Y ) = 0
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for all Y ⊥ u, and taking into account (6.12), we deduce that g(∇uξ, Y ) = 0 for all

Y ∈ Mx. It follows that ξ is parallel.

Case 2 : b = 0. Substituting from the first equation of Lemma 5.4 into (6.13) with

b = 0, we have easily

(6.17) R(ξ, .). = 0.

On the other hand, substituting from the third equation of Lemma 5.4 into (6.10)

with b = 0, and taking X ⊥ u and Y = X , we obtain f̃ = 0. Now, substituting

from the first equation of Lemma 5.4 into (6.13) and taking first X ⊥ u and Y = X

and then X = Y = u, we obtain g(∇Xξ,X) = 0 for all X ∈ Mx, i.e., ξ is a Killing

vector field.

Subcase 2.1 : d = 0, i.e. G̃ is a Kaluza-Klein metric. We have proved that ξ is

a Killing vector field and R(ξ, .). = 0 (see (5.17)).

Subcase 2.2 : d 6= 0. Substituting again from the first equation of Lemma 5.4

into (6.13), and taking into account that f̃ = 0, ξ is a Killing vector field and

R(ξ, .). = 0, we get, by virtue of d 6= 0,

(6.18) g(∇Xξ, u)g(Y, u) + g(∇Y ξ, u)g(X,u) = 0.

Then, putting first X = u and Y ⊥ u and then X = Y = u in (6.18), we deduce

that ξ is parallel.

(iii) → (ii): If ξ is parallel, then we have, in particular, R(ξ, .). = 0, and substi-

tuting into Lemma 5.4, we get

(6.19) (LξhG̃)(x,u)(X
h, Y h) = (LξhG̃)(x,u)(X

h, Y t) = (LξhG̃)(x,u)(X
t, Y t) = 0.

In a similar way, if b = d = 0, ξ is a Killing vector field and R(ξ, .). = 0, then

substituting into Lemma 5.4, we get (6.19). We deduce then, from Lemma 6.1,

that ξh is conformal with vanishing potential function, i.e. ξh is a Killing vector

field.

(ii) → (i): is trivial. �

P r o o f of Theorem 1.3. (i) → (iii): Suppose that ξc̄ is a conformal vector field,
that is, there is a C∞-function f̃ on T1M such that Lξc̄G̃ = 2f̃ G̃. In particular, we

have

(6.20) (Lξc̄G̃)(x,u)(X
t, Y t) = 2af̃(x, u)[g(X,Y )− g(X,u)g(Y, u)]

for all (x, u) ∈ T1M and X,Y ∈ Mx. Substituting from the third equation of

Lemma 5.5 into (6.20) and taking X ⊥ u and Y = X , we obtain

(6.21) F (u)‖X‖2 = g(∇Xξ,X)
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for all X ⊥ u, where F is the C∞-function on T1M defined by

(6.22) F (u) = f̃(u) +
(
1− b2φ

aαϕ

)
g(∇uξ, u).

We claim that F is constant on each fiber of T1M . Indeed, for any x ∈ M

and u, v ∈ SxM := T1M ∩ Mx we have u⊥ ∩ v⊥ 6= {0}, since dimM > 2. Let

X ∈ (u⊥ ∩ v⊥) \ {0}. By (6.21) we have F (u) = F (v), which proves our claim. We

deduce that there is f ∈ C∞(M) such that F = f ◦ p1, which implies, by (6.21),

that ξ is a conformal vector field on M with potential function f . In particular

g(∇uξ, u) = f(x) for all x ∈ M and u ∈ SxM . Substituting from this last formula

into (6.22), we deduce that f̃ is constant on each fiber equal to

(6.23) f̃(u) =
b2φ

aαϕ
f(x)

for all x ∈ M and u ∈ SxM .

Now, substituting from the second equation of Lemma 5.5 into

(6.24) (Lξc̄G̃)(x,u)(X
h, Y t) = 2bf̃(x, u)g(X,Y )

and taking X ⊥ u and Y = X , we obtain, by virtue of (2.4) that X(f) = 0 for all

X ⊥ u. Since u is arbitrary, f is constant.

In the same way, substituting from the first equation of Lemma 5.5 into

(6.25) (Lξc̄G̃)(x,u)(X
h, Y h) = 2f̃(x, u)[(a+ c)g(X,Y ) + dg(X,u)g(Y, u)]

and taking X = Y = u, we obtain, by virtue of (2.5) and the fact that f is constant,

(6.26)
(
1− b2φ

aαϕ

)
f = 0.

We claim that f = 0. Indeed, suppose that f 6= 0. Then by (6.26) we

have b2φ/aαϕ = 1, and then we have, by virtue of (6.23), f̃ = f ◦ p1. In par-

ticular b 6= 0. Substituting from the first equation of Lemma 5.5 into (6.25) and

taking X ⊥ u and Y = X , we obtain, by virtue of (2.5), the fact that f is constant

and b 6= 0, the equality

(6.27) g(R(X,u)u,X) = 0

for all X ⊥ u. Substituting from the first equation of Lemma 5.5 into (6.24) and

taking X = u and Y ⊥ u, we obtain by virtue of (2.5), (6.27), the fact that f is
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constant and b 6= 0, the identity α − b2 = 0. Then b2φ/aαϕ = 1 becomes φ = aϕ,

which implies that b2 = 0, which is a contradiction. It follows that f̃ = f ◦ p1 = 0,

i.e. ξ and ξc̄ are Killing vector fields.

(iii) → (ii): Suppose that ξ is a Killing vector field. Then substituting from (2.2)
and (2.5) into Lemma 5.5, we get

(6.28) (Lξc̄G̃)(x,u)(X
h, Y h) = (Lξc̄G̃)(x,u)(X

h, Y t) = (Lξc̄G̃)(x,u)(X
t, Y t) = 0.

It follows then from Lemma 6.1 that ξc̄ is a Killing vector field.

(ii) → (i): is trivial. �

P r o o f of Theorem 1.4. (i) → (iii): Suppose that ζ is a conformal vector field

on T1M , that is, there is a C∞-function f̃ on T1M such that LζG̃ = 2f̃ G̃. In

particular, we have

(6.29) (LζG̃)(x,u)(h{u}, h{u}) = 2ϕf̃(x, u)

for all (x, u) ∈ T1M . Substituting from the first equation of Lemma 5.6 into (6.29),

we deduce that f̃ vanishes identically, i.e. ζ is a Killing vector field on T1M . In

particular, using the third equation of Lemma 5.6, we have

0 = (LζG̃)(x,u)(X
t, Xt) = 2b‖X‖2

for all X ⊥ u. We deduce that b = 0. On the other hand, using the Killing equation

for ζ to the second equation of Lemma 5.6, we obtain

(6.30) RuX =
a+ c

a
X

for all (x, u) ∈ T1M and X ∈ Mx, where RuX = R(X,u)u denotes the Jacobi

operator associated to u. We deduce that (M, g) has constant sectional curvature

k = (a+ c)/a.

(iii) → (ii): For b = 0 and (M, g) of constant sectional curvature k = (a+ c)/a, it

is easy to see, from Lemmas 6.1 and 5.6, that ζ is a Killing vector field on T1M .

(ii) → (i): is trivial. �

P r o o f of Theorem 1.5. (i) → (iii): Let V be a fiber-preserving vector field

on T1M . By Lemma 4.3, there is a vector field ξ onM such that V is locally expressed

as V = ξh +
∑
i

Bi(∂/∂xi)t. We shall give necessary and sufficient conditions for V
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to be conformal with respect to G̃. Suppose that V is conformal, then by Lemma 6.1

there is a C∞-function f̃ on T1M such that

(6.31) (LV G̃)(x,u)(X
h, Y h) = 2f̃(x, u)[(a+ c)g(X,Y ) + dg(X,u)g(y, u)],

(LV G̃)(x,u)(X
h, Y t) = 0,

(LV G̃)(x,u)(X
t, Y t) = 2af̃(x, u)[g(X,Y )− g(X,u)g(Y, u)]

for all (x, u) ∈ T1M and X,Y ∈ Mx. Substituting from the first identity of

Lemma 5.7 into the first identity of (6.31) and taking first X = Y = u and then

X ⊥ u and Y = X , we obtain

(6.32) f̃(x, u) = g(∇uξ, u) and g(∇Xξ,X) = g(∇uξ, u)‖X‖2

for all X ⊥ u. We deduce that

(6.33) g(∇Xξ,X) = g(∇uξ, u)‖X‖2

for all (x, u) ∈ T1M and X ∈ Mx. Then, by bilinearity, we get

(6.34) g(∇Xξ, Y ) + g(∇Y ξ,X) = 2g(∇uξ, u)g(X,Y )

for any (x, u) ∈ T1M and X,Y ∈ Mx. Substituting from the first identity of

Lemma 5.7 and (6.34) into the first identity of (6.31) and taking X = u and Y ⊥ u,

we obtain

(6.35) d[g(∇Y ξ, u) + g(K(V(x,u)), Y )] = 0

for all Y ⊥ u. So, we have two possibilities:

Case 1 : d 6= 0, then g(∇Y ξ, u) + g(K(V(x,u)), Y ) = 0 for all Y ⊥ u. On the other

hand, using (6.34), we obtain g(∇Y ξ, u) + (∇uξ, Y ) = 2g(∇uξ, u)g(u, Y ) = 0. It

follows that

(6.36) g(K(V(x,u))−∇uξ, Y ) = 0

for all Y ⊥ u. Now, sinceK(V(x,u)) =
∑
i

Bi(x, u)∂/∂xi(x), we have g(K(V(x,u)), u) =∑
i

Bi(x, u)ui = 0, and hence

(6.37) g(K(V(x,u))−∇uξ, u) = −g(∇uξ, u)
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for all (x, u) ∈ T1M . Combining (6.36) and (6.37), we obtain K(V(x,u)) = ∇uξ −
g(∇uξ, u)u, and consequently

(6.38) V(x,u) = ξh(x,u) + t{∇uξ − g(∇uξ, u)u} = ξh(x,u) + t{∇uξ} = ξc̄(x,u).

Case 2 : d = 0. Substituting again from the first identity of Lemma 5.7 into the

first identity of (6.31), we obtain

(6.39) (Lξ)xg = 2f̃(x, u)gx

for all (x, u) ∈ T1M . Then f̃ is constant on the fibers of T1M, that is, there exists

a C∞-function f on M such that f̃ = f ◦ p1 and ξ is a conformal vector field on M.

We shall prove that f vanishes identically on M .

Now, let G be the metric on TM extending G̃, given by (3.1) with α1 = a, α3 = c

and α2 = β1 = β2 = β3 = 0, and let V and V denote the extensions of V to TM \σ0

and TM , respectively, as in Section 4.2. Fixing u ∈ SxM and taking, in (4.9), Z = V

and X = Y = W t for W ∈ X(M) such that 0 6= Wx ⊥ u, and using Lemma 4.4, we

obtain

(LV G)ru(W
v
ru,W

v
ru) = LZu

G̃(V v
u , Y

v
u ).

From the fact that V is a conformal vector field on (T1M, G̃), we deduce

(LV G)ru(W
v
ru,W

v
ru) = 2f(x)g(Wx,Wx)

for all r > 0. When r → 0, we have by continuity

(L
V
G)0(W

v
0 ,W

v
0 ) = 2f(x)g(Wx,Wx).

But since V 0 = ξh0 and LξhG(W v,W v) = 0, we have f(x)g(Wx,Wx) = 0, and

consequently f(x) = 0. Hence f vanishes identically, and thus V and ξ are Killing

vector fields.

Using the Corollary in [22], we deduce from Lemma 5.8 (since b = d = 0) that

V = (ξc + ιP )|T1M = ξc̄ + ι̃P , with ξ a Killing vector field and P a skew-symmetric

parallel (1, 1)-tensor field onM . Note that since ξ is Killing or P is skew-symmetric,

respectively, then ξc or ιP is tangent to T1M at any point of T1M .

(iii)→ (ii): First, if V = ξc̄, where ξ is a Killing vector field, then, by Theorem 1.3,

V = ξc̄ is a Killing vector field. On the other hand, suppose that G̃ is a Kaluza-Klein

metric, i.e. b = d = 0, and that V = ξc̄ + ι̃P with ξ a Killing vector field and P

a skew-symmetric parallel (1, 1)-tensor field on M . Then

(6.40) Bi(x, u) =
∑

j

(ξi;j + P i
j )(x)u

j ,
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where ξi;j are the local components of the (1, 1)-tensor field ∇ξ, i.e. ∇∂/∂xj ξ =∑
i

ξi;j∂/∂x
i, and P i

j are the local components of P . Since ξ is a Killing vector field

(and hence satisfies (2.2) with f = 0) and d = 0, the first identity of Lemma 5.7

becomes

(6.41) (LV G̃)(x,u)(X
h, Y h) = 0.

On the other hand, using Lemma 5.1, we have

∑

i

Xh(Bi)
( ∂

∂xi

)

x
+
∑

i

Bi(x, u)∇X
∂

∂xi

= −
∑

i,j,k,l

Γl
jk(x)X

j [ξi;l + P i
l ](x)u

k
( ∂

∂xi

)

x
+
∑

i,k

[X(ξi;k) +X(P i
k)]u

k
( ∂

∂xi

)

x

+
∑

i,k,l

Γl
ij(x)X

j [ξi;k + P i
k](x)

( ∂

∂xl

)

x

= −
∑

i,l

[∑

j,k

Γl
jk(x)X

juk

]
ξi;l(x)

( ∂

∂xi

)

x
−
∑

i,l

[∑

j,k

Γl
jk(x)X

juk

]
P il(x)

( ∂

∂xi

)

x

+

{∑

i

X

(∑

k

ξi;ku
k

)( ∂

∂xi

)

x
+
∑

l

Γl
ij(x)X

j

(∑

k

ξi;k(x)u
k

)( ∂

∂xl

)

x

}

+

{∑

i

X

(∑

k

P i
ku

k

)( ∂

∂xi

)

x
+
∑

l

Γl
ij(x)X

j

(∑

k

P i
k(x)u

k

)( ∂

∂xl

)

x

}

= −∇∇XUξ − P (∇XU) +∇X∇Uξ +∇X(P (U))

= ∇2ξ(u,X) + (∇XP )(u),

where X =
∑
i

X i(∂/∂xi)x and U is the local vector field expressed as U :=
∑
i

ui∂/∂xi. Hence the second identity of Lemma 5.7 becomes

(6.42) (LV G̃)(x,u)(X
h, Y t) = ag(R(ξx, X)u+∇2ξ(u,X) + (∇XP )(u), Y ) = 0,

since ξ is a Killing vector field (and so satisfies (2.5)) and P is parallel.

Finally, using again Lemma 5.1, we have

∑

i

Xt(Bi)
( ∂

∂xi

)

x
=

∑

i,j

(Xj − g(X,u)uj)(ξi;j(x) + P i
j (x))

( ∂

∂xi

)

x

= ∇Xξ + P (X)− g(X,u)(∇uξ + P (u)).
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Hence the second identity of Lemma 5.7 becomes

(LV G̃)(x,u)(X
t, Y t) = g(∇Xξ + P (X)− g(X,u)(∇uξ + P (u)), Y − g(Y, u)u)

× g(∇Y ξ + P (Y )− g(Y, u)(∇uξ + P (u)), X − g(X,u)u)

= g(∇Xξ, Y ) + g(X,∇Y ξ) + g(P (X), Y ) + g(X,P (Y ))

− g(X,u)[g(∇uξ, Y ) + g(∇Y ξ, u) + g(P (u), Y ) + g(P (Y ), u)]

− g(Y, u)[g(∇uξ,X) + g(∇Xξ, u) + g(P (u), X) + g(P (X), u)]

+ 2g(X,u)g(Y, u)[g(∇uξ, u) + g(P (u), u)].

Using the facts that ξ is a Killing vector field and that P is skew-symmetric, we

obtain

(6.43) (LV G̃)(x,u)(X
t, Y t) = 0.

We deduce from Lemma 6.1, using the identities (6.41)–(6.43), that V is a Killing

vector field.

(ii) → (i): is trivial. �

Now to prove Theorem 1.6, we need:

Lemma 6.2. Let λ ∈ R and let ξ be a vector field on M . Suppose that G

is a Kaluza-Klein type metric on T1M . Then ∗̄ξλ is a conformal vector field on
(T1M, G̃) if and only if the following assertions hold:

(a+ c)g(∇2ξ(X,Y ) +∇2ξ(Y,X), u)(i)

+ d[g(X,u)g(∇2ξ(Y, u) +∇2ξ(u, Y ), u) + g(Y, u)g(∇2ξ(X,u) +∇2ξ(u,X), u)

= λ[2(a+ c)g(X,Y )g(ξx, u) + d(g(ξx, X)g(Y, u) + g(ξx, Y )g(X,u))];

R(C(ξx)(Y ), X)Z +R(C(ξx)(Z), X)Y =(ii)

=
[a+ c

a
+ λ

]
[2g(Y, Z)∇Xξ − g(∇Xξ, Y )Z − g(∇Xξ, Z)Y ]

+
d

a
[g(X,Y )(∇Zξ − g(∇Zξ, u)u) + g(X,Z)(∇Y ξ − g(∇Y ξ, u)u)]

for all (x, u) ∈ T1M and X,Y, Z ∈ Mx.

P r o o f. Suppose that ∗̄ξλ is a conformal vector field on (T1M, G̃), that is, there

is a C∞-function f̃ on T1M such that L∗̄ξλG̃ = 2f̃ G̃. In particular, we have

(6.44) (L∗̄ξλG̃)(x,u)(X
t, Y t) = 2af̃(x, u)[g(X,Y )− g(X,u)g(Y, u)]
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for all (x, u) ∈ TM and X,Y ∈ Mx. Substituting from the third equation of

Lemma 5.9 into (6.44), we obtain

(6.45) f̃(x, u) = −λg(ξx, u) for all (x, u) ∈ T1M.

It follows then that

(6.46) (L∗̄ξλG̃)(x,u)(X
h, Y h) = −2λg(ξx, u)[(a+ c)g(X,Y ) + dg(X,u)g(Y, u)]

for all (x, u) ∈ TM and X,Y ∈ Mx. Substituting from the first equation of

Lemma 5.9 into (6.46), we obtain the condition (i) of the theorem. On the other

hand, substituting from the second equation of Lemma 5.9 into L∗̄ξλG̃(Xh, Y t) = 0,

we obtain the condition (ii) of the theorem. The converse is obvious. �

P r o o f of Theorem 1.6. Recall that since (M, g) is a space of constant sectional

curvature k of dimension n > 2, we have

(6.47) R(X,Y )Z = k(g(Y, Z)X − g(X,Z)Y for all X,Y, Z ∈ X(M).

(i) → (iii): Suppose that ∗̄ξλ is a conformal vector field. Then the condition (ii) of
Lemma 6.2 becomes, by virtue of (6.47),

(6.48) 0 =
[a+ c

a
+ λ

]
[g(∇Xξ, Y )− g(∇Xξ, u)g(Y, u)]

+
d

a
g(X,u)[g(∇uξ, Y )− g(∇uξ, u)g(Y, u)]

× k[g(X,u)g(∇Y ξ, u)− g(X,Y )g(∇uξ, u)]

for all (x, u) ∈ T1M , and X,Y ∈ Mx. Taking in (6.48) X = Y ⊥ u and ‖X‖ = 1, we

get

(6.49) kg(∇uξ, u) =
[a+ c

a
+ λ

]
g(∇Xξ,X)

for all u,X ∈ SxM , X ⊥ u. So, we have three possibilities:

Case 1 : k[(a+ c)/a+λ] = 0 and λ 6= k−(a+ c)/a. Then by (6.49) g(∇Xξ,X) = 0

for all X ∈ TM , i.e. ξ is a Killing vector field on (M, g). Taking in (6.48) X = u, we

obtain

(6.50)
[
k − ϕ

a
− λ

]
g(∇Y ξ, u) = 0

for all (x, u) ∈ T1M , and Y ∈ Mx.
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On the other hand, since ξ is a Killing vector field, (i) of Lemma 6.2 becomes, by

virtue of (2.2) and (6.47),

(6.51) 0 = [kϕ− λd][g(ξx, X)g(Y, u) + g(ξx, Y )g(X,u)]

− 2(a+ c)(λ+ k)g(X,Y )g(ξx, u)− 4kdg(X,u)g(Y, u)g(ξx, u).

Let x0 ∈ M be such that ξx0 6= 0. Taking, in (6.51), u ⊥ ξx0 , X = u and Y = ξx0 ,

we get

(6.52) kϕ− λd = 0,

and (6.51) becomes

(6.53) 2(a+ c)(λ+ k)g(X,Y )g(ξx, u) + 4kdg(X,u)g(Y, u)g(ξx, u) = 0.

Taking, in (6.53), u = ‖ξx0‖−1ξx0 , X ⊥ u and Y = X , we obtain

(6.54) λ+ k = 0,

and (6.51) becomes

(6.55) kdg(X,u)g(Y, u)g(ξx, u) = 0.

Taking, in (6.55), u = ‖ξx0‖−1ξx0 and X = Y = u, we obtain

(6.56) kd = 0.

If k = 0, then λ = 0, by (6.54). Hence, we deduce from (6.50) that g(∇Y ξ, u) = 0

for all (x, u) ∈ T1M , and Y ∈ Mx, i.e. ξ is parallel. It follows then from Lemma 4.1

that ∗̄ξλ = λξt = 0, since λ = 0.

If k 6= 0, then d = 0. Hence, by (6.52), ϕ = 0, which is a contradiction.

Case 2 : k 6= 0 and λ 6= −(a+ c)/a. Since u is arbitrary, we deduce from (6.49)

that k = λ + (a+ c)/a and that the function X 7→ g(∇Xξ,X) is constant on SxM ,

i.e. there is a function f ∈ C∞(M) such that g(∇Xξ,X) = f‖X‖2 for all X ∈ X(M).

Hence, by bilinearity, we have Lξg(X,Y ) = g(∇Xξ, Y ) + g(∇Y ξ,X) = 2fg(X,Y )

for all X,Y ∈ X(M), i.e. ξ is a conformal vector field on (M, g). Since dimM > 2

for any X ⊥ Y ∈ Mx, take u ∈ T1M ∩ span(X,Y )⊥. Then we have, by (6.48),

g(∇Xξ, Y ) = 0 for all X ⊥ Y ∈ Mx. Hence, by virtue of g(∇Xξ,X) = f‖X‖2, we
have ∇Xξ = fX for all X ∈ X(M). Then ∇2ξ(X,Y ) = ∇X∇Y ξ−∇∇XY ξ = X(f)Y
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for all X,Y ∈ X(M). Substituting from the last equality into (i) of Lemma 6.2, we

obtain

(6.57) ϕ[X(f)g(Y, u) + Y (f)g(X,u)] + 2du(f)g(X,u)g(Y, u)

= λ[2(a+ c)g(X,Y )g(ξx, u) + d(g(ξx, X)g(Y, u) + g(ξx, Y )g(X,u))]

for all (x, u) ∈ T1M , and X,Y ∈ Mx.

For λ 6= 0, we take X ⊥ u and Y = X in (6.57) to get g(ξx, u) = 0 for all u ∈ SxM ,

and then for all u ∈ Mx. We deduce that ξ = 0.

For λ = 0, we have k = (a+ c)/a. We take Y = u and X ⊥ u in (6.57) to get

X(f) = 0 for all X ∈ Mx. Then by connectedness, f is constant. In this case,

g(C(ξ)(u), X) = −g(∇Xξ, u) = −fg(u,X) for all (x, u) ∈ T1M , and X,Y ∈ Mx. We

deduce that C(ξ)(u) = −fu, and hence ∗̄ξ0(u) = −fuh for all u ∈ T1M , i.e., up to

a real factor, ∗̄ξ0 is the geodesic flow vector field on T1M .

Case 3 : k = 0 = λ + (a+ c)/a. In particular we have λ = −(a+ c)/a 6= 0. We

can suppose that (M, g) is Rn equipped with its standard metric. In this case, (i) of

Lemma 6.2 is equivalent to the system

∂2ξk

∂xi∂xj
= λδijξ

k, i 6= k, j 6= k;

∂2ξk

∂xi∂xk
=

λd

2ϕ
ξi, i 6= k;

(ϕ+ d)
∂2ξk

(∂xi)2
= λϕξk,

i, j, k = 1, . . . , n, whose solution is ξ = 0. Indeed:

For ϕ+ d = 0, we have by the third equation ξk = 0 for each k.

For ϕ+ d 6= 0, then differentiating the first equation (with i = j) with respect to

xk and the second equation with respect to xi, we have λ∂ξk/∂xk = λd/2ϕ∂ξi/∂xi

for all i 6= k. Interchanging i and k and making the sum of the two formulas, we

obtain λ(1 − d/2ϕ)(∂ξk/∂xk + ∂ξi/∂xi) = 0. But λ 6= 0 and 1 − d/2ϕ 6= 0, since

if not we would have 0 = 2ϕ − d = ϕ + (a + c), which is a contradiction. Then

∂ξk/∂xk = −∂ξi/∂xi for all k 6= i. Since i and k are arbitrary and dimM > 2, then

∂ξk/∂xk = 0 for all k. Substituting into the third equation of the preceding system,

we have ξk = 0 for all k.

(iii) → (ii): Follows immediately from Theorem 1.4.
(ii) → (i): is trivial. �
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