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Abstract. To explore the impacts of time delay on nonlinear dynamics of consensus
models, we incorporate time-varying delay into a two-agent system to study its long-time
behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the
system to experience unconditional consensus. Numerical examples show the effectiveness of
the proposed protocols and present possible Hopf bifurcations when the time delay changes.
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1. Introduction

Recent years have witnessed an increasing number of studies concerned with the

consensus problem of multi-agent systems due to its vast potential in applications,

including flocking theory [2], [14], sensor networks [9], [20], distributed decision-

making [11], and UAV systems [16], [26]. The main objective of the problem is

to design the control law, also called the consensus protocol or algorithm, to drive

a group of autonomous agents to achieve consensus in which states of all agents agree

upon a common assessment or certain quantity of interest. To reach consensus, every

individual evolves by comparing its current state with the information coming from

its neighbors.

Consensus was theoretically introduced by Olfati-Saber and Murray in [15], where

the authors established a systematic framework of some agreement problems for net-

worked agents. This pioneering work has then been studied from different perspec-
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tives in the past decade, leading to many fascinating results and questions (see [1],

[6], [8], [10], [17], [25], [27] and the references therein). Among them, delay-induced

consensus problem has always drawn some researchers’ attention, since time delay is

ubiquitous at the moment of information transmission or processing between agents.

For example, Atay [3] studied discrete and continuous time consensus problems on

networks in the presence of distributed time delay. Bliman and Ferrari-Trecate [5]

studied average consensus problems for undirected networks of dynamic agents hav-

ing communication delay. Lin and Jia [13] investigated average consensus problem in

directed networks of agents with both switching topology and time delay. Xiao and

Wang [23] presented state consensus problems for discrete-time multi-agent systems

with changing communications topologies and bounded time-varying communication

delay. However, it should be pointed out that all these works considered time delay

systems through linear consensus protocols. As we know, most practical systems have

nonlinear dynamics, but few results regarding them have appeared in the literature.

The difficulty mainly arises from the existence of time delay in nonlinear dynamics so

that some existing methods, such as the Nyquist stability criterion and graph theory,

become invalid. Meanwhile, as the delay changes, some complex behaviors may oc-

cur. On the other hand, convergence rate is a vital performance index for a proposed

consensus protocol. Although the aforementioned algorithms are available for solving

asymptotic consensus, they cannot control the convergence speed flexibly. From a

practical point of view, fast convergence is more desirable in theories and applications

when the control accuracy is crucial. Motivated by the above analysis, this paper

sets out to solve the delay-induced consensus for nonlinear dynamics and its main

feature is twofold. Firstly, to shed light on the impacts of time delay on consensus,

we incorporate time-varying delay into a nonlinear consensus model with two agents.

The resulting dynamics setting may provide us some insights regarding our further

study of coupled systems with a larger number of agents. Making use of the classi-

cal 3/2 stability theory for scalar delay differential equations [19], [24], we establish

sufficient conditions to guarantee that the proposed model converges to a consensus.

Secondly, we add nonlinear protocol functions to the proposed protocol, which can

increase the amplitude of the control input to improve the convergence speed.

The rest of this paper is as follows. The problem to be addressed is mathematically

described in Section 2. Section 3 presents the delay-induced consensus results, which

is numerically illustrated in Section 4. Conclusions and future research directions

end the paper in Section 5.
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2. Problem formulation

Consider a group of N autonomous agents whose evolution is governed by the

following dynamics:

(2.1) ẋi(t) = ui(t), i = 1, 2, . . . , N.

Here, xi(t) ∈ R
d denotes the ith agent’s state (position, opinion, voltage, incremen-

tal cost, etc.) at time t, which changes under the interaction with other agents in

a manner described by the control input ui(t) ∈ R
d, called the consensus protocol.

With a given protocol ui(t), the closed-loop system (2.1) is said to achieve consensus

if for any i = 1, 2, . . . , N there exists c ∈ R
d such that

(2.2) lim
t→∞

xi(t) = c.

In particular, if the consensus value c = N−1
N∑

k=1

xk(0), then system (2.1) is said to

reach average consensus.

R em a r k 2.1. One can distinguish between two main classes of consensus be-

haviors in system (2.1). It is referred to as unconditional consensus if (2.2) holds

for arbitrary initial conditions. In contrast, conditional consensus emerges if (2.2) is

limited to certain types of initial conditions.

This work considers a two-agent system with nonlinear dynamics and time-varying

delay as follows:

(2.3)

{
ẋ1(t) =

1
2αa12(t)(H(x̃2(t))−H(x̃1(t))),

ẋ2(t) =
1
2αa21(t)(H(x̃1(t))−H(x̃2(t))),

where we denote by x̃i(t) the same quantity evaluated at time t− τ(t), i.e., x̃i(t) =

xi(t− τ(t)) and α > 0 measures the overall interaction strength. For i = 1, 2, the so-

called protocol function H(x̃i) = [h(x̃i1), h(x̃i2), . . . , h(x̃id)]
⊤, where h(w) : R → R

is continuously differentiable and satisfies 0 < ḣ(w) 6 1. The time delay function is

assumed to be bounded, namely, for t > 0, there exists τ > 0 such that

0 < τ(t) 6 τ .

We take the influence function

(2.4) aij(t) = f(‖x̃j(t)− x̃i(t)‖)

as a strictly decreasing function of distance between agents with a prototype example

f(r) = 1/(1+r2)β for β > 0, meaning that two agents have the same impact on each
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other. Actually, the symmetry is the cornerstone for the following analysis of long-

time behaviors of system (2.3), because it implies that the total linear momentum

in the system is conserved in the sense that (ẋ1(t)+ ẋ2(t))/2 = 0, which makes (2.3)

an average consensus protocol candidate.

R em a r k 2.2. It is reasonable to assume that the mutual influence is a function

of distance between agents. We can refer to [7] where the authors built a celebrated

framework (the CS model) to describe the emergence of flocking behavior by intro-

ducing a symmetric pairwise influence function as in (2.4) under the assumption that

the closer two agents are, the more they tend to align with each other.

3. Consensus analysis

In this section, we study the emergence of consensus for system (2.3). Setting

x0(t) = x1(t)− x2(t), then (2.3) simplifies to

ẋ0(t) = −αf(‖x̃0(t)‖)(H(x̃1(t))−H(x̃2(t))).

For computational convenience, we consider its component-wise form

ẋ0k(t) = −αf(‖x̃0(t)‖)(h(x̃1k(t)) − h(x̃2k(t))), k = 1, 2, . . . , d.

Since h(w) is continuously differentiable, according to the Lagrange mean value the-

orem, there exists at least one constant ξ ∈ (w1, w2) such that h(w2) − h(w1) =

ḣ(ξ)(w2 − w1). Using this, we obtain

(3.1) ẋ0k(t) = −αḣ(ξk(t))f(‖x̃0(t)‖)x̃0k(t)

and the associated initial condition reads as

(3.2) x0k(θ) = ϕ0k(θ), θ ∈ [−τ(0), 0].

Definition 3.1. Consensus in the two-agent system (2.3) is said to be admitted if

lim
t→∞

‖x1(t)− x2(t)‖ = 0,

which is equivalent to, for all k = 1, 2, . . . , d, the solution x0k(t) of the delay

differential equation (3.1) subject to (3.2) satisfies

(3.3) lim
t→∞

x0k(t) = 0.

Definition 3.2. Let x0k(t) be a solution of system (3.1). Then x0k(t) is said to

be an eventually positive (negative) solution if there exists T > 0 sufficiently large so

that x0k(t) > 0 (x0k(t) 6 0) for t > T . Otherwise, x0k(t) is said to be an oscillatory

solution.
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The main result of this section is given in the following theorem.

Theorem 3.1. Assume that

(3.4) ατ <
3

2
,

then the solution x0k(t) of system (3.1) satisfies (3.3).

We are now going to prove this theorem. The proof is divided into two lemmas [19].

Lemma 3.1. Let x0k(t) be a nonoscillatory solution of (3.1). Then (3.3) holds

unconditionally.

P r o o f. Suppose that x0k(t) is eventually positive. Then by (3.1) we find that

ẋ0k(t) 6 0 eventually, which implies the existence of lim
t→∞

x0k(t). Furthermore, the

limit must satisfy lim
t→∞

x0k(t) = x∗

0k = 0. In fact, if x∗

0k > 0, it follows from (3.1) that

lim
t→∞

ẋ0k(t) = −α lim
t→∞

ḣ(ξk(t))f(‖x̃0(t)‖)x
∗

0k < 0, which is impossible. The same

reasoning applies to the case where x0k(t) is eventually negative. �

Lemma 3.2. Let x0k(t) be an oscillatory solution of (3.1). Then (3.3) is true

provided that (3.4) holds.

P r o o f. We first prove that x0k(t) is bounded. On the contrary, there must exist

T > 0 sufficiently large and t∗ > T + τ such that |x0k(t)| < |x0k(t
∗)| for t ∈ [0, t∗]

and ẋ0k(t
∗) = 0 which implies x̃0k(t

∗) = 0 by (3.1). Now we consider two cases.

Case I : x0k(t
∗) > 0. Then there must exist t0 ∈ [t∗−τ(t∗), t∗) such that x0k(t0) =

0 and x0k(t) > 0 for t ∈ (t0, t
∗]. For s ∈ [0, t0], by integrating

(3.5) ẋ0k(t) 6 αḣ(ξk(t))f(‖x̃0(t)‖)|x̃0k(t)| < αx0k(t
∗)

from s to t0, we obtain

(3.6) −x0k(s) < αx0k(t
∗)(t0 − s).

Substituting (3.6) into the right hand of (3.1) with s = t− τ(t) yields

ẋ0k(t) < α2x0k(t
∗)(t0 − t+ τ(t)) = αx0k(t

∗)

∫ t0

t−τ(t)

α dσ.

From this and (3.5), we have the estimation

(3.7) ẋ0k(t) < min

{
αx0k(t

∗), αx0k(t
∗)

∫ t0

t−τ(t)

α dσ

}
, t ∈ [t0, t

∗].

401



Three cases need to be considered subsequently to illustrate that x0k(t) is bounded.

(i) ατ < 1. By integrating (3.7) from t0 to t
∗, we have

x0k(t
∗) <

∫ t∗

t0

αx0k(t
∗) dt < ατ(t∗)x0k(t

∗) < x0k(t
∗),

which is impossible.

(ii) 1 6 ατ < 3/2 and α(t∗ − t0) 6 1. Again by (3.7), we get

x0k(t
∗) < x0k(t

∗)

∫ t∗

t0

α

∫ t0

t−τ(t)

α dσ dt

= x0k(t
∗)

∫ t∗

t0

α

(∫ t

t−τ(t)

α dσ −

∫ t

t0

α dσ

)
dt

= x0k(t
∗)

(
α

∫ t∗

t0

ατ(t) dt−

∫ t∗

t0

α

∫ t

t0

α dσ dt

)

6 x0k(t
∗)

(
ατ

∫ t∗

t0

α dt−
1

2

(∫ t∗

t0

α dt

)2)
.

Since ατx− x2/2 is nondecreasing for x 6 1, it follows that

x0k(t
∗) < x0k(t

∗)
(
ατ −

1

2

)
< x0k(t

∗),

which is also a contradiction.

(iii) 1 6 ατ < 3/2 and α(t∗ − t0) > 1. In this way, there must exist t̄ ∈ (t0, t
∗) such

that α(t∗ − t̄) = 1. Then

x0k(t
∗) < x0k(t

∗)

∫ t̄

t0

α dt+ x0k(t
∗)

∫ t∗

t̄

α

∫ t0

t−τ(t)

α dσ dt

= x0k(t
∗)

∫ t∗

t̄

α

∫ t̄

t0

α dσ dt+ x0k(t
∗)

∫ t∗

t̄

α

∫ t0

t−τ(t)

α dσ dt

= x0k(t
∗)

∫ t∗

t̄

α

∫ t̄

t−τ(t)

α dσ dt

= x0k(t
∗)

∫ t∗

t̄

α

(∫ t

t−τ(t)

α dσ −

∫ t

t̄

α dσ

)
dt

6 x0k(t
∗)

(
ατ

∫ t∗

t̄

α dt−

∫ t∗

t̄

α

∫ t

t̄

α dσ dt

)

= x0k(t
∗)

(
ατ

∫ t∗

t̄

α dt−
1

2

(∫ t∗

t̄

α dt

)2)

= x0k(t
∗)
(
ατ −

1

2

)
< x0k(t

∗),

which again leads to a contradiction.
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Case II : x0k(t
∗) < 0. In this case, there should exist t0 ∈ [t∗ − τ(t∗), t∗) such that

x0k(t0) = 0 and x0k(t) < 0 for t ∈ (t0, t
∗]. Then one obtains from (3.1) that

|ẋ0k(t)| < α|x̃0k(t)| < −αx0k(t
∗),

which implies that

(3.8) −ẋ0k(t) < −αx0k(t
∗).

Integrating (3.8) from s to t0 yields

(3.9) x0k(s) < −αx0k(t
∗)(t0 − s).

Substituting (3.9) into the right hand of (3.1) with s = t− τ(t) yields

ẋ0k(t) > α2ḣf(‖x̃0(t)‖)x0k(t
∗)(t0 − t+ τ(t)) > αx0k(t

∗)

∫ t0

t−τ(t)

α dσ,

which implies

−ẋ0k(t) < αx0k(t
∗)

∫ t0

t−τ(t)

α dσ.

From this and (3.8), we have

(3.10) −ẋ0k(t) < min

{
− αx0k(t

∗),−αx0k(t
∗)

∫ t0

t−τ(t)

α dσ

}
, t ∈ [t0, t

∗].

Using the same argument as in the proof of Case I, we can also derive a contradiction

with (3.10).

Hence, x0k(t) is bounded. We next show that lim
t→∞

x0k(t) = 0. Now we put

m = lim sup
t→∞

x0k(t), n = lim inf
t→∞

x0k(t).

Then −∞ < n 6 0 6 m < ∞. For our purpose, it suffices to show that m = n = 0.

For any η > 0, there exists S > 0 sufficiently large such that

n1 = n− η < x0k(t) < m+ η = m1, t− τ(t) > S.

Combining this with (3.1), for t > S, one has

ẋ0k(t) < − αn1,(3.11)

ẋ0k(t) > − αm1.(3.12)
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Now let {tp} be an increasing infinite sequence subject to tp > S such that

lim
p→∞

tp = ∞, lim
p→∞

x0k(tp) = m. Without loss of generality, we take tp satisfy-

ing x0k(tp) > 0 and ẋ0k(tp) = 0. By (3.1), we have x̃0k(tp) = 0. Then there exists

ζp ∈ [tp − τ(tp), tp) such that x0k(ζp) = 0 and x0k(t) > 0 for t ∈ (ζp, tp).

For S 6 s 6 ζp, by integrating (3.11) from s to ζp, we get

−x0k(s) < −αn1(ζp − s).

Then by (3.1), we obtain

ẋ0k(t) < −α2n1(ζp − t+ τ(t)) = −αn1

∫ ζp

t−τ(t)

α dσ.

Hence, we have the following estimation

(3.13) ẋ0k(t) < min

{
− αn1,−αn1

∫ ζp

t−τ(t)

α dσ

}
, t ∈ (ζp, tp).

There are also three cases to consider.

(i) ατ < 1. By integrating (3.13) from ζp to tp, we have

x0k(tp) <

∫ tp

ζp

(−αn1) dt = −αn1(tp − ζp) 6 −ατn1.

Letting p → ∞ and η → 0, we obtain

(3.14) m 6 −ατn.

(ii) 1 6 ατ < 3/2 and α(tp − ζp) 6 1. By (3.13), one has

x0k(tp) < − n1

∫ tp

ζp

α

∫ ζp

t−τ(t)

α dσ dt

= − n1

∫ tp

ζp

α

(∫ t

t−τ(t)

α dσ −

∫ t

ζp

α dσ

)
dt

6 − n1

(
ατ

∫ tp

ζp

α dt−

∫ tp

ζp

α

∫ t

ζp

α dσ dt

)

= − n1

(
ατ

∫ tp

ζp

α dt−
1

2

(∫ tp

ζp

α dt

)2)

6 − n1

(
ατ −

1

2

)
.

Letting p → ∞ and η → 0 leads to

(3.15) m 6 −n
(
ατ −

1

2

)
.
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(iii) 1 6 ατ < 3/2 and α(tp − ζp) > 1. Then there exists z ∈ (ζp, tp) such that

α(tp − z) = 1 and

x0k(tp) < − n1

∫ z

ζp

α dt− n1

∫ tp

z

α

∫ ζp

t−τ(t)

α dσ dt

= − n1

∫ tp

z

α

∫ z

ζp

α dσ dt− n1

∫ tp

z

α

∫ ζp

t−τ(t)

α dσ dt

= − n1

∫ tp

z

α

∫ z

t−τ(t)

α dσ dt = −n1

∫ tp

z

α

(∫ t

t−τ(t)

α dσ −

∫ t

z

α dσ

)
dt

6 − n1

(
ατ

∫ tp

z

α dt−

∫ tp

z

α

∫ t

z

α dσ dt

)

= − n1

(
ατ

∫ tp

z

α dt−
1

2

(∫ tp

z

α dt

)2)
= −n1

(
ατ −

1

2

)
,

which implies (3.15).

Similar arguments apply to the case where we consider the inferior limit part. It

is not difficult to show that n > −ατm when ατ < 1 and n > −m(ατ − 1/2) when

1 6 ατ < 3/2. Combining these with (3.14) and (3.15) finally yields m = n = 0. �

This completes the proof of Theorem 3.1. By summarizing what we have discussed,

the final conclusion on the consensus of system (2.3) follows immediately.

Theorem 3.2. Two agents interacting by system (2.3) can reach unconditional

average consensus if (3.4) holds true.

R em a r k 3.1. To improve convergence rate, we incorporate the protocol func-

tion H(x) into the classical consensus protocol. Therefore, the presented proto-

col (2.3) facilitates design by providing more alternative functions H(x) to improve

consensus performance and satisfy control requirements, which will be validated in

the following simulations.

R em a r k 3.2. Note that we did not really have to use f(r) = 1/(1 + r2)β

explicitly during consensus analysis. We only need the property 0 < f < 1, which

means our result can be applied to more consensus problems. Furthermore, we are

able to draw another conclusion of mathematical significance as a byproduct: that

for any one-dimensional delay differential equation in the form of

ẋ(t) = −αf(t, x(t), x(t − τ))x(t − τ)

with 0 < f < 1, the zero solution is asymptotically stable for all initial configurations

as long as ατ < 3/2.

405



4. Numerical simulations

In what follows, we perform numerical simulations in one-dimensional case (d = 1)

of system (2.3). In Section 3 we established a sufficient condition for the emergence

of consensus of system (2.3) that the coupling strength α and the time delay τ(t)

satisfy a technical restriction, ατ < 3/2. This section aims to verify the condition

and explore other possible dynamics. Meanwhile, we choose two concrete protocol

functions H(x) = sin(x/3)+ x/2 and H(x) = tanh(4x/5) to make comparisons with

the existing H(x) = x in terms of convergence rate. For demonstration purposes,

we fix α = β = 1, τ(t) = τ and take a series of stochastic constants as initial data

throughout this section.
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(d) τ =1.1
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3
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H(x) = tanh 4

5
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Figure 1. Consensus of system (2.3) with different H(x) and τ (horizontal axes show time,
vertical axes show states).

To begin, we take τ = 0.1 in Figure 1(a), τ = 0.4 in Figure 1(b), τ = 0.8 in

Figure 1(c), and τ = 1.1 in Figure 1(d) to show the response of agents’ states, where
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we can see that all the three protocols enable the states of two agents to reach average

consensus provided that ατ < 3/2. Moreover, the convergence rate changes with τ

and H(x). As can be seen from Figure 2, generally speaking, the more time an

agent needs for processing the information it receives, the slower the consensus will

be to arise. One also observes that the protocols with H(x) = sin(x/3) + x/2 and

H(x) = tanh(4x/5) achieve consensus faster than the protocol with H(x) = x.
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Figure 2. Convergence time versus time delay.
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Figure 3. Consensus of system (2.3) can also arise when ατ = 1.501.

However, we should point out that the restriction of ατ < 3/2 is not a necessary

condition. In Figure 3, it is clear that consensus can also appear when τ = 1.501

(ατ = 1.501 > 1.5). This interesting phenomenon motivates our further study

and intensive efforts to improve the condition. In fact, as τ increases, a sequence

of Hopf bifurcations will occur at the equilibrium x = 0, which is illustrated in

Figure 4(a) with τ = π/2 + 0.1 and in Figure 4(b) with τ = π/2 + 0.5. It is also

shown that the three protocols lead to different bifurcation values (critical values for
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bifurcation occurrence). The two nontrivial protocols have bigger bifurcation values,

that is, they have better tolerances to time delay than H(x) = x. Finally, motivated

by [21], we can locate the bifurcation values for the case with H(x) = x. Then the

associated system (3.1) takes

(4.1) ẋ(t) = −αf(x(t− τ))x(t − τ).

Linearizing system (4.1) at x = 0 yields ẋ(t) = −αx(t − τ), whose characteristic

equation is

(4.2) λ = −αe−λτ .

For τ > 0, system (4.2) has a pair of purely imaginary roots λ = ±iω (ω > 0) if and

only if

iω = −α(cosωτ − i sinωτ).

Separating the real and imaginary parts, we obtain

0 = −α cosωτ, ω = α sinωτ,

which leads to ω = α and

(4.3) τ =
π

2
+ 2kπ, k = 0, 1, 2, . . .

This indicates that Hopf bifurcations of the protocol with H(x) = x will occur

when (4.3) holds. We emphasize that these bifurcations are local, which means they

are also likely (but not guaranteed) to occur when (4.3) is not satisfied. Therefore, it

cannot be easily asserted that the sharpest condition for system (2.3) with H(x) = x

to achieve consensus is ατ < π/2.

0 50 100 150 200
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−1.1
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−0.9

−0.8

−0.7

H(x) = x H(x) = sin x

3
+ x

2
H(x) = tanh 4

5
x

(a) τ = π

2
+ 0.1 (b) τ = π

2
+ 0.5
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Figure 4. As τ increases, Hopf bifurcations may occur (horizontal axes show time, vertical
axes show states).
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5. Conclusions and discussions

We have incorporated time-varying delay into a two-agent system with nonlinear

dynamics. The resulting model defines an infinitely dimensional dynamical system

and admits complex long-time behaviors. A sufficient condition that the coupling

strength α and the time delay τ(t) satisfy ατ < 3/2 is obtained for the system to

ensure the existence of unconditional consensus by the classical 3/2 stability results

for scalar delay differential equations.

Our simulations, firstly, have validated the sufficient condition and explored how

the time delay influences consensus behaviors. Generally speaking, when τ is rela-

tively too small, it has little effect on consensus behaviors. As τ continues increasing,

however, the consensus of system (2.3) turns to be significantly slower and even un-

dergoes bifurcations. This phenomenon can be shown in real life in that it is difficult

for teammates to agree with each other if everyone takes too much time for thinking

and as time goes, some divergent opinions may arise. It is worth noting that our

sufficient condition for system (2.3) to reach consensus is ατ < 3/2, which is numer-

ically verified but not the sharpest. When ατ > 3/2, consensus may also occur. In

fact, the 3/2 stability result for some scalar delay differential equations has attracted

wide attention. Typically, in 1955, Wright [22] proved that the zero solution of the

delay differential equation (the celebrated Wright’s equation)

ẋ(t) = −αx(t− 1)(1 + x(t)), α > 0,

is asymptotically stable for α < 3/2 and conjectured that this is even true for

α < π/2. Bánhelyi et al. [4] subsequently provided a computer-assisted proof for

α ∈ [1.5, 1.5705]. However, more precise results still remain to be checked in theory.

These, together with some analogous conclusions in references [19], [24], [12], [18]

and bifurcation analysis in Section 4, naturally motivate us to propose the following

open conjecture.

Conjecture 5.1. Two agents interacting by system (2.3) can reach unconditional

average consensus if ατ < π/2. For the case with H(x) = x, this is also the necessary

condition.

For the case with H(x) 6= x, a much better condition is to be discovered by fur-

ther experiments. Secondly, by selecting two nontrivial protocol functions, our figures

have revealed that the proposed protocol can really provide controller-designers with

more flexibility to improve consensus performance. However, consensus can never be

formed within a finite time because the protocols are Lipschitz continuous. This mo-

tivates our further investigations, in order to present a finite-time consensus protocol

for time delay systems.
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On the other hand, by virtue of its complexity, our focus is restricted to the case

where the dynamics have a symmetric influence function and two agents only. Never-

theless, technical analysis may provide some insights for our further study of the case

where the model involves asymmetric mutual communication and multiple agents.
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