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1. Introduction

Systems of linear ordinary differential equations u′(t) = A(t)u+ f(t) with smooth

data f and matrix A have only smooth solutions. However, distributional solu-

tions may appear in the case of equations with singular coefficients. Singular linear

differential equations or, in general functional differential equations in the setting of

distribution theory are important issues for mathematics and its applications, see [17]

and references therein. Such equations appeal to the problem of multiplication of

distributions. Recently there has been a considerable interest to deal with differential

equations in algebras of generalized functions containing the space of distributions,

see [15]. These algebras provide a suitable framework where not only nonlinear op-

erations on distributions can be performed but also singular data may be considered.

Ordinary differential equations in the context of algebras of generalized function are

studied in [9], [13], [14].

Functional and differential equations in the context of periodic and classical almost

periodic functions are among the subjects of many works, see [7], [10], [11] and the

references therein.

Almost periodic distributions extending the classical Bohr and Stepanoff almost

periodic functions are due to Schwartz (see [16]). In view of the role of algebras of
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generalized functions and the relevance of the concept of almost periodicity, an alge-

bra of almost periodic generalized functions containing almost periodic distributions

has been introduced and studied in [3]. Let’s quote that the only work dealing with

linear ordinary differential equations in the setting of such an algebra in the spirit of

the classical theory is done in [4]: an enlargement of the reservoir of mathematical

objects that could be solutions is always really needed.

It is well known that ultradistributions are generalizations of distributions, they

are useful for concrete problems. However, they are also less adapted to nonlinear

operations. Algebras of generalized ultradistributions containing ultradistributions

are nowadays an important subject of research, see [1], [2], [8]. The almost period-

icity of Beurling ultradistributions is studied in the paper [6]. So the aim of this

paper is to study systems of linear ordinary differential equations in the framework

of an algebra of almost periodic generalized ultradistributions containing the clas-

sical almost periodic ultradistributions of [6]. Therefore in the case, in which there

are no classical almost periodic generalized solutions, we have the new concept of

almost periodic generalized solutions in an ultradistributional sense. This work is an

extension and a generalization of the works [3] and [4].

The paper is organised as follows. This introduction is followed by the second

section where we introduce the algebra of almost periodic generalized ultradistribu-

tions GM
ap and then we show some properties it satisfies. In the third and last section

we study systems of linear ordinary differential equations u′(t) = Au + f(t) in the

context of the algebra of almost periodic generalized ultradistributions GM
ap .We prove

a result of Bohr-Neugebauer type and then we give conditions on the existence of

bounded solutions in a generalized sense.

2. Almost periodic generalized ultradistributions

We consider functions and generalized functions defined on the whole space of real

numbers R. For the definition and properties of almost periodic functions see [10].

We denote by Cap the space of classical Bohr almost periodic functions on R. We

recall the following spaces with some of their properties, see [3],

Bap := {ϕ ∈ C∞ : ∀ j ∈ Z+, ϕ
(j) ∈ Cap},

B := {ϕ ∈ C∞ : ∀ j ∈ Z+, ϕ
(j) ∈ L∞}.

Proposition 2.1.

(1) Bap is a closed differential subalgebra of B stable under derivation.

(2) Bap ∗ L1 ⊂ Bap.

(3) Bap = B ∩ Cap.
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We consider weight sequences M = (Mk)
∞

k=0 of positive numbers satisfying the

following conditions (see [12] for the meaning of these conditions):

Logarithmic convexity

(M1) M2
k 6 Mk−1Mk+1 ∀ k ∈ Z+.

Stability under ultraderivation

(M2) ∃A > 0, ∃H > 0, Mk+q 6 AHk+qMkMq ∀ k, q ∈ Z+.

Non quasi-analyticity

(M′

3)

∞∑

k=1

Mk−1

Mk
< ∞.

Definition 2.1. The associated function of the sequence M is the function de-

fined by

M(t) = sup
k

ln
tkM0

Mk
, t > 0.

E x am p l e 2.1. If Mk = (k!)σ, σ > 0, then M(t) is equivalent to t1/σ.

A classical important property of the associated function is given by the following

result.

Proposition 2.2. If the sequence M satisfies the condition (M1) then it satis-

fies (M2) if and only if exist A,H > 0 for all t > 0,

2M(t) 6 M(Ht) + ln(AM0).

Let I := ]0, 1], if (fε)ε∈I is a net of functions, the notation

‖fε‖∞ = O(eM(k/ε)), ε → 0,

means that exists c > 0, exists ε0 ∈ I, for all ε 6 ε0, ‖fε‖∞ 6 ceM(k/ε).

Definition 2.2. (1) The space of almost periodic moderate elements is the space

defined by

MM
ap := {(fε)ε∈I ∈ (Bap)

I : ∀ j ∈ Z+, ∃ k > 0, ‖f (j)
ε ‖∞ = O(eM(k/ε)), ε → 0}.

(2) The space of almost periodic null elements is the space defined by

NM
ap := {(fε)ε∈I ∈ (Bap)

I : ∀ j ∈ Z+, ∀ k > 0, ‖f (j)
ε ‖∞ = O(e−M(k/ε)), ε → 0}.
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The main properties ofMM
ap and NM

ap are given in the following proposition.

Proposition 2.3.

(1) An element (fε)ε ∈ MM
ap is null if and only if for all k > 0,

(2.1) ‖fε‖∞ = O(e−M(k/ε)), ε → 0.

(2) The spaceMM
ap is an algebra stable under derivation.

(3) The space NM
ap is an ideal ofM

M
ap.

P r o o f. (1) The proof is based on the Landau-Kolmogorov inequality

‖f (p)‖∞ 6 2π‖f‖1−p/m
∞

‖f (m)‖p/m
∞

,

where 0 < p < m ∈ Z+ and the function f is of class Cm.

Let (fε)ε ∈ MM
ap, i.e. for all i ∈ Z+, exists ki > 0, exists ci > 0, exists εi ∈ I for

all ε 6 εi,

(2.2) ‖f (i)
ε ‖∞ 6 ci exp

(
M

(ki
ε

))
.

Suppose that (fε)ε satisfies (2.1), i.e. for all k > 0, exists c > 0, exists ε0 ∈ I,

for all ε 6 ε0, ‖fε‖∞ 6 ce−M(k/ε). Fix i ∈ N and k0 ∈ Z+ arbitrary, then the

Landau-Kolmogorov inequality for m = 2i, p = i, (2.1) and (2.2) give for ε small

enough,

‖f (i)
ε ‖∞ 6 2π‖fε‖

1−1/2
∞

‖f (2i)
ε ‖1/2

∞

6 2π(ce−M(k/ε))1/2(c2ie
M(k2i/ε))1/2 6 Cie

−M(k0/ε),

where k = Hmax(k2i, Hk0) and Ci = 2πAM0c
1/2c

1/2
2i , hence the result follows.

(2) The stability with respect to the derivation is obvious. Let (fε)ε, (gε)ε ∈ MM
ap,

then they satisfy (2.2) and we have for all n ∈ Z+,

‖∂n(fεgε)‖∞ 6
∑

i+j=n

n!

i! j!
|f (j)

ε (x)||g(i)ε (x)| 6
∑

i+j=n

n!

i! j!
cje

M(kj/ε)c′ie
M(k′

i/ε).

The functionM being increasing and taking t1 = kj/ε, t2 = k′i/ε, k = H max
i+j=n

(kj , k
′

i)

and ε 6 min
i+j=n

(εj , ε
′

i), we obtain by Proposition 2.2

M
(kj
ε

)
+M

(k′i
ε

)
6 M

(k
ε

)
+ ln(AM0),
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and consequently

‖∂n(fεgε)‖∞ 6

(
AM0

∑

i+j=n

n!

i! j!
cjc

′

i

)
eM(k/ε),

which gives (fεgε)ε ∈ MM
ap.

(3) Let (fε)ε ∈ MM
ap and (gε)ε ∈ NM

ap , then for all i ∈ Z+, exists ki > 0, exists

ci > 0, exists εi ∈ I, for all ε 6 εi,

‖f (i)
ε ‖∞ 6 ci exp

(
M

(ki
ε

))

and for all i ∈ Z+, for all k1 > 0, exists c′i > 0, exists ε′i ∈ I, for all ε 6 ε′i,

(2.3) ‖g(i)ε ‖∞ 6 c′ie
−M(k1/ε).

Since NM
ap ⊂ MM

ap, (2) gives (fεgε)ε ∈ MM
ap. It remains to prove (2.1). Indeed,

‖fεgε‖∞ 6 ‖fε‖∞‖gε‖∞ 6 c0c
′

0e
M(k0/ε)e−M(k1/ε).

Fix k ∈ Z+ arbitrary. We obtain due to Proposition 2.2 with t1 = k0/ε, t2 = k/ε,

k1 = H max(k0, k) and ε 6 min(ε0, ε
′

0), that

M
(k0
ε

)
−M

(k1
ε

)
6 −M

(k
ε

)
+ ln(AM0),

then

‖fεgε‖∞ 6 c0c
′

0AM0e
−M(k/ε),

and according to (1), we have (fεgε)ε ∈ NM
ap . �

Definition 2.3. The algebra of almost periodic generalized ultradistributions,

denoted by GM
ap , is the quotient algebra

GM
ap :=

MM
ap

NM
ap

.

In order to obtain the next results we give definitions of some algebras of general-

ized functions. The algebra of bounded generalized ultradistributions is defined by

GM
L∞ :=

MM
L∞

NM
L∞

,
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where

MM
L∞ := {(fε)ε∈I ∈ BI : ∀ j ∈ Z+, ∃ k > 0, ‖f (j)

ε ‖L∞ = O(eM(k/ε)), ε → 0}

and

NM
L∞ := {(fε)εI ∈ BI : ∀ j ∈ Z+, ∀k > 0, ‖f (j)

ε ‖L∞ = O(e−M(k/ε)), ε → 0}.

The algebra of Cap-generalized functions is defined by

GM
Cap

:=
MM

Cap

NM
Cap

,

where

MM
Cap

:= {(fε)ε∈I ∈ (Cap)
I : ∃ k > 0, ‖fε‖∞ = O(eM(k/ε)), ε → 0}

and

NM
Cap

:= {(fε)ε∈I ∈ (Cap)
I : ∀ k > 0, ‖fε‖∞ = O(e−M(k/ε)), ε → 0}.

Proposition 2.4. We have

(1) GM
ap is embedded into G

M
L∞ and GM

Cap
.

(2) GM
ap is stable under derivation and translation.

P r o o f. (1) We have GM
ap ⊂ GM

L∞ . Indeed, let ũ = [(uε)ε] ∈ GM
ap , i.e. (uε)ε

satisfies (2.2), as uε ∈ Bap = Cap ∩ B ⊂ B for all ε > 0, then (uε)ε ∈ MM
L∞ . In the

same way, if (uε)ε ∈ NM
ap , then (uε)ε ∈ NM

L∞ . As obviously NM
L∞ ∩MM

ap ⊂ NM
ap , then

the embedding is clear. In the same way, considering (2.2) with i = 0 we obtain that

GM
ap ⊂ GM

Cap
. The inclusion NM

Cap
∩ MM

ap ⊂ NM
ap , giving the embedding, is obtained

from the null characterisation of NM
ap , i.e. Propositions 2.3 (1).

(2) The stability with respect to derivation and translation is obvious. �

Now, we introduce the algebra of generalized numbers with asymptotic M.

Definition 2.4. The ring of generalized numbers of type M is defined by

K̃
M :=

MM [K]

NM [K]
,

where

MM [K] := {(zε)ε ∈ K
I , ∃ k ∈ Z+, |zε| = O(eM(k/ε)), ε → 0}

and

NM [K] := {(zε)ε ∈ K
I , ∀ k ∈ Z+, |zε| = O(e−M(k/ε)), ε → 0}.

Here K is the field C or R.
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Proposition 2.5. The set K̃M is an algebra.

P r o o f. The result follows easily from the condition (M2) which gives that

MM [K] is an algebra and NM [K] is an ideal of it. �

E x am p l e 2.2. The number [(e−M(k/ε))ε] ∈ K̃
M , k > 0.

A generalized trigonometric polynomial P̃ is defined as

P̃ (x) :=

m∑

k=1

c̃ke
iλ̃kx
ε , x ∈ R,

where c̃k ∈ C̃
M and λ̃k ∈ R̃

M .

Proposition 2.6. Every generalized trigonometric polynomial is an almost peri-

odic generalized ultradistribution.

P r o o f. It suffices to prove that if λ̃ ∈ K̃
M , then (λ̃)j ∈ K̃

M for all j ∈ N. This

is a consequence of the fact that K̃M is an algebra by Proposition 2.5. �

R em a r k 2.1. The last result gives examples of almost periodic generalized ul-

tradistributions. Actually, we have other important examples. Let B′

ap,(M) be the

space of almost periodic Beurling ultradistributions of [6], under the conditions (M1),

(M2) and (M′

3) on the weight sequence M we have that the map

J : B′

ap,(M) → GM
ap ,

T 7→ T = [(T ∗ ϕε)ε]

is a linear embedding, see [5]. The mollifier ϕ is a function taken in a suitable

function space and ϕε(·) := ε−1ϕ(·/ε) for ε > 0.

3. Systems of differential equations

Consider the system of linear ordinary differential equations

(E) ˙̃u = Aũ+ f̃ ,

where f̃ = ([(f1,ε)ε], . . . , [(fn,ε)ε]) ∈ (GM
ap)

n and A = (aij)06i,j6n is a square ma-

trix of order n of elements of C. The unknown generalized ultradistribution is ũ =

([(u1,ε)ε], . . . , [(un,ε)ε]).
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R em a r k 3.1. We say that ũ = ([(u1,ε)ε], . . . , [(un,ε)ε]) is bounded (or almost

periodic) if each component [(ui,ε)ε], 0 6 i 6 n, is bounded (or almost periodic,

respectively).

The following result is a generalized version of the Bohr-Neugebauer theorem.

Proposition 3.1. Let a bounded generalized ultradistribution ũ ∈ (GM
L∞)n satisfy

(H′) (u̇ε)ε −A(uε)ε − (fε)ε ∈ (NM
ap )

n,

where (uε)ε and (fε)ε are representatives of ũ and f̃ , respectively. Then ũ is an

almost periodic generalized ultradistribution.

P r o o f. There exists, see [10], an invertible matrix P = (Pij)06i,j6n
such that

A = PTP−1 and

T =




λ1 b12 . . . b1n

0 λ2 . . . b2n
...
. . .

. . .
...

0 . . . 0 λn


 ,

where λ1, λ2, . . . , λn are the eigenvalues of the matrix A. Let ṽ = ([(v1,ε)ε], . . . ,

[(vn,ε)ε]) = P−1ũ and g̃ = ([(g1,ε)ε], . . . , [(gn,ε)ε]) = P−1f̃ , then (H′) is equivalent to

the system

(E′)





v̇1,ε(t)− (λ1v1,ε(t) + b12v2,ε(t) + . . .+ b1nvn,ε(t) + g1,ε(t)) = h1,ε(t),

v̇2,ε(t)− (λ2v2,ε(t) + b23v2,ε(t) + . . .+ b2nvn,ε(t) + g2,ε(t)) = h2,ε(t),

...

v̇n,ε(t)− (λnvn,ε(t) + gn,ε(t)) = hn,ε(t),

where ((h1,ε)ε, . . . , (hn,ε)ε) ∈ (NM
ap )

n. The result is then reduced to proving that if

ṽ = [(vε)ε] ∈ GM
L∞ satisfies

(H′′) (v̇ε)ε − λ(vε)ε − (gε)ε ∈ NM
ap ,

where g̃ = [(gε)ε] ∈ GM
ap and λ ∈ C, then ṽ ∈ GM

ap . The general solution of (H
′′) is

given by the representative

(vε(t))ε =

(
eλt

(
Cε +

∫ t

0

e−λs(gε(s) + hε(s)) ds

))

ε

,

where (Cε)ε ∈ MM [C] and (hε)ε ∈ NM
ap . Since ṽ ∈ GM

L∞ , we have three cases:

(1) vε(t) = −
∫
∞

t
eλ(t−s)(gε(s) + hε(s)) ds, if ℜλ > 0.
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(2) vε(t) =
∫ t

−∞
eλ(t−s)(gε(s) + hε(s)) ds, if ℜλ < 0.

(3) vε(t) = eiθt(Cε +
∫ t

0 e
−iθs(gε(s) + hε(s)) ds), if ℜλ = 0.

In the case ℜλ > 0, we have for all ε > 0,

sup
t∈R

|vε(t+ τ) − vε(t)| = sup
t∈R

∣∣∣∣

∞∫

t

eλ(t−s)(gε(s+ τ) + hε(s+ τ) − (gε(s) + hε(s))) ds

∣∣∣∣

6
1

|ℜλ|
sup
t∈R

|gε(s+ τ) + hε(s+ τ) − (gε(s) + hε(s))|,

which gives that vε is almost periodic because gε + hε is almost periodic. Hence

(vε)ε ∈ MM
L∞ ∩ MM

Cap
= MM

ap, where the last equality follows from Proposi-

tions 2.1–2.3. �

R em a r k 3.2. If we say that a bounded generalized ultradistribution ũ ∈ (GM
L∞)n

is a solution of the system (E) if it satisfies

(u̇ε)ε −A(uε)ε − (fε)ε ∈ (NM
ap )

n.

As ũ ∈ (GM
ap)

n ⇒ ũ ∈ (GM
L∞)n is obvious since GM

ap ⊂ GM
L∞ due to Proposition 2.4 (1),

then we have proved that a solution ũ of the system (E) is an almost periodic gen-

eralized ultradistribution if and only if it is a bounded generalized ultradistribution.

A primitive of ũ = [(uε)ε] ∈ GM
ap is defined by the representative (Uε)ε as a

Colombeau generalized function, where

Uε(x) =

(∫ x

x0

uε(y) dy

)

ε

, x0 ∈ R.

As a consequence, we have a generalized version of the Bohl-Bohr theorem.

Corollary 3.1. A primitive of an almost periodic generalized ultradistribution is

almost periodic if and only if it is a bounded generalized ultradistribution.

The existence of an almost periodic generalized solution of the system (E) is given

by the following result.

Proposition 3.2. If the matrix A has eigenvalues whose real parts are not zero,

then there exists an almost periodic generalized solution ũ of the system (E).

P r o o f. If ℜλ 6= 0, the nth equation of the system (E′) has a solution vn,ε
defined by:

(1) vn,ε(t) = −
∫
∞

t eλn(t−s)(gn,ε(t) + hn,ε(t)) ds, if ℜλn > 0.

(2) vn,ε(t) =
∫ t

−∞
eλn(t−s)(gn,ε(t) + hn,ε(t)) ds, if ℜλn < 0.
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By replacing vn,ε in the (n − 1)st equation of the system (E′), we obtain that

vn−1,ε is defined as in cases (1) and (2). The same reasoning is valid for the re-

maining components which gives that ((v1,ε)ε, . . . , (vn,ε)ε) is a solution of the sys-

tem (E′), actually this solution is a bounded generalized ultradistribution. Indeed,

since ℜλi 6= 0, 1 6 i 6 n, from the formulas (1) and (2), we have

‖vn,ε‖∞ 6
1

|ℜλn|
‖gn,ε(t) + hn,ε(t)‖∞.

The (n− 1)st equation is

v̇n−1,ε(t) = λn−1vn−1,ε(t) + (bn−1,nvn,ε(t) + (gn−1,ε(t) + hn−1,ε(t)))

so the estimate

‖vn−1,ε‖∞ 6

( |bn−1n|

|ℜλn−1||ℜλn|
+

1

|ℜλn−1|

)

×max(‖gn,ε(t) + hn,ε(t)‖∞, ‖gn−1,ε(t) + hn−1,ε(t)‖∞)

holds for all ε ∈ I. Consequently, we obtain for i = n, . . . , 1 that there exists C > 0

for all ε ∈ I such that

‖vi,ε‖∞ 6 C max
16i6n

‖gi,ε(t) + hi,ε(t)‖∞.

Since the second member ((g1,ε + h1,ε)ε, . . . , (gn,ε + hn,ε)ε) defines a bounded gen-

eralized ultradistribution, then the solution ((v1,ε)ε, . . . , (vn,ε)ε) of the system (E
′)

is a bounded generalized ultradistribution. From the equality ṽ = P−1ũ, we have

ũ ∈ GM
L∞ ⇔ ũ ∈ GM

ap according to Proposition 3.1 and Remark 3.2. �

R em a r k 3.3. This result generalises the result of [4].

A c k n ow l e d g em e n t. The author thanks the anonymous referee for his valu-

able comments and remarks.
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[14] J. Ligęza: Remarks on generalized solutions of ordinary linear differential equations in
the Colombeau algebra. Math. Bohem. 123 (1998), 301–316. zbl MR doi

[15] M.Oberguggenberger: Multiplication of Distributions and Applications to Partial Differ-
ential Equations. Pitman Research Notes in Mathematics Series 259. Longman Scientific
& Technical, Harlow; John Wiley & Sons, New York, 1992. zbl MR

[16] L. Schwartz: Théorie des distributions. Publications de l’Institut de Mathématique de
l’Université de Strasbourg, No. IX-X. Nouvelle édition, entièrement corrigée, refondue
et augmentée. Hermann, Paris, 1966. (In French.) zbl MR

[17] J.Wiener: Generalized Solutions of Functional Differential Equations. World Scientific,
Singapore, 1993. zbl MR doi

Authors’ address: Chikh Bouzar, Fethia Ouikene, Laboratory of Mathematical Analysis
and Applications. Université Oran 1, Ahmed Ben Bella, B.P. 1524, El M’Naouer 31000,
Oran, Algeria, e-mail: ch.bouzar@gmail.com, aitouikene@yahoo.fr.

131

http://dx.doi.org/10.2298/fil1917407b
https://zbmath.org/?q=an:0765.46021
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1111214
http://dx.doi.org/10.2307/2159304
https://zbmath.org/?q=an:1163.34002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2460203
http://dx.doi.org/10.1007/978-0-387-09819-7
https://zbmath.org/?q=an:1403.46033
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3817011
http://dx.doi.org/10.1007/s00605-017-1066-6
https://zbmath.org/?q=an:1275.46025
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3075942
http://dx.doi.org/10.1007/978-3-0348-0585-8_13
https://zbmath.org/?q=an:0325.34039
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0460799
http://dx.doi.org/10.1007/BFb0070324
https://zbmath.org/?q=an:0787.34002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1243878
http://dx.doi.org/10.1007/978-1-4612-4342-7
https://zbmath.org/?q=an:0258.46039
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0320743
https://zbmath.org/?q=an:1060.46030
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2035508
http://dx.doi.org/10.1023/B:ACAP.0000013815.32211.24
https://zbmath.org/?q=an:0937.34003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1645454
http://dx.doi.org/10.21136/MB.1998.126067
https://zbmath.org/?q=an:0818.46036
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1187755
https://zbmath.org/?q=an:0149.09501
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0209834
https://zbmath.org/?q=an:0874.34054
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1233560
http://dx.doi.org/10.1142/1860

