Mathematica Bohemica

Arun K. Tripathy; Shyam S. Santa
Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients

Mathematica Bohemica, Vol. 146 (2021), No. 2, 185-197

Persistent URL: http://dml.cz/dmlcz/148931

Terms of use:

© Institute of Mathematics AS CR, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

NECESSARY AND SUFFICIENT CONDITIONS FOR OSCILLATION OF SECOND-ORDER DIFFERENTIAL EQUATIONS WITH NONPOSITIVE NEUTRAL COEFFICIENTS

Arun K. Tripathy, Sambalpur, Shyam S. Santra, Kalyani
Received April 30, 2019. Published online August 12, 2020.
Communicated by Leonid Berezansky

Abstract. In this work, we present necessary and sufficient conditions for oscillation of all solutions of a second-order functional differential equation of type

$$
\left(r(t)\left(z^{\prime}(t)\right)^{\gamma}\right)^{\prime}+\sum_{i=1}^{m} q_{i}(t) x^{\alpha_{i}}\left(\sigma_{i}(t)\right)=0, \quad t \geqslant t_{0}
$$

where $z(t)=x(t)+p(t) x(\tau(t))$. Under the assumption $\int^{\infty}(r(\eta))^{-1 / \gamma} \mathrm{d} \eta=\infty$, we consider two cases when $\gamma>\alpha_{i}$ and $\gamma<\alpha_{i}$. Our main tool is Lebesgue's dominated convergence theorem. Finally, we provide examples illustrating our results and state an open problem.

Keywords: oscillation; non-oscillation; neutral; delay; Lebesgue's dominated convergence theorem

MSC 2020: 34C10, 34K11

1. Introduction

In this article we consider the neutral differential equation

$$
\begin{equation*}
\left(r(t)\left(z^{\prime}(t)\right)^{\gamma}\right)^{\prime}+\sum_{i=1}^{m} q_{i}(t) x^{\alpha_{i}}\left(\sigma_{i}(t)\right)=0, \quad z(t)=x(t)+p(t) x(\tau(t)), \quad t \geqslant t_{0} \tag{1.1}
\end{equation*}
$$

where γ and α_{i} are the quotients of odd positive integers, and the functions p, q_{i}, r, σ_{i}, τ are continuous such that
$(\mathrm{A} 1) \sigma_{i} \in C\left([0, \infty), \mathbb{R}_{+}\right), \tau \in C^{2}\left([0, \infty), \mathbb{R}_{+}\right), \sigma_{i}(t)<t, \tau(t)<t, \lim _{t \rightarrow \infty} \sigma_{i}(t)=\infty$,

$$
\lim _{t \rightarrow \infty} \tau(t)=\infty
$$

DOI: 10.21136/MB.2020.0063-19
(A2) $r \in C^{1}\left([0, \infty), \mathbb{R}_{+}\right), q_{i} \in C\left([0, \infty), \mathbb{R}_{+}\right) ; 0<r(t), 0 \leqslant q_{i}(t)$ for all $t \geqslant 0$ and $i=1,2, \ldots, m ; \sum q_{i}(t)$ is not identically zero in any interval $[b, \infty)$;
(A3) $\int_{0}^{\infty} r^{-1 / \gamma}(s) \mathrm{d} s=\infty, \Pi(t)=\int_{0}^{t} r^{-1 / \gamma}(\eta) \mathrm{d} \eta$;
(A4) $-1<-p_{0} \leqslant p(t) \leqslant 0$ for $t \geqslant t_{0}$;
(A5) there exists a differentiable function $\sigma_{0}(t)$ satisfying the properties $0<\sigma_{0}(t)=$ $\min \left\{\sigma_{i}(t): t \geqslant t^{*}>t_{0}\right\}$ and $\sigma_{0}^{\prime}(t) \geqslant \alpha$ for $t \geqslant t^{*}>t_{0}, \alpha>0, i=1,2, \ldots, m$.
In 1978, Brands has proved that for bounded delays, the solutions of

$$
x^{\prime \prime}(t)+q(t) x(t-\sigma(t))=0
$$

are oscillatory if and only if the solutions of $x^{\prime \prime}(t)+q(t) x(t)=0$ are oscillatory (see [9]). In [10], [12] Chatzarakis et al. have considered a more general second-order half-linear differential equation of the form

$$
\begin{equation*}
\left(r\left(x^{\prime}\right)^{\alpha}\right)^{\prime}(t)+q(t) x^{\alpha}(\sigma(t))=0 \tag{1.2}
\end{equation*}
$$

and established new oscillation criteria for (1.2) when

$$
\lim _{t \rightarrow \infty} \Pi(t)=\infty \quad \text { and } \quad \lim _{t \rightarrow \infty} \Pi(t)<\infty
$$

Wong in [29] has obtained the necessary and sufficient conditions for oscillation of solutions of

$$
(x(t)+p x(t-\tau))^{\prime \prime}+q(t) f(x(t-\sigma))=0, \quad-1<p<0
$$

in which the neutral coefficient and delays are constants. However, we have seen in [5], [13] that the authors Baculíková and Džurina have studied

$$
\begin{equation*}
\left(r(t)\left(z^{\prime}(t)\right)^{\gamma}\right)^{\prime}+q(t) x^{\alpha}(\sigma(t))=0, \quad z(t)=x(t)+p(t) x(\tau(t)), \quad t \geqslant t_{0} \tag{1.3}
\end{equation*}
$$

and established sufficient conditions for oscillation of solutions of (1.3) using comparison techniques when $\gamma=\alpha=1,0 \leqslant p(t)<\infty$ and $\lim _{t \rightarrow \infty} \Pi(t)=\infty$. In the same technique, Baculíková and Džurina (see [6]) obtained sufficient conditions for oscillation of the solutions of (1.3) by considering the assumptions $0 \leqslant p(t)<\infty$ and $\lim _{t \rightarrow \infty} \Pi(t)=\infty$. In [28], Tripathy et al. have studied (1.3) and established several sufficient conditions for oscillations of the solutions of (1.3) by considering the assumptions $\lim _{t \rightarrow \infty} \Pi(t)=\infty$ and $\lim _{t \rightarrow \infty} \Pi(t)<\infty$ for different ranges of the neutral coefficient p. In [8], Bohner et al. have obtained sufficient conditions for oscillation of solutions of (1.3) when $\gamma=\alpha, \lim _{t \rightarrow \infty} \Pi(t)<\infty$ and $0 \leqslant p(t)<1$. Grace et al. in [15]
have established sufficient conditions for the oscillation of the solutions of (1.3) when $\gamma=\alpha$ and by considering the assumptions $\lim _{t \rightarrow \infty} \Pi(t)<\infty, \lim _{t \rightarrow \infty} \Pi(t)=\infty$ and $0 \leqslant p(t)<1$. In [18], Li et al. have established sufficient conditions for oscillation of the solutions of (1.3), under the assumptions $\lim _{t \rightarrow \infty} \Pi(t)<\infty$ and $p(t) \geqslant 0$. Karpuz and Santra in [17] have obtained several sufficient conditions for the oscillatory and asymptotic behavior of the solutions of

$$
\left(r(t)(x(t)+p(t) x(\tau(t)))^{\prime}\right)^{\prime}+q(t) f(x(\sigma(t)))=0
$$

by considering the assumptions $\lim _{t \rightarrow \infty} \Pi(t)<\infty$ and $\lim _{t \rightarrow \infty} \Pi(t)=\infty$, for different ranges of p.

For more information on oscillation of second order neutral differential equations, we refer the reader to [1]-[4], [7], [11], [14], [15], [19]-[27], [30] and the references cited therein. Note that most of the works have considered sufficient conditions, and merely a few works deals with the necessary and sufficient conditions. Hence, unlike the above methods, the main purpose of this article is to establish conditions that are both necessary and sufficient for oscillation of all solutions of (1.1).

Neutral differential equations have several applications in the natural sciences and engineering. For example, they often appear in the study of distributed networks containing lossless transmission lines (see, e.g., [16]). In this paper, we restrict our attention to studying oscillation and non-oscillation of (1.1), which includes the class of functional differential equations of neutral type.

By a solution to equation (1.1) we mean a function $x \in \mathrm{C}\left(\left[T_{x}, \infty\right), \mathbb{R}\right)$, where $T_{x} \geqslant t_{0}$, such that $r z^{\prime} \in \mathrm{C}^{1}\left(\left[T_{x}, \infty\right), \mathbb{R}\right)$ and satisfies (1.1) on the interval $\left[T_{x}, \infty\right)$. A solution x of (1.1) is said to be proper if x is not identically zero eventually, i.e. $\sup \{|x(t)|: t \geqslant T\}>0$ for all $T \geqslant T_{x}$. We assume that (1.1) possesses such solutions. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on $\left[T_{x}, \infty\right)$; otherwise, it is said to be non-oscillatory. Equation (1.1) itself is said to be oscillatory if all of its solutions are oscillatory.

Remark 1.1. When the domain is not specified explicitly, all functional inequalities considered in this paper are assumed to hold eventually, i.e. they are satisfied for all t large enough.

2. Main Results

Lemma 2.1. Assume that (A1)-(A4) hold for $t \geqslant t_{0}$. If x is an eventually positive solution of (1.1), then z satisfies one of the following two cases:
(i) $z(t)<0, z^{\prime}(t)>0,\left(r\left(z^{\prime}\right)^{\gamma}\right)^{\prime}(t) \leqslant 0$;
(ii) $z(t)>0, z^{\prime}(t)>0,\left(r\left(z^{\prime}\right)^{\gamma}\right)^{\prime}(t) \leqslant 0$
for $t \geqslant t_{1}$.
Proof. Let x be an eventually positive solution. Hence, there exists a $t_{0} \geqslant 0$ such that $x(t)>0, x(\tau(t))>0$ and $x\left(\sigma_{i}(t)\right)>0$ for all $t \geqslant t_{0}$ and $i=1,2, \ldots, m$. From (1.1) it follows that

$$
\begin{equation*}
\left(r(t)\left(z^{\prime}(t)\right)^{\gamma}\right)^{\prime}=-\sum_{i=1}^{m} q_{i}(t) x^{\alpha_{i}}\left(\sigma_{i}(t)\right) \leqslant 0 \quad \text { for } t \geqslant t_{0} \tag{2.1}
\end{equation*}
$$

Therefore, $r(t)\left(z^{\prime}(t)\right)^{\gamma}$ is non-increasing for $t \geqslant t_{0}$. Assume that $r(t)\left(z^{\prime}(t)\right)^{\gamma}<0$ for $t \geqslant t_{1}>t_{0}$. Hence,

$$
r(t)\left(z^{\prime}(t)\right)^{\gamma} \leqslant r\left(t_{1}\right)\left(z^{\prime}\left(t_{1}\right)\right)^{\gamma}<0 \quad \text { for all } t \geqslant t_{1}
$$

that is,

$$
z^{\prime}(t) \leqslant\left(\frac{r\left(t_{1}\right)}{r(t)}\right)^{1 / \gamma} z^{\prime}\left(t_{1}\right) \quad \text { for } t \geqslant t_{1}
$$

Using integration from t_{1} to t, we have

$$
\begin{equation*}
z(t) \leqslant z\left(t_{1}\right)+\left(r\left(t_{1}\right)\right)^{1 / \gamma} z^{\prime}\left(t_{1}\right)\left(\Pi(t)-\Pi\left(t_{1}\right)\right) \rightarrow-\infty \tag{2.2}
\end{equation*}
$$

as $t \rightarrow \infty$ due to (A3). Now, we consider the two possibilities, namely, x is bounded and x is unbounded.

If x is unbounded, then there exists a sequence $\left\{\eta_{k}\right\} \rightarrow \infty$ as $k \rightarrow \infty$ and $x\left(\eta_{k}\right)=$ $\sup \left\{x(\eta): \eta \leqslant \eta_{k}\right\}$. By $\tau\left(\eta_{k}\right) \leqslant \eta_{k}$, we have $x\left(\tau\left(\eta_{k}\right)\right) \leqslant x\left(\eta_{k}\right)$ and hence

$$
z\left(\eta_{k}\right)=x\left(\eta_{k}\right)+p\left(\eta_{k}\right) x\left(\tau\left(\eta_{k}\right)\right) \geqslant\left(1+p\left(\eta_{k}\right)\right) x\left(\eta_{k}\right) \geqslant\left(1-p_{0}\right) x\left(\eta_{k}\right) \geqslant 0
$$

contradicts the fact that $\lim _{k \rightarrow \infty} z\left(\eta_{k}\right)=-\infty$. Ultimately, x is bounded. Then z is also bounded, which is a contradiction.

Therefore $r(t)\left(z^{\prime}(t)\right)^{\gamma}>0$ for all $t \geqslant t_{1}$. From $r(t)\left(z^{\prime}(t)\right)^{\gamma}>0$ and $r(t)>0$, it follows that $z^{\prime}(t)>0$. Then z satisfies only one of the two cases (i) and (ii) for all $t \geqslant t_{1}$. This completes the proof.

Lemma 2.2. Assume that (A1)-(A4) hold. If x is an eventually positive solution of (1.1), then any one of the following two cases holds:
(1) if z satisfies (i), then $\lim _{t \rightarrow \infty} x(t)=0$;
(2) if z satisfies (ii), then there exist $t_{1}>t_{0}$ and $\delta>0$ such that

$$
\begin{equation*}
\left(\Pi(t)-\Pi\left(t_{1}\right)\right)\left(\int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) x^{\alpha_{i}}\left(\sigma_{i}(\zeta)\right) \mathrm{d} \zeta\right)^{1 / \gamma} \leqslant z(t) \leqslant x(t) \tag{2.3}
\end{equation*}
$$

hold for all $t \geqslant t_{1}$.
Proof. Let x be an eventually positive solution of (1.1). Then there exists a $t_{0}>0$ such that $x(t)>0, x(\tau(t))>0$ and $x\left(\sigma_{i}(t)\right)>0$ for all $t \geqslant t_{0}$ and $i=1,2, \ldots, m$. Applying Lemma 2.1 for $t \geqslant t_{1}>t_{0}$ we have the following two cases:

Case 1: Let z satisfy (i) for all $t \geqslant t_{1}$. Note that $\lim _{t \rightarrow \infty} z(t)$ exists. As $0>z(t) \geqslant$ $x(t)-p_{0} x(\tau(t))$, then

$$
0 \geqslant \lim _{t \rightarrow \infty} z(t) \geqslant \lim _{t \rightarrow \infty}\left(x(t)-p_{0} x(\tau(t))\right) \geqslant\left(1-p_{0}\right) \limsup _{t \rightarrow \infty} x(t)
$$

implies that $\limsup _{t \rightarrow \infty} x(t)=0$ and hence $\lim _{t \rightarrow \infty} x(t)=0$.
Case 2: Let z satisfy (ii) for all $t \geqslant t_{1}$. In this case, $x(t) \geqslant z(t)>0$ and z is increasing. From $r(t)\left(z^{\prime}(t)\right)^{\gamma}>0$ and being non-increasing, we have

$$
z^{\prime}(t) \leqslant\left(\frac{r\left(t_{1}\right)}{r(t)}\right)^{1 / \gamma} z^{\prime}\left(t_{1}\right) \quad \text { for } t \geqslant t_{1}
$$

Integrating this inequality from t_{1} to t,

$$
z(t) \leqslant z\left(t_{1}\right)+\left(r\left(t_{1}\right)\right)^{1 / \gamma} z^{\prime}\left(t_{1}\right)\left(\Pi(t)-\Pi\left(t_{1}\right)\right) .
$$

Since $\lim _{t \rightarrow \infty} \Pi(t)=\infty$, there exists a positive constant δ such that (2.3) holds. On the other hand, $\lim _{t \rightarrow \infty} r(t)\left(z^{\prime}(t)\right)^{\gamma}$ exists and integrating (1.1) from t to a, we obtain

$$
r(a)\left(z^{\prime}(a)\right)^{\gamma}-r(t)\left(z^{\prime}(t)\right)^{\gamma}=-\int_{t}^{a} \sum_{i=1}^{m} q_{i}(\eta) x^{\alpha_{i}}\left(\sigma_{i}(\eta)\right) \mathrm{d} \eta
$$

Taking limit as $a \rightarrow \infty$,

$$
\begin{equation*}
r(t)\left(z^{\prime}(t)\right)^{\gamma} \geqslant \int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) x^{\alpha_{i}}\left(\sigma_{i}(\eta)\right) \mathrm{d} \eta, \tag{2.5}
\end{equation*}
$$

that is,

$$
z^{\prime}(t) \geqslant\left(\frac{1}{r(t)} \int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) x^{\alpha_{i}}\left(\sigma_{i}(\eta)\right) \mathrm{d} \eta\right)^{1 / \gamma}
$$

Therefore

$$
\begin{aligned}
z(t) & \geqslant \int_{t_{1}}^{t}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) x^{\alpha_{i}}\left(\sigma_{i}(\zeta)\right) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta \\
& \geqslant \int_{t_{1}}^{t}\left(\frac{1}{r(\eta)} \int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) x^{\alpha_{i}}\left(\sigma_{i}(\zeta)\right) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta \\
& =\left(\Pi(t)-\Pi\left(t_{1}\right)\right)\left(\int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) x^{\alpha_{i}}\left(\sigma_{i}(\zeta)\right) \mathrm{d} \zeta\right)^{1 / \gamma} .
\end{aligned}
$$

This completes the proof of the lemma.
Lemma 2.3. Assume that (A1)-(A4) hold. If x is an eventually positive unbounded solution of (1.1), then z satisfies (ii) only.

Theorem 2.1. Assume that there exists a constant β_{1}, the quotient of odd positive integers such that $0<\alpha_{i}<\beta_{1}<\gamma$. If (A1)-(A4) hold, then every solution of (1.1) either oscillates or converges to zero as $t \rightarrow \infty$ if and only if

$$
\begin{equation*}
\int_{0}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) \Pi^{\alpha_{i}}\left(\sigma_{i}(\eta)\right) \mathrm{d} \eta=\infty \tag{2.6}
\end{equation*}
$$

Proof. We prove the sufficiency by contradiction. Initially, we assume that a solution x is eventually positive which means it does not converge to zero. So, Lemma 2.1 holds and z satisfies any one of the two cases (i) and (ii). In Lemma 2.2, Case 1 leads to $\lim _{t \rightarrow \infty} x(t)=0$, which is a contradiction.

For Case 2, we can find a $t_{1}>0$ such that

$$
x(t) \geqslant z(t) \geqslant\left(\Pi(t)-\Pi\left(t_{1}\right)\right) w^{1 / \gamma}(t) \geqslant 0 \quad \text { for } t \geqslant t_{1},
$$

where

$$
w(t)=\int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) x^{\alpha_{i}}\left(\sigma_{i}(\zeta)\right) \mathrm{d} \zeta \geqslant 0
$$

As $\lim _{t \rightarrow \infty} \Pi(t)=\infty$, there exists a $t_{2}>t_{1}$ such that $\Pi(t)-\Pi\left(t_{1}\right) \geqslant \frac{1}{2} \Pi(t)$ for $t \geqslant t_{2}$ and hence

$$
\begin{equation*}
z(t) \geqslant \frac{1}{2} \Pi(t) w^{1 / \gamma}(t) \tag{2.7}
\end{equation*}
$$

Using (2.3), $\alpha_{i}-\beta_{1}<0$ and (2.7), we have

$$
\begin{aligned}
x^{\alpha_{i}}(t) & \geqslant z^{\alpha_{i}-\beta_{1}}(t) z^{\beta_{1}}(t) \geqslant(\delta \Pi(t))^{\alpha_{i}-\beta_{1}} z^{\beta_{1}}(t) \\
& \geqslant(\delta \Pi(t))^{\alpha_{i}-\beta_{1}}\left(\frac{\Pi(t) w^{1 / \gamma}(t)}{2}\right)^{\beta_{1}}=\frac{\delta^{\alpha_{i}-\beta_{1}}}{2^{\beta_{1}}} \Pi^{\alpha_{i}}(t) w^{\beta_{1} / \gamma}(t) \quad \text { for } t \geqslant t_{2} .
\end{aligned}
$$

Since $w^{\prime}(t)=-\sum_{i=1}^{m} q_{i}(t) x^{\alpha_{i}}\left(\sigma_{i}(t)\right) \leqslant 0, t \geqslant t_{2}$, that is, w is non-increasing, the last inequality becomes

$$
x^{\alpha_{i}}\left(\sigma_{i}(\eta)\right) \geqslant \frac{\delta^{\alpha_{i}-\beta_{1}}}{2^{\beta_{1}}} \Pi^{\alpha_{i}}\left(\sigma_{i}(\eta)\right) w^{\beta_{1} / \gamma}\left(\sigma_{i}(\eta)\right) \geqslant \frac{\delta^{\alpha_{i}-\beta_{1}}}{2^{\beta_{1}}} \Pi^{\alpha_{i}}\left(\sigma_{i}(\eta)\right) w^{\beta_{1} / \gamma}(\eta) .
$$

Therefore

$$
\begin{equation*}
\left(w^{1-\beta_{1} / \gamma}(t)\right)^{\prime}=\left(1-\frac{\beta_{1}}{\gamma}\right) w^{-\beta_{1} / \gamma}(t) w^{\prime}(t) \tag{2.8}
\end{equation*}
$$

Integrating (2.8) from t_{2} to t and then using the fact that $w>0$, we find

$$
\begin{aligned}
\infty>w^{1-\beta_{1} / \gamma}\left(t_{2}\right) & \geqslant\left(1-\frac{\beta_{1}}{\gamma}\right) \int_{t_{2}}^{t}-w^{-\beta_{1} / \gamma}(\eta) w^{\prime}(\eta) \mathrm{d} \eta \\
& =\left(1-\frac{\beta_{1}}{\gamma}\right) \int_{t_{2}}^{t} w^{-\beta_{1} / \gamma}(\eta)\left(\sum_{i=1}^{m} q_{i}(\eta) x^{\alpha_{i}}\left(\sigma_{i}(\eta)\right)\right) \mathrm{d} \eta \\
& \geqslant \frac{1}{2^{\beta_{1}} \delta^{\left(\beta_{1}-\alpha_{i}\right)}}\left(1-\frac{\beta_{1}}{\gamma}\right) \int_{t_{2}}^{t} \sum_{i=1}^{m} q_{i}(\eta) \Pi^{\alpha_{i}}\left(\sigma_{i}(\eta)\right) \mathrm{d} \eta
\end{aligned}
$$

which contradicts (2.6) as $t \rightarrow \infty$ and completes the proof of sufficiency for eventually positive solutions. For an eventually negative solution x, we introduce the variables $y=-x$ so that we can apply the above process for the solution y.

Next we show the necessity part by a contrapositive argument. Let (2.6) do not hold. Then it is possible to find a $t_{1}>0$ such that

$$
\begin{equation*}
\int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) \Pi^{\alpha_{i}}\left(\sigma_{i}(\zeta)\right) \mathrm{d} \zeta \leqslant \varepsilon \delta^{-\alpha_{i}} \tag{2.9}
\end{equation*}
$$

for all $\eta \geqslant t_{1}$ and $\delta, \varepsilon>0$ satisfying the relation

$$
\begin{equation*}
(2 \varepsilon)^{1 / \gamma}=\left(1-p_{0}\right) \delta, \tag{2.10}
\end{equation*}
$$

so that $0<\varepsilon^{1 / \gamma}=\left(1-p_{0}\right) \delta / 2^{1 / \gamma}<\delta$. Define the set of continuous functions

$$
M=\left\{x \in C([0, \infty)): \varepsilon^{1 / \gamma}\left(\Pi(t)-\Pi\left(t_{1}\right)\right) \leqslant x(t) \leqslant \delta\left(\Pi(t)-\Pi\left(t_{1}\right)\right), t \geqslant t_{1}\right\}
$$

and define the operator Φ on M by

$$
\begin{array}{rlr}
(\Phi x)(t)= & \text { if } t \leqslant t_{1}, \\
(\Phi x)(t)= & -p(t) x(\tau(t)) & \\
& +\int_{t_{1}}^{t}\left(\frac{1}{r(\eta)}\left(\varepsilon+\int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) x^{\alpha_{i}}\left(\sigma_{i}(\zeta)\right) \mathrm{d} \zeta\right)\right)^{1 / \gamma} \mathrm{d} \eta \quad & \text { if } t>t_{1} .
\end{array}
$$

We need to show that Φ has a fixed point which is our required solution of (1.1).
First we estimate $(\Phi x)(t)$ from below. For $x \in M$ we have $0 \leqslant \varepsilon^{1 / \gamma}\left(\Pi(t)-\Pi\left(t_{1}\right)\right) \leqslant$ $x(t)$, and by (A2) and (A3) we have

$$
(\Phi x)(t) \geqslant 0+\int_{t_{1}}^{t}\left(\frac{1}{r(\eta)}(\varepsilon+0)\right)^{1 / \gamma} \mathrm{d} \eta=\varepsilon^{1 / \gamma}\left(\Pi(t)-\Pi\left(t_{1}\right)\right) .
$$

Now we estimate $(\Phi x)(t)$ from above. For x in M and by the definition of M, we have $x^{\alpha_{i}}\left(\sigma_{i}(\eta)\right) \leqslant\left(\delta \Pi\left(\sigma_{i}(\eta)\right)\right)^{\alpha_{i}}$. Therefore, by (2.9),

$$
\begin{aligned}
(\Phi x)(t) \leqslant & p_{0} \delta\left(\Pi(\tau(t))-\Pi\left(t_{1}\right)\right) \\
& +\int_{t_{1}}^{t}\left(\frac{1}{r(\eta)}\left(\varepsilon+\delta^{\alpha_{i}} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) \Pi^{\alpha_{i}}\left(\sigma_{i}(\zeta)\right) \mathrm{d} \zeta\right)\right)^{1 / \gamma} \mathrm{d} \eta \\
\leqslant & p_{0} \delta\left(\Pi(t)-\Pi\left(t_{1}\right)\right)+(2 \varepsilon)^{1 / \gamma}\left(\Pi(t)-\Pi\left(t_{1}\right)\right)=\delta\left(\Pi(t)-\Pi\left(t_{1}\right)\right)
\end{aligned}
$$

Hence, Φ maps M to M.
To find our fixed point for Φ in M, let us define a sequence of functions in M by the recurrence relation

$$
\begin{aligned}
u_{0}(t) & =0 \\
u_{1}(t) & =\left(\Phi u_{0}\right)(t)= \begin{cases}0 & \text { for } t=0, \\
\varepsilon^{1 / \gamma}\left(\Pi(t)-\Pi\left(t_{1}\right)\right) & \text { if } t \geqslant t_{1},\end{cases} \\
u_{n+1}(t) & =\left(\Phi u_{n}\right)(t)
\end{aligned}
$$

Note that for each fixed t we have $u_{1}(t) \geqslant u_{0}(t)$. Using mathematical induction, it is easy to show that $u_{n+1}(t) \geqslant u_{n}(t)$. Therefore, the sequence $\left\{u_{n}\right\}$ converges pointwise to a function u. Using the Lebesgue dominated convergence theorem, we can show that u is a fixed point of Φ in M. This shows under assumption (2.9), that there is a non-oscillatory solution that does not converge to zero.

Corollary 2.1. Under the assumptions of Theorem 2.1, every unbounded solution of (1.1) is oscillatory if and only if (2.6) holds.

Proof. The proof of the corollary is an immediate consequence of Theorem 2.1.

Theorem 2.2. Assume that there exists a constant β_{2}, the quotient of odd positive integers such that $\gamma<\beta_{2}<\alpha_{i}$. If (A1)-(A5) hold and $r(t)$ is non-decreasing, then every solution of (1.1) either oscillates or converges to zero if and only if

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta=\infty \tag{2.11}
\end{equation*}
$$

Proof. We prove the sufficiency by contradiction. Initially, we assume that x is an eventually positive solution not converging to zero. So, Lemma 2.1 holds and z satisfies any one of the two cases (i) and (ii). In Lemma 2.2, Case 1 leads to $\lim _{t \rightarrow \infty} x(t)=0$, which is a contradiction.

For Case $2, z(t)>0$ is increasing for $t \geqslant t_{1}$ and

$$
x^{\alpha_{i}}(t) \geqslant z^{\alpha_{i}}(t) \geqslant z^{\alpha_{i}-\beta_{2}}(t) z^{\beta_{2}}(t) \geqslant z^{\alpha_{i}-\beta_{2}}\left(t_{1}\right) z^{\beta_{2}}(t)
$$

implies that

$$
\begin{equation*}
x^{\alpha_{i}}\left(\sigma_{i}(t)\right) \geqslant z^{\alpha_{i}-\beta_{2}}\left(t_{1}\right) z^{\beta_{2}}\left(\sigma_{i}(t)\right) \quad \text { for } t \geqslant t_{2}>t_{1} \tag{2.12}
\end{equation*}
$$

Using (2.5), (2.12) and $\sigma_{i}(t) \geqslant \sigma_{0}(t)$, we have

$$
\begin{align*}
r(t)\left(z^{\prime}(t)\right)^{\gamma} & \geqslant z^{\alpha_{i}-\beta_{2}}\left(t_{1}\right)\left(\int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) \mathrm{d} \eta\right) z^{\beta_{2}}\left(\sigma_{i}(t)\right) \tag{2.13}\\
& \geqslant z^{\alpha_{i}-\beta_{2}}\left(t_{1}\right)\left(\int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) \mathrm{d} \eta\right) z^{\beta_{2}}\left(\sigma_{0}(t)\right)
\end{align*}
$$

for $t \geqslant t_{2}$. Being $r(t)\left(z^{\prime}(t)\right)^{\gamma}$ non-increasing and $\sigma_{0}(t) \leqslant t$, we have

$$
r\left(\sigma_{0}(t)\right)\left(z^{\prime}\left(\sigma_{0}(t)\right)\right)^{\gamma} \geqslant r(t)\left(z^{\prime}(t)\right)^{\gamma} .
$$

Using the last inequality in (2.13) and then dividing by $z^{\beta_{2}}\left(\sigma_{0}(t)\right)>0$, and then operating the power $1 / \gamma$ on both sides, we get

$$
\frac{z^{\prime}\left(\sigma_{0}(t)\right)}{z^{\beta_{2} / \gamma}\left(\sigma_{0}(t)\right)} \geqslant\left(\frac{z^{\alpha_{i}-\beta_{2}}\left(t_{1}\right)}{r\left(\sigma_{0}(t)\right)} \int_{t}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) \mathrm{d} \eta\right)^{1 / \gamma}
$$

for $t \geqslant t_{2}$. Multiplying the left-hand side by $\sigma_{0}^{\prime}(t) / \alpha \geqslant 1$ and integrating from t_{2} to t, we find

$$
\begin{align*}
& \frac{1}{\alpha} \int_{t_{2}}^{t} \frac{z^{\prime}\left(\sigma_{0}(\eta)\right) \sigma_{0}^{\prime}(\eta)}{z^{\beta_{2} / \gamma}\left(\sigma_{0}(\eta)\right)} \mathrm{d} \eta \tag{2.14}\\
& \quad \geqslant z^{\left(\alpha_{i}-\beta_{2}\right) / \gamma}\left(t_{1}\right) \int_{t_{2}}^{t}\left(\frac{1}{r\left(\sigma_{0}(\eta)\right)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta, \quad t \geqslant t_{2}
\end{align*}
$$

Since $\gamma<\beta_{2}, r\left(\sigma_{0}(\eta)\right) \leqslant r(\eta)$ and

$$
\frac{1}{\alpha\left(1-\beta_{2} / \gamma\right)}\left(z^{1-\beta_{2} / \gamma}\left(\sigma_{0}(\eta)\right)\right)_{\eta=t_{2}}^{t} \leqslant \frac{1}{\alpha\left(\beta_{2} / \gamma-1\right)} z^{1-\beta_{2} / \gamma}\left(\sigma_{0}\left(t_{2}\right)\right)
$$

equation (2.14) becomes

$$
\int_{t_{2}}^{\infty}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta<\infty
$$

which is a contradiction to (2.11). This contradiction implies that the solution x cannot be eventually positive. The case where x is eventually negative is very similar and we omit it here.

To prove the necessity part, we assume that (2.11) does not hold. For given $\varepsilon=\left(2 /\left(1-p_{0}\right)\right)^{-\alpha_{i} / \gamma}>0$, we can find a $t_{1}>0$ such that

$$
\begin{equation*}
\int_{t_{1}}^{\infty}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta<\varepsilon \tag{2.15}
\end{equation*}
$$

Consider

$$
M=\left\{x \in C([0, \infty)): 1 \leqslant x(t) \leqslant \frac{2}{1-p_{0}} \text { for } t \geqslant t_{1}\right\} .
$$

Define the operator

$$
\begin{array}{ll}
(\Phi x)(t)=0 & \text { if } t<t_{1} \\
(\Phi x)(t)=1-p(t) x(\tau(t))+\int_{t_{1}}^{t}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) x^{\alpha_{i}}\left(\sigma_{i}(\zeta)\right) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta & \text { if } t \geqslant t_{1}
\end{array}
$$

Indeed, $\Phi x=x$ implies that x is a solution of (1.1).
First we estimate $(\Phi x)(t)$ from below. Let $x \in M$. Then $1 \leqslant x$ implies that $(\Phi x)(t) \geqslant 1$ on $\left[t_{1}, \infty\right)$. Estimating $(\Phi x)(t)$ from above, we let $x \in M$. Then $x \leqslant 2 /\left(1-p_{0}\right)$ and thus

$$
(\Phi x)(t) \leqslant 1-p(t) \frac{2}{1-p_{0}}+\int_{t_{1}}^{t}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta)\left(\frac{2}{1-p_{0}}\right)^{\alpha_{i}} \mathrm{~d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta
$$

By (2.15) and then by the definition of ε, we obtain

$$
(\Phi x)(t) \leqslant 1+\frac{2 p_{0}}{1-p_{0}}+\left(\frac{2}{1-p_{0}}\right)^{\alpha_{i} / \gamma} \varepsilon=1+\frac{2 p_{0}}{1-p_{0}}+1=\frac{2}{1-p_{0}} .
$$

Therefore Φ maps M to M.

To find a fixed point for Φ in M, we define a sequence of functions by the recurrence relation

$$
\begin{aligned}
u_{0}(t) & =0 & & \text { for } t=0, \\
u_{1}(t) & =\left(\Phi u_{0}\right)(t)=1 & & \text { for } t \geqslant t_{1}, \\
u_{n+1}(t) & =\left(\Phi u_{n}\right)(t) & & \text { for } n \geqslant 1, t \geqslant t_{1} .
\end{aligned}
$$

Note that for each fixed t we have $u_{1}(t) \geqslant u_{0}(t)$ and we can prove $u_{n+1}(t) \geqslant u_{n}(t)$ by using the method of induction. Therefore, $\left\{u_{n}\right\}$ converges pointwise to a function u in M. By Lebesgue's dominated convergence theorem, u is a fixed point of Φ and a positive solution to (1.1), which is not converging to zero. This completes the proof of the theorem.

Corollary 2.2. Under the assumptions of Theorem 2.2, every unbounded solution of (1.1) is oscillatory if and only if (2.11) holds.

Example 2.1. Consider the neutral differential equation

$$
\begin{align*}
& \left(\mathrm{e}^{-t}\left(\left(x(t)-\mathrm{e}^{-t} x(\tau(t))\right)^{\prime}\right)^{11 / 3}\right)^{\prime} \tag{2.16}\\
& \quad \quad+\frac{1}{t+1}(x(t-2))^{1 / 3}+\frac{1}{t+2}(x(t-1))^{5 / 3}=0 .
\end{align*}
$$

Here $\gamma=\frac{11}{3}, r(t)=\mathrm{e}^{-t},-1<p(t)=-\mathrm{e}^{-t} \leqslant 0, \sigma_{1}(t)=t-2, \sigma_{2}(t)=t-1$, $\Pi(t)=\int_{0}^{t} \mathrm{e}^{3 s / 11} \mathrm{~d} s=\frac{11}{3}\left(\mathrm{e}^{3 t / 11}-1\right)$. For $\beta_{1}=\frac{7}{3}$, we have $0<\max \left\{\alpha_{1}, \alpha_{2}\right\}<\beta_{1}<\gamma$, and $x^{\alpha_{1}-\beta_{1}}=x^{-2}$ and $x^{\alpha_{2}-\beta_{1}}=x^{-2 / 3}$, which both are decreasing functions. To check (2.6) we have

$$
\begin{aligned}
\int_{0}^{\infty} \sum_{i=1}^{m} q_{i}(\eta) \Pi^{\alpha_{i}}\left(\sigma_{i}(\eta)\right) \mathrm{d} \eta & \geqslant \int_{0}^{\infty} q_{1}(\eta) \Pi^{\alpha_{1}}\left(\sigma_{1}(\eta)\right) \mathrm{d} \eta \\
& =\int_{0}^{\infty} \frac{1}{\eta+1}\left(\frac{11}{3}\left(\mathrm{e}^{3(\eta-2) / 11}-1\right)\right)^{1 / 3} \mathrm{~d} \eta=\infty
\end{aligned}
$$

since the integral approaches ∞ as $\eta \rightarrow \infty$. So, all the conditions of Theorem 2.1 hold. Thus, every solution of (2.16) either oscillates or converges to zero.

Example 2.2. Consider the neutral differential equation

$$
\begin{equation*}
\left(\left(\left(x(t)-\mathrm{e}^{-t} x(\tau(t))\right)^{\prime}\right)^{1 / 3}\right)^{\prime}+t(x(t-2))^{7 / 3}+(t+1)(x(t-1))^{11 / 3}=0 . \tag{2.17}
\end{equation*}
$$

Here $\gamma=\frac{1}{3}, r(t)=1, \sigma_{1}(t)=t-2, \sigma_{2}(t)=t-1$. For $\beta_{2}=\frac{5}{3}$, we have $\min \left\{\alpha_{1}, \alpha_{2}\right\}>\beta_{2}>\gamma$, and $x^{\alpha_{1}-\beta_{2}}=x^{2 / 3}$ and $x^{\alpha_{2}-\beta_{2}}=x^{2}$, which both are in-
creasing functions. To check (2.11) we have

$$
\begin{aligned}
\int_{t_{1}}^{\infty}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} \sum_{i=1}^{m} q_{i}(\zeta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta & \geqslant \int_{t_{0}}^{\infty}\left(\frac{1}{r(\eta)} \int_{\eta}^{\infty} q_{1}(\zeta) \mathrm{d} \zeta\right)^{1 / \gamma} \mathrm{d} \eta \\
& \geqslant \int_{2}^{\infty}\left(\int_{\eta}^{\infty} \zeta \mathrm{d} \zeta\right)^{3} \mathrm{~d} \eta=\infty
\end{aligned}
$$

So, all the conditions of Theorem 2.2 hold. Thus, every solution of (2.17) either oscillates or converges to zero.

Remark 2.1. Based on this work and [5], [6], [8], [13], [15], [17], [19], [18], [25], [28] an open problem that arises is to establish necessary and sufficient conditions for the oscillation of the solutions of the second-order neutral differential equation (1.1) for $p>0$ and $-\infty<p \leqslant-1$.

Acknowledgment. The authors are thankful to the referees for their valuable suggestions and comments which improved the content of this paper.

References

[1] R.P. Agarwal, M. Bohner, T. Li, C. Zhang: Oscillation of second-order differential equations with a sublinear neutral term. Carpathian J. Math. 30 (2014), 1-6.
zbl MR
[2] R.P. Agarwal, M. Bohner, T. Li, C. Zhang: Oscillation of second-order Emden-Fowler neutral delay differential equations. Ann. Mat. Pura Appl. (4) 193 (2014), 1861-1875.
zbl MR doi
[3] R.P. Agarwal, M. Bohner, T.Li, C. Zhang: Even-order half-linear advanced differential equations: Improved criteria in oscillatory and asymptotic properties. Appl. Math. Comput. 266 (2015), 481-490.
zbl MR doi
[4] R.P.Agarwal, C.Zhang, T. Li: Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 274 (2016), 178-181.
[5] B. Baculikková, J. Džurina: Oscillation theorems for second order neutral differential equations. Comput. Math. Appl. 61 (2011), 94-99.
[6] B. Baculiková, J. Džurina: Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 62 (2011), 4472-4478.
[7] B. Baculiková, T. Li, J.Džurina: Oscillation theorems for second order neutral differential equations. Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 74, 13 pages.
zbl MR doi
[8] M. Bohner, S. R. Grace, I. Jadlovská: Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 60, 12 pages.
[9] J.J.A.M. Brands: Oscillation theorems for second-order functional differential equations. J. Math. Anal. Appl. 63 (1978), 54-64.
zbl MR doi
[10] G. E. Chatzarakis, J. Džurina, I. Jadlovská: New oscillation criteria for second-order halflinear advanced differential equations. Appl. Math. Comput. 347 (2019), 404-416.
[11] G.E. Chatzarakis, S. R. Grace, I. Jadlovská, T. Li, E. Tunģ: Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients. Complexity 2019 (2019), Article ID 5691758, 7 pages.
[12] G. E. Chatzarakis, I. Jadlovská: Improved oscillation results for second-order half-linear delay differential equations. Hacet. J. Math. Stat. 48 (2019), 170-179.

MR doi
[13] J. Džurina: Oscillation theorems for second order advanced neutral differential equations. Tatra Mt. Math. Publ. 48 (2011), 61-71.
zbl MR doi
[14] J. Džurina, S. R. Grace, I. Jadlovská, T. Li: Oscillation criteria for second-order EmdenFowler delay differential equations with a sublinear neutral term. Math. Nachr. 293 (2020), 910-922.
zbl MR doi
[15] S. R. Grace, J. Džurina, I. Jadlovská, T. Li: An improved approach for studying oscillation of second-order neutral delay differential equations. J. Inequal. Appl. 2018 (2018), Article ID 193, 11 pages.
[16] J. Hale: Theory of Functional Differential Equations. Applied Mathematical Sciences 3. Springer, New York, 1977.
[17] B. Karpuz, S. S. Santra: Oscillation theorems for second-order nonlinear delay differential equations of neutral type. Hacet. J. Math. Stat 48 (2019), 633-643.

MR doi
[18] H. Li, Y. Zhao, Z. Han: New oscillation criterion for Emden-Fowler type nonlinear neutral delay differential equations. J. Appl. Math. Comput. 60 (2019), 191-200.
[19] Q. Li, R. Wang, F. Chen, T. Li: Oscillation of second-order nonlinear delay differential equations with nonpositive neutral coefficients. Adv. Difference Equ. 2015 (2015), Article ID 35, 7 pages.
zbl MR doi
zbl MR doi
[20] T. Li, Y. V. Rogovchenko: Oscillation theorems for second-order nonlinear neutral delay differential equations. Abstr. Appl. Anal. 2014 (2014), Article ID 594190, 5 pages.
zbl MR doi
[21] T. Li, Y. V. Rogovchenko: Oscillation of second-order neutral differential equations. Math. Nachr. 288 (2015), 1150-1162.
zbl MR doi
[22] T. Li, Y. V. Rogovchenko: Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations. Monatsh. Math. 184 (2017), 489-500.
zbl MR doi
[23] S. Pinelas, S. S. Santra: Necessary and sufficient condition for oscillation of nonlinear neutral first-order differential equations with several delays. J. Fixed Point Theory Appl. 20 (2018), Article ID 27, 13 pages.
zbl MR doi
[24] Y. Qian, R. Xu: Some new oscillation criteria for higher-order quasi-linear neutral delay differential equations. Differ. Equ. Appl. 3 (2011), 323-335.
zbl MR doi
[25] S. S. Santra: Existence of positive solution and new oscillation criteria for nonlinear first-order neutral delay differential equations. Differ. Equ. Appl. 8 (2016), 33-51.
zbl MR doi
[26] S.S. Santra: Oscillation analysis for nonlinear neutral differential equations of second order with several delays. Mathematica 59 (2017), 111-123.
zbl MR
[27] S. S. Santra: Oscillation analysis for nonlinear neutral differential equations of second order with several delays and forcing term. Mathematica 61 (2019), 63-78.
zbl MR doi
[28] A. K. Tripathy, B. Panda, A. K. Sethi: On oscillatory nonlinear second order neutral delay differential equations. Differ. Equ. Appl. 8 (2016), 247-258.
zbl MR doi
[29] J. S. W. Wong: Necessary and sufficient conditions for oscillation of second order neutral differential equations. J. Math. Anal. Appl. 252 (2000), 342-352.
zbl MR doi
[30] C. Zhang, R. P. Agarwal, M. Bohner, T. Li: Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 761-778.
zbl MR doi
Authors' addresses: Arun K. Tripathy, Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha-768019, India, e-mail: arun_tripathy70@ rediffmail.com; Shyam S. Santra, (corresponding author), Department of Mathematics, JIS College of Engineering, Barrackpore-Kalyani Expy, Phase III, Block A, Kalyani, Nadia 741235, India, e-mail: shyam01.math@gmail.com.

