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RELATIONSHIP AMONG VARIOUS VIETORIS-TYPE AND
MICROSIMPLICIAL HOMOLOGY THEORIES

Takuma Imamura

Abstract. In this paper, we clarify the relationship among the Vietoris-type
homology theories and the microsimplicial homology theories, where the latter
are nonstandard homology theories defined by M.C. McCord (for topological
spaces), T. Korppi (for completely regular topological spaces) and the author
(for uniform spaces). We show that McCord’s and our homology are isomorphic
for all compact uniform spaces and that Korppi’s and our homology are
isomorphic for all fine uniform spaces. Our homology shares many good
properties with Korppi’s homology. As an example, we outline a proof of the
continuity of our homology with respect to uniform resolutions. S. Garavaglia
proved that McCord’s homology is isomorphic to Vietoris homology for all
compact topological spaces. Inspired by this result, we prove that our homology
is isomorphic to uniform Vietoris homology for all precompact uniform spaces
and that Korppi’s homology is isomorphic to normal Vietoris homology for
all pseudocompact completely regular topological spaces.

1. Introduction

Nonstandard homology theories have been developed for various spaces in
the existing literature. M.C. McCord [9] introduced a nonstandard homology of
topological spaces, the first investigation of nonstandard homology. By imitating
McCord’s definition, T. Korppi [5, 7] constructed another nonstandard homology
for completely regular spaces, and the author [3] defined a similar one for uniform
spaces, called µ-homology. These homology theories are all microsimplicial, i.e.,
based on hyperfinite chains of infinitesimally small (micro) simplices. Other types
of nonstandard homology can be found in [3, Section 7].

McCord mentioned a similarity between microsimplicial and Vietoris-type homo-
logy theories. Typical examples of Vietoris-type are as follows: Vietoris homology
of topological spaces, normal Vietoris homology of completely regular spaces, and
uniform Vietoris homology of uniform spaces. Informally, Vietoris-type homology
is the homology of the Vietoris complex of some “infinitely fine” cover. Formally,
Vietoris-type homology is defined as the inverse limit of the homologies of Vietoris
complexes, where the limit runs over some directed set of covers with respect to
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Fig. 1.1: Double lines indicate isomorphisms. The label of each
line indicates the condition for that isomorphism.

refinement. Note that Vietoris’ construction indirectly deals with infinitely fine
covers, just like epsilon–delta analysis does with infinitesimals. There is another
way to formulate the informal concept “infinitely fine”, namely, the use of non-
standard analysis. Nonstandard analysis enables us directly to deal with infinitely
fine covers. Microsimplicial homology is formally defined as the homology of the
Vietoris complex of some infinitely fine cover in the nonstandard sense. Under
these circumstances, it is natural to expect that each microsimplicial homology is
isomorphic to the corresponding Vietoris-type homology. Indeed, Garavaglia [2]
proved that McCord homology is isomorphic to Vietoris homology for all compact
spaces. The equivalence, however, does not hold for some non-compact spaces.
This means that McCord homology is not just a paraphrase of Vietoris homology.
Vietoris-type homology theories are inexact even for compact metrisable pairs (see
[8, Example 2, p.126]), because they are defined by inverse limits which do not
preserve exact sequences. By contrast, microsimplicial homology theories are exact
for all pairs of spaces. This is an advantage of microsimplicial-type compared with
Vietoris-type.

This paper aims to clarify the relationship among Vietoris-type and microsim-
plicial homology theories. Figure 1.1 on page 132 illustrates the relationship among
the homology theories mentioned so far.

In Section 3, we deal with the microsimplicial homology theories. We show that
– McCord homology and µ-homology are exactly the same for all compact

uniform spaces;
– Korppi homology and µ-homology are exactly the same for all fine uniform

spaces.
We remark that these equalities do not hold in general. Because of the second
equality, we can regard µ-homology as a generalisation of Korppi homology from
fine uniform spaces to general uniform spaces. µ-homology inherits many properties
from Korppi homology. For example, uniform Vietoris homology with standard
coefficients can be embedded into µ-homology with nonstandard coefficients. This
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is a generalisation of the fact that normal Vietoris homology can be embedded
into Korppi homology. As another example, we outline a proof of the continuity of
µ-homology with respect to uniform resolutions.

In Section 4, we prove the following two isomorphisms (inspired by Garavaglia’s
result):

– µ-homology is isomorphic to uniform Vietoris homology for all precompact
uniform spaces;

– Korppi homology is isomorphic to normal Vietoris homology for all pseudo-
compact completely regular spaces.

To prove the former isomorphism, we introduce the notion of S-homotopy, the
singular homotopy on the category of uniform spaces with S-continuous maps
(which admit infinitesimal discontinuity), and show that uniform Vietoris homology
satisfies the S-homotopy axiom for all precompact uniform spaces. The latter
isomorphism immediately follows from the former one. We also prove that these
isomorphisms do not hold in general.
µ-homology can be extended to the category of nonstandard subsets of uniform

spaces with nonstandardly continuous maps. We briefly discuss this extension in
Section 5.

Finally, in Section 6, we remark the necessity and unnecessity of the satura-
tion principle. This remark will be important for considering the microsimplicial
homology theories in general nonstandard models.

2. Preliminaries

We use the basic terminology in uniform topology (see the monograph [4] by
Isbell). We assume the reader to be familiar with nonstandard mathematics, in
particular, nonstandard topology. For basic notions and results in nonstandard
topology, we refer to Robinson [10] and Stroyan and Luxemburg [11].

2.1. Basic settings of nonstandard analysis. As in [3], we use Robinson-style
nonstandard analysis. We fix a transitive universe U, called the standard universe,
that satisfies sufficiently many (but only finitely many) axioms of ZFC. All standard
objects we consider belong to U. More specifically, using the reflection principle, we
pick a large enough ordinal λ and let U := Vλ, where Vλ is the cumulative hierarchy
of rank λ. We also fix an elementary extension ∗U of U, called the internal universe,
that is |U|+-saturated. In particular, ∗U is an enlargement of U. By saying the
words ‘transfer’, ‘saturation’ and ‘weak saturation’, we indicate the elementary
equivalence between U and ∗U, the saturation property of ∗U and the enlargement
property of ∗U relative to U, respectively. The map x 7→ ∗x denotes the elementary
embedding U ↪→ ∗U. We omit the star of ∗x when x is considered to be an atomic
object (such as a number and a point). Given a concept X on U definable by a
first-order formula with parameters in U, the associated concept on ∗U definable
by the same formula is called internal X, hyper X, ∗X, etc.

2.2. Vietoris-type homology theories. We here recall the definition schema of
Vietoris-type homology theories [1].
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Let X and Y be sets and let R be a subset of X × Y . The Vietoris complex of
(X,Y,R) is the simplicial set V (X,Y,R) whose vertices are the points of X and
whose vertices a0, . . . , ap span a simplex if and only if there exists a b ∈ Y such
that ai R b (0 ≤ i ≤ p). Figure 2.1 on page 134 gives an example of a Vietoris
complex.

a

b c

a

b c

Fig. 2.1: The left depicts the three point space X := { a, b, c }
equipped with the cover λ := { { a, b } , { a, c } , { b, c } }. The right
depicts a geometric realisation of V (X,λ,∈) within the plane.

Let X be a set and let λ and µ be covers of X. λ is called a refinement of
µ if there is a map ϕ : λ → µ such that U ⊆ ϕ (U) for all U ∈ λ. The cover
λ ∧ µ := {U ∩ V | U ∈ λ, V ∈ µ } is a common refinement of λ and µ. Hence, the
set of all covers forms a (downward) directed set under refinement.

Let G be an abelian group. Let (X,A) be a pair of sets (such that A ⊆ X)
and DX a directed set of covers of X. Given λ ∈ DX , we denote by (Xλ, Aλ)
the simplicial pair (V (X,λ,∈) ,V (A, λ,∈)). If λ is a refinement of µ, Xλ and Aλ
are simplicial subsets of Xµ and Aµ, respectively. Let iµλ : (Xλ, Aλ) ↪→ (Xµ, Aµ)
be the inclusion and let pµλ := H• (iµλ;G). Thus we have an inverse system
(DX , H• (Xλ, Aλ;G) , pµλ), called the Vietoris system for (X,A). Here H• (·;G)
denotes the ordinary homology functor of simplicial pairs with coefficients in G.
The Vietoris homology of (X,A) with coefficients in G with respect to DX is the
inverse limit

ȞDX• (X,A;G) := lim
λ∈DX

H• (Xλ, Aλ;G) .

Example 2.1. Let Top2 be the category of topological pairs with continuous maps.
We denote by OX the directed set of all open covers of a topological space X. The
Vietoris homology of a topological pair (X,A) is Ȟ• (X,A;G) := ȞOX• (X,A;G).
One can extend Ȟ• (·;G) to a functor from Top2 to the category of graded abelian
groups as follows: let f : (X,A) → (Y,B) be a continuous map. Given λ ∈ OY ,
its pullback f−1λ := { f−1 (U) | U ∈ λ } is in OX . Hence, f canonically induces a
homomorphism fλ : Ȟ• (X,A;G)→ H• (Yλ, Bλ;G). If λ is a refinement of µ, then
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the diagram

Ȟ• (X,A;G)
fλ

vvnnnnnnnnnnnn
fµ

((PPPPPPPPPPPP

H• (Yλ, Bλ;G)
pµλ // H• (Yµ, Bµ;G)

commutes. By the universal property of Ȟ• (Y,B;G), there exists a unique homo-
morphism Ȟ• (f ;G) : Ȟ• (X,A;G)→ Ȟ• (Y,B;G) that makes the diagram

Ȟ• (X,A;G)

fλ ((PPPPPPPPPPPP

Ȟ•(f ;G) // Ȟ• (Y,B;G)

pλvvnnnnnnnnnnnn

H• (Yλ, Bλ;G)

commutative for every λ ∈ OY , where pλ is the canonical projection. It is easy to
verify that Ȟ• (·;G) is functorial.

Example 2.2. Let CR2 be the category of completely regular pairs with conti-
nuous maps. We denote by NX the directed set of all normal covers of a completely
regular space X. The normal Vietoris homology of a completely regular pair (X,A)
is Ȟn

• (X,A;G) := ȞNX• (X,A;G). Like above, one can extend Ȟ• (·;G) to a functor
on CR2.

Example 2.3. Let Unif2 be the category of uniform pairs with uniformly conti-
nuous maps. We denote by UX the directed set of all uniform covers of a uniform
space X. The uniform Vietoris homology of a uniform pair (X,A) is Ȟu

• (X,A;G) :=
ȞUX• (X,A;G). One can extend Ȟ• (·;G) to a functor on Unif2 as before.

Remark 2.4. Uniform Vietoris homology has another definition in terms of entou-
rages instead of uniform covers. Let (X,A) be a uniform pair. Let EX be the set of all
entourages ofX. EX forms a (downward) directed set under inclusion. Given U ∈ EX ,
we denote by (XU , AU ) the simplicial pair (V (X,X,U) ,V (A,X,U ∩ (A×X))).
If U ⊆ V , XU and AU are simplicial subsets of XV and AV , respectively. Let
iV U : (XU , AU ) ↪→ (XV , AV ) be the inclusion and let pV U := H• (iV U ;G). Thus
we have an inverse system (EX , H• (XU , AU ;G) , pV U ). The uniform Vietoris ho-
mology of (X,Y ) can be redefined as the inverse limit

Ȟu
• (X,A;G) := lim

U∈EX
H• (XU , AU ;G) .

2.3. Microsimplicial homology theories. We first recall the definition of Mc-
Cord homology [9]. McCord homology is a homology theory on Top2 (or, more
rigorously, on its small full subcategory Top2∩U). Let X be a standard topological
space and G an internal abelian group. The monad of x ∈ X is the set

µX (x) :=
⋂
{ ∗U | x ∈ U : open } .
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We say that a member (a0, . . . , ap) of ∗Xp+1 is a p-microsimplex if { a0, . . . , ap } ⊆
µX (x) holds for some x ∈ X. We denote by CMp (X;G) the G-module that consists
of all internal hyperfinite formal sums of p-microsimplices with coefficients in G.
The boundary map ∂p : CMp (X;G)→ CMp−1 (X;G) is defined by

∂p (a0, . . . , ap) :=
p∑
i=0

(−1)i (a0, . . . , ai−1, ai+1, . . . , ap) .

It is obvious that CM• (X;G) is a chain complex, called the McCord microchain
complex. Every standard continuous map f : X → Y functorially induces a homo-
morphism CM• (f ;G) : CM• (X;G)→ CM• (Y ;G) defined by letting

CMp (f ;G) (a0, . . . , ap) := (∗f (a0) , . . . , ∗f (ap)) .

Let (X,A) be a standard topological pair. CM• (A;G) is a subchain complex of
CM• (X;G). We define

CM• (X,A;G) := CM• (X;G)
CM• (A;G) .

Let f : (X,A)→ (Y,B) be a standard continuous map. Since CM• (f ;G) : CM• (X;G)
→ CM• (Y ;G) maps CM• (A;G) to CM• (B;G), f functorially induces a homo-
morphism CM• (f ;G) : CM• (X,A;G) → CM• (Y,B;G). We define HM

• (·, ·;G) :=
H•C

M
• (·, ·;G), where H• is the ordinary homology functor of chain complexes. The

resulting functor is called McCord homology.

Remark 2.5. Let (X,A) be a standard topological pair. It may happen that

CMp (A;G) 6=
{∑

i

giσi ∈ CMp (X;G) | σi ⊆ ∗A for all i
}
.

For instance, consider the topological pair (R,R+). Given positive infinitesimals
a0, . . . , ap ∈ ∗R+, the p-tuple (a0, . . . , ap) is a microsimplex of R, although not a
microsimplex of R+. Because of this, the short exact sequence

0 // CM• (A;G) // CM• (X;G) // CM• (X,A;G) // 0

may not split. However, if A is closed in X, the above two sets are equal, and the
short exact sequence splits.

Next, recall the definition of Korppi homology [5, 7]. Korppi homology is a
homology theory on CR2 (or, more precisely, on CR2 ∩ U). Korppi’s definition
is similar to McCord’s. The only difference lies in the definition of the term
‘microsimplex’. Let X be a standard completely regular space and G an internal
abelian group. Two points x, y ∈ ∗X are said to be infinitely close (denoted by
x ∼X y) if for each normal cover λ ∈ NX , x and y are ∗λ-close, i.e., {x, y } ⊆ U
for some U ∈ ∗λ. The normal monad of x ∈ ∗X is the set

µnX (x) := { y ∈ ∗X | x ∼X y } =
⋂

λ∈NX

St (x, ∗λ) ,
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where St (−) denotes the star-neighbourhood. For each x ∈ X, the normal monad of
x is equal to the monad of x [7, Lemma 6-(2)], while the normal monad makes sense
for x ∈ ∗X \X. We say that a member (a0, . . . , ap) of ∗Xp+1 is a p-microsimplex
if { a0, . . . , ap } ⊆ µnX (x) holds for some x ∈ ∗X, or equivalently, if ai ∼X aj for
all 0 ≤ i, j ≤ p. The rest of the definition is the same as McCord’s one. We denote
by CK• the Korppi microchain complex functor and by HK

• the Korppi homology
functor.

Remark 2.6. Let (X,A) be a standard completely regular pair. It is possible
that x ∼X y but x �A y for some x, y ∈ ∗A (see [7, Remark 8]). The short exact
sequence

0 // CK• (A;G) // CK• (X;G) // CK• (X,A;G) // 0

may not split. We say that A is normally embedded in X if for every normal cover
µ of A, there exists a normal cover λ of X such that {U ∩A | U ∈ λ } refines µ. If
A is normally embedded in X, then ∼A agrees with ∼X on ∗A [7, Lemma 9], and
the above sequence splits.

Finally, we recall the definition of µ-homology [3]. µ-homology is a homology
theory on Unif2 (or, more precisely, on Unif2 ∩ U). The definition of µ-homology
is similar to that of Korppi homology. Let X be a standard uniform space and
G an internal abelian group. Two points x, y ∈ ∗X are said to be infinitely close
(denoted by x ≈X y) if for each uniform cover λ ∈ UX , x and y are ∗λ-close, or
equivalently, if x ∗U y holds for any entourage U ∈ EX . The uniform monad of
x ∈ ∗X is the set

µuX (x) := { y ∈ ∗X | x ≈X y }

=
⋂
λ∈UX

St (x, ∗λ)

=
⋂

U∈EX

∗U [x] ,

where U [x] := { y ∈ X | (x, y) ∈ U }. (We will also use the notation U [A] :=
{ y ∈ X | ∃x ∈ A. (x, y) ∈ U } throughout.) The uniform monad of x coincides with
the monad of x for x ∈ X. We say that a member (a0, . . . , ap) of ∗Xp+1 is a
p-microsimplex if { a0, . . . , ap } ⊆ µuX (x) holds for some x ∈ ∗X, or equivalently, if
ai ≈X aj for all 0 ≤ i, j ≤ p. The rest of the definition is the same as McCord’s
and Korppi’s. We denote by Cµ• the µ-microchain complex functor and by Hµ

• the
µ-homology functor.

Remark 2.7. In contrast to the previous case (Remark 2.6), ≈A agrees with ≈X
on ∗A for each standard uniform pair (X,A). Hence the short exact sequence

0 // Cµ• (A;G) // Cµ• (X;G) // Cµ• (X,A;G) // 0

always splits (see [3, Proposition 2]).
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The excision property of µ-homology is not proved in the preceding paper [3],
whilst a weak form of the excision is (see [3, Proposition 3]). In the rest of this
section, we prove the full excision property of µ-homology.

Definition 2.8. Let X be a uniform space. Let A and B be subsets of X. We say
that A is strongly contained in B (and we write A b B) if St (A, λ) ⊆ B for some
λ ∈ UX .

Lemma 2.9. Let X be a standard uniform space. Let A and B be subsets of X.
Then A b B if and only if µuX (∗A) ⊆ ∗B, where µuX (∗A) :=

⋃
a∈∗A µ

u
X (a).

Proof. Suppose that µuX (∗A) ⊆ ∗B. By weak saturation, we can find an λ ∈ ∗UX
such that λ refines ∗ν for all ν ∈ UX . Then St (∗A, λ) ⊆ µuX (∗A) ⊆ ∗B. By transfer,
we see that A b B. Conversely, suppose A b B. Let λ ∈ UX be with St (A, λ) ⊆ B.
Then, by transfer, we have that µuX (∗A) ⊆ ∗(St (A, λ)) ⊆ ∗B. �

Proposition 2.10. Let X be a standard uniform space. Let A and B be subsets of
X. If X \A b B (or X \B b A), then the inclusion map i : (A,A ∩B) ↪→ (X,B)
induces an isomorphism Hµ

• (i;G) : Hµ
• (A,A ∩B;G) ∼= Hµ

• (X,B;G).

Proof. The proof is a slight modification of the proof of [3, Proposition 3]. It
suffices to show that the following two inclusions hold:

(1) Cµp (A;G) ∩ Cµp (B;G) ⊆ Cµp (A ∩B;G),
(2) Cµp (X;G) ⊆ Cµp (A;G) + Cµp (B;G).

The first inclusion is trivial. We only need to prove that each microsimplex σ of X
is contained in either ∗A or ∗B. Suppose that σ is not contained in ∗A. Therefore,
σ intersects ∗(X \A). All the vertices of σ are in µuX

(∗(X \A)
)
. By Lemma 2.9,

σ is contained in ∗B.
�

Corollary 2.11. Let X be a standard uniform space. Let A and U be subsets
of X. If U b A, then the inclusion map i : (X \ U,A \ U) ↪→ (X,A) induces an
isomorphism Hµ

• (i;G) : Hµ
• (X \ U,A \ U ;G) ∼= Hµ

• (X,A;G).

Proof. By applying Proposition 2.10 to the triad (X,X \ U,A), we obtain the
desired result. �

3. Relationship among the microsimplicial homology theories

In the first half of this section, we discuss the relationship among the micro-
simplicial homology theories. In Subsection 3.1, we prove the equality of McCord
homology and µ-homology on the category of compact topological spaces. In Sub-
section 3.2, we prove the equality of Korppi homology and µ-homology on the
category of fine uniform spaces. µ-homology inherits many properties from Korppi
homology. In the rest of this section, we present two examples of such properties, the
embeddability of the Vietoris-type homology (Subsection 3.3) and the continuity
with respect to resolutions (Subsection 3.4).



VIETORIS-TYPE AND MICROSIMPLICIAL HOMOLOGY THEORIES 139

3.1. McCord homology and µ-homology. In [3], the author stated (without
detailed proof) that µ-homology and McCord homology are completely the same
for all compact uniform spaces. Here we give a detailed proof.

Let U : Unif → CR be the forgetful (topologisation) functor, where Unif is the
category of uniform spaces, and CR is the category of completely regular spaces.

Lemma 3.1. Let G be an internal abelian group. Let X be a standard uniform space.
Then CM• (UX;G) ⊆ Cµ• (X;G). If X is compact, Cµ• (X;G) ⊆ CM• (UX;G).

Proof. Let (a0, . . . , ap) ∈
∗
Xp+1 be a McCord microsimplex. Choose an x ∈ X

such that { a0, . . . , ap } ⊆ µUX (x). Since µUX (x) = µuX (x), (a0, . . . , ap) is a
µ-microsimplex. It follows that CM• (UX;G) ⊆ Cµ• (X;G).

Assume that X is compact. Let (a0, . . . , ap) ∈
∗
Xp+1 be a µ-microsimplex. By

the nonstandard characterisation of compactness [10, Theorem 4.1.13], there exists
an x ∈ X such that a0 ∈ µUX (x) = µuX (x). Since ai ≈X a0 ≈X x, it follows that
ai ∈ µUX (x) for all 0 ≤ i ≤ p. Therefore, (a0, . . . , ap) is a McCord microsimplex.
Hence Cµ• (X;G) ⊆ CM• (UX;G). �

Proposition 3.2. Let G be an internal abelian group. Let (X,A) be a standard
compact uniform pair. Then, we have that CM• (UX,A;G) = Cµ• (X,A;G) and
HM
• (UX,A;G) = Hµ

• (X,A;G).

This equality does not hold for some non-compact uniform spaces (see [3,
Example 18]).

3.2. Korppi homology and µ-homology. Let F : CR → Unif be the left
adjoint functor of U : Unif → CR. More specifically, given a completely regular
space X, FX is the uniform space whose underlying set is the same as X and
whose uniformity is the finest uniformity compatible with the topology of X.

Lemma 3.3. Let X be a standard completely regular space. For any x, y ∈ ∗X,
x ∼X y if and only if x ≈FX y. Hence µnX = µuFX .

Proof. Immediately from the fact that every uniform (open) cover of FX is a
normal cover of X, and vice versa (see [4, Theorem 20]). �

The definition of µ-homology is very similar to that of Korppi homology. Recall
that the only difference lies in the definition of the term ‘infinitely close to’. The
following equivalence is now obvious.

Proposition 3.4. Let G be an internal abelian group. Let (X,A) be a standard
completely regular pair such that A is normally embedded in X. Then, we have
that CK• (X,A;G) = Cµ• (FX,A;G) and HK

• (X,A;G) = Hµ
• (FX,A;G).

Corollary 3.5 ([7, Remark 46]). Let G be an internal abelian group. Let (X,A)
be a standard compact completely regular pair. Then, we have that CK• (X,A;G) =
CM• (X,A;G) and HK

• (X,A;G) = HM
• (X,A;G).

Because of Proposition 3.4, µ-homology is a generalisation of Korppi homology
from fine uniform spaces to general uniform spaces. µ-homology inherits many
properties from Korppi homology (see the next two subsections).
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Remark 3.6. The equality between Korppi and µ-homology does not hold for
some non-fine uniform spaces (e.g. the real line without the origin equipped with the
usual uniformity). In addition, the equality between McCord and Korppi homology
does not hold for some non-compact completely regular spaces. The topologist’s sine
curve and the deleted comb space (Figure 3.1 on page 140) give counterexamples.

(0, 0)

(a) The topologist’s sine curve

(0, 0)

(0, 1)

(b) The deleted comb space

Fig. 3.1:

3.3. Natural embeddings of Vietoris-type into microsimplicial homology.
Korppi proved that Vietoris homology with standard coefficients can be embedded
into Korppi homology with nonstandard coefficients for all paracompact spaces [7,
Theorem 76]. Actually, Korppi homology is better related with normal Vietoris
homology than with Vietoris homology. For example, normal Vietoris homology
can be embedded into Korppi homology without any extra condition.

Theorem 3.7. Let G be a standard abelian group. Let (X,A) be a standard
completely regular pair such that A is normally embedded in X. Then there exists
a monomorphism Ȟn

• (X,A;G)→ HK
• (X,A; ∗G) natural in (X,A).

Proof. Let C• denote the ordinary chain complex functor of simplicial pairs. For
each λ ∈ NX , let iλ : H• (Xλ, Aλ;G) → ∗(H• (Xλ, Aλ;G)) be the elementary em-
bedding. These maps induce a limiting map
iX,A := limλ∈NX iλ : limλ∈NX H• (Xλ, Aλ;G) → limλ∈NX

∗(H• (Xλ, Aλ;G)). It
is easy to see that iX,A is a monomorphism natural in (X,A). The domain
limλ∈NX H• (Xλ, Aλ;G) is precisely the same as Ȟn

• (X,A;G). By [7, Theorem
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48], the codomain is
lim
λ∈NX

∗(H• (Xλ, Aλ;G)) = lim
λ∈NX

∗(H• (C• (Xλ, Aλ;G)))

= H• lim
λ∈NX

∗(C• (Xλ, Aλ;G))

= H•
⋂

λ∈NX

∗(C• (Xλ, Aλ;G))

= H•C
K
• (X,A; ∗G)

= HK
• (X,A; ∗G) .

Hence iX,A is a desired natural monomorphism Ȟn
• (X,A;G)→ HK

• (X,A; ∗G). �
One can prove the following uniform analogue in the same way.

Theorem 3.8. Let G be a standard abelian group. Let (X,A) be a standard uniform
pair. Then there exists a monomorphism Ȟu

• (X,A;G) → Hµ
• (X,A; ∗G) natural

in (X,A).
3.4. Continuity of µ-homology with respect to uniform resolutions. Korp-
pi homology is continuous with respect to resolutions ([7, Theorem 71]). Analogously,
µ-homology is continuous with respect to uniform resolutions.
Definition 3.9. Let X := (I,Xi, πij) be an inverse system of uniform spaces and
let π : X → X be a cone over X. Then X (together with π) is called a uniform
resolution of X if the following conditions hold:

(UR1): for each λ ∈ UX there exist an i ∈ I and a µ ∈ UXi such that π−1
i µ

refines λ;
(UR2): for each i ∈ I and each λ ∈ UXi there exists an j ∈ I such that
πij (Xj) ⊆ St (πi (X) , λ).

Let (X,A) := (I,Xi, Ai, πij) be an inverse system of uniform pairs and let
π : (X,A) → (X,A) be a cone over (X,A). Then (X,A) is called a uniform
resolution of (X,A) if (I,Xi, πij) and (I,Ai, πij) are uniform resolutions of X and
A, respectively.
Theorem 3.10. Let (X,A) := (I,Xi, Ai, πij) be a standard inverse system of
uniform pairs. Let π : (X,A)→ (X,A) be a standard cone over (X,A). If (X,A)
is a uniform resolution of (X,A), then π induces an isomorphism Hµ

• (X,A;G) ∼=
limi∈I H

µ
• (Xi, Ai;G).

The proof is completely analogous to Korppi’s. For example, we should replace
[7, Lemma 60] and [7, Lemma 61] with the following two lemmas.
Definition 3.11. Let X := (I,Xi, πij) be a standard inverse system of uniform
spaces. We denote J := { j ∈ ∗I | i ≤ j for all i ∈ I }. Note that J is nonempty by
weak saturation. For x, y ∈ ∗Xj (j ∈ J), we write x ≈X y if ∗πij (x) ≈Xi ∗πij (y)
holds for any i ∈ I.
Lemma 3.12. Let X := (I,Xi, πij) be a standard inverse system of uniform
spaces and let π : X →X be a standard cone over X. The following are equivalent:
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(1) (UR1);

(2) for any x, y ∈ ∗X, x ≈X y if and only if ∗πi (x) ≈Xi ∗πi (y) for all i ∈ I;

(3) for any x, y ∈ ∗X, x ≈X y if and only if ∗πj (x) ≈X
∗πj (y) for all j ∈ J ;

(4) for any x, y ∈ ∗X, x ≈X y if and only if ∗πj (x) ≈X
∗πj (y) for some

j ∈ J .

Proof.

(1)⇒ (2): Suppose that x 6≈X y. We can find a λ ∈ UX such that x and
y are not ∗λ-near. There exist an i ∈ I and a µ ∈ UXi such that π−1

i µ

refines λ. x and y are not ∗
(
π−1
i µ

)
-near. Therefore ∗πi (x) and ∗πi (y) are

not ∗µ-near. Hence ∗πi (x) 6≈Xi ∗πi (y). The reverse direction immediately
follows from the uniform continuity of πi.

(2)⇒ (1): Suppose, on the contrary, that there exists a λ ∈ UX such that for
any i ∈ I and any uniform cover µ ∈ UXi , π−1

i µ does not refine λ. Let λ′
be a uniform star-refinement of λ.

Let i ∈ I and µ ∈ UXi . Since π−1
i µ does not refine λ, there exists a

V ∈ π−1
i µ such that V is not contained in any member of λ. Clearly

V 6= ∅. Choose an xi,µ ∈ V . We have that V * St (xi,µ, λ′). Choose a
yi,µ ∈ V \ St (xi,µ, λ′). Then, xi,µ and yi,µ are π−1

i µ-near but not λ′-near.

Now, let P be a finite set of all pairs (i, µ) such that i ∈ I and µ ∈ UXi .
Fix an upper bound i′ ∈ I of all i with (i, µ) ∈ P , and a common refinement
µ′ of all π−1

ii′ µ with (i, µ) ∈ P . We can find xP , yP ∈ X such that xP
and yP are π−1

i′ µ
′-near but not λ′-near. xP and yP are π−1

i µ-near for all
(i, µ) ∈ P . By weak saturation, there exist x, y ∈ ∗X such that x and
y are ∗

(
π−1
i µ

)
-near for all i ∈ I and µ ∈ UXi but not ∗λ′-near. Hence

∗πi (x) ≈Xi ∗πi (y) but x 6≈X y.

(2)⇒ (3): Suppose x ≈X y. Let j ∈ J . Since πi is uniformly continuous, we
have that ∗πij

(∗πj (x)
)

= ∗πi (x) ≈Xi ∗πi (y) = ∗πij
(∗πj (y)

)
for all i ∈ I.

Hence ∗πj (x) ≈X
∗πj (y). Next, suppose that ∗πj (x) ≈X

∗πj (y) for all
j ∈ J . Fix a j0 ∈ J . By the definition of ≈X , for any i ∈ I we have that

∗πi (x) = ∗πij0

(∗πj0 (x)
)

≈Xi ∗πij0

(∗πj0 (y)
)

= ∗πi (y) .

By (2) we have x ≈X y.
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(3)⇒ (4): Suppose that ∗πj0 (x) ≈X
∗πj0 (y) for some j0 ∈ J . Let j ∈ J . For

any i ∈ I we have that
∗πij

(∗πj (x)
)

= ∗πi (x)
= ∗πij0

(∗πj0 (x)
)

≈Xi ∗πij0

(∗πj0 (y)
)

= ∗πi (y)
= ∗πij

(∗πj (y)
)
.

Hence ∗πj (x) ≈X
∗πj (y). By (3) we have x ≈X y. The reverse direction

is trivial.
(4)⇒ (2): Suppose that ∗πi (x) ≈Xi ∗πi (y) for all i ∈ I. Fix a j0 ∈ J . We

have that ∗πj0i

(∗πj0 (x)
)

= ∗πi (x) ≈Xi ∗πi (y) = ∗πj0i

(∗πj0 (y)
)

for all
i ∈ I. Hence ∗πj0 (x) ≈X

∗πj0 (y). By (4) we have x ≈X y. The reverse
direction immediately follows from the uniform continuity of πi. �

Lemma 3.13. Let X := (I,Xi, πij) be a standard inverse system of uniform
spaces and let π : X →X be a standard cone over X. The following are equivalent:

(1) (UR2);
(2) for any j ∈ J and any i ∈ I, every x ∈ ∗πij

(∗Xj

)
is ≈Xi-near to some

x′ ∈ ∗πi (∗X);
(3) for some j ∈ J and any i ∈ I, every x ∈ ∗πij

(∗Xj

)
is ≈Xi-near to some

x′ ∈ ∗πi (∗X);
(4) for any j ∈ J , every x ∈ ∗Xj is ≈X-near to some x′ ∈ ∗πj (∗X);
(5) for some j ∈ J , every x ∈ ∗Xj is ≈X-near to some x′ ∈ ∗πj (∗X).

Proof. (2)⇒ (3) and (4)⇒ (5) are trivial.
(1)⇒ (2): Let j ∈ J , i ∈ I and x ∈ ∗πji

(∗Xj

)
. Let P be a finite subset of

UXi . Let λ′ be a common refinement of the members of P . Choose an i′ ≥ i
such that πii′ (Xi′) ⊆ St (πi (X) , λ′). Since ∗πij

(∗Xj

)
⊆ ∗(πii′ (Xi′)) ⊆

∗(St (πi (X) , λ′)), x is ∗λ′-near to some xP ∈ ∗πi (∗X). Such an xP is
∗λ-near to x for all λ ∈ P . By saturation, there exists an x′ ∈ ∗πi (∗X)
such that x and x′ are ∗λ-near for all λ ∈ UXi , i.e., x ≈Xi x′.

(2)⇒ (4) and (3)⇒ (5): Let j ∈ J . Suppose that for any i ∈ I every x ∈
∗πij

(∗Xj

)
is ≈Xi -near to some x′ ∈ ∗πi (∗X). Let x ∈ ∗Xj . Given a finite

set P of all pairs (i, λ) such that i ∈ I and λ ∈ UXi , choose an upper bound
i′ ∈ I of all i with (i, λ) ∈ P and a common refinement λ′ of all π−1

ii′ λ
with (i, λ) ∈ P . Since ∗πi′j (x) is ∗λ′-near to some points in ∗πi′ (∗X), x is
∗
π−1
i′j

(∗
λ′
)
-near to some xP ∈ ∗πj (∗X). Such an xP is ∗π−1

ij (∗λ)-near to x
for all (i, λ) ∈ P . By saturation, there exists an x′ ∈ ∗πj (∗X) such that x
and x′ are ∗πij−1 (∗λ)-near for all λ ∈ UXi and i ∈ I, i.e., x ≈X x′.

(5)⇒ (1): Suppose that (1) does not hold, i.e., there exist an i ∈ I and a
λ ∈ UXi such that πii′ (Xi′) * St (πi (X) , λ) for all i′ ∈ I. For each i′ ≥ i
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choose an xi′ ∈ Xi′ such that πii′ (xi′) /∈ St (πi (X) , λ). Let j ∈ J . By
transfer, we have that ∗xj ∈ ∗Xj and ∗πij

(∗xj) /∈ ∗(St (πi (X) , λ)). It
follows that ∗xj is not ≈X -near to any x′ ∈ ∗πj (∗X). �

Observe that the modified lemmas and their proofs are completely similar to
the original ones. The remaining part of [7, Chapter 10, 11, 13] can be transferred
as well. Thus we obtain the proof of Theorem 3.10.

4. Relationship between the Vietoris-type and microsimplicial
homology theories

In this section, we show that the microsimplicial homology theories are isomorphic
to the Vietoris-type homology theories under certain compactness conditions.

4.1. The compact case. Garavaglia [2] showed that McCord homology is isomor-
phic to Vietoris homology for all standard compact spaces. Using this result, we
can prove the following.

Proposition 4.1. Let G be a standard abelian group. Let (X,A) be a standard
compact uniform pair. Then, Hµ

• (X,A; ∗G) ∼= Ȟu
• (X,A; ∗G).

Proof. We know that Hµ
• (X,A; ∗G) = HM

• (UX,A; ∗G). By [6, Theorem 9],
HM
• (UX,A; ∗G) ∼= Ȟ• (UX,A; ∗G). By Lebesgue’s number lemma, Ȟ• (UX,A; ∗G)
∼= Ȟu

• (X,A; ∗G).
Combining these isomorphisms gives Hµ

• (X,A; ∗G) ∼= Ȟu
• (X,A; ∗G). �

Corollary 4.2. Let G be a standard abelian group. Let (X,A) be a standard
compact completely regular pair. Then, HK

• (X,A; ∗G) ∼= Ȟn
• (X,A; ∗G).

This proof depends on the fact that uniform Vietoris homology is isomorphic
to Vietoris homology for all compact uniform spaces. In the non-compact case,
uniform Vietoris homology may not be isomorphic to Vietoris homology. For
instance, consider the quotient space Q/Z. Since Q/Z has disjoint open covers as
fine as one likes, the 1-st Vietoris homology of Q/Z vanishes. On the other hand,
Q/Z and R/Z have the same uniform Vietoris homology. In particular, the 1-st
uniform Vietoris homology of Q/Z is isomorphic to G, and hence does not vanish
(except for the trivial case G = 0). We note that Q/Z is a dense subspace of R/Z.

4.2. Nonstandard continuity and homotopy.

Definition 4.3. Let X and Y be standard uniform spaces. A map f : ∗X → ∗Y
is said to be S-continuous at x ∈ ∗X if f (µuX (x)) ⊆ µuY (f (x)), or equivalently, if
x ≈X y implies f (x) ≈Y f (y) for all y ∈ ∗X.

It is clear that the collection of standard uniform pairs and internal S-continuous
maps forms a category Unif2,S . The category Unif2 can be regarded as a subca-
tegory of Unif2,S under the identification of standard uniformly continuous maps
f : (X,A) → (Y,B) with their nonstandard extensions ∗f : ∗(X,A) → ∗(Y,B).
Consider the singular homotopy equivalence within Unif2,S defined as follows.
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Definition 4.4. Let (X,A) and (Y,B) be standard uniform pairs. We say that
two internal S-continuous maps f, g : ∗(X,A)→ ∗(Y,B) are S-homotopic if there
exists an internal S-continuous homotopy h : ∗(X,A)× ∗[0, 1]→ ∗(Y,B) between
f and g.

The S-continuous maps are precisely the maps that send microsimplices to
microsimplices. Hence every internal S-continuous map f : ∗(X,A) → ∗(Y,B)
functorially induces homomorphisms Cµ• (f ;G) : Cµ• (X,A;G)→ Cµ• (Y,B;G) and
hence Hµ

• (f ;G) : Hµ
• (X,A;G)→ Hµ

• (Y,B;G). In this setting, µ-homology satis-
fies the S-homotopy axiom.

Theorem 4.5 ([3, Theorem 11]). Let G be an internal abelian group. Let (X,A) and
(Y,B) be standard uniform pairs. If two internal S-continuous maps f, g : ∗(X,A)→
∗(Y,B) are S-homotopic, then Cµ• (f ;G) and Cµ• (g;G) are chain-homotopic. Hence
Hµ
• (f ;G) = Hµ

• (g;G).

Next, we consider the relationship between uniform Vietoris homology and
S-homotopy equivalence.

Definition 4.6. Let X and Y be uniform spaces. Let V be an entourage of Y . We
say that a map f : X → Y is V -continuous at x ∈ X if there is an entourage U
of X such that f (U [x]) ⊆ V [f (x)]. We say that f is uniformly V -continuous if
there is an entourage U of X such that f (U [x]) ⊆ V [f (x)] for all x ∈ X.

Lemma 4.7. Let (X,A) and (Y,B) be standard precompact uniform pairs. Let
f : ∗(X,A)→ ∗(Y,B) be an internal S-continuous map. For each entourage V of
Y , there exists a (standard) uniformly V -continuous map fV : (X,A) → (Y,B)
(called a V -preshadow of f) such that ∗fV (x) ∗V f (x) holds for all x ∈ ∗X.

Proof. Let V ∈ EY . Fix a symmetric W ∈ EY such that W 5 ⊆ V , where Wn refers
to the n-fold composition W ◦W ◦ · · · ◦W . By the nonstandard characterisation
of precompactness [11, Theorem 8.4.34], for each x ∈ X, we can choose a y ∈ Y
such that y ∗W f (x). Similarly, for each a ∈ A, we can find a b ∈ B such that
b ∗W f (a). Thus, we can define a (standard) map fV : (X,A) → (Y,B) that
satisfies fV (x) ∗W f (x) on X.

According to the equivalent condition for S-continuity [11, Theorem 8.4.23],
there exists an entourage U of X such that f (∗U [x]) ⊆ ∗W [f (x)] for all x ∈ X.
Let x ∈ X and y ∈ U [x]. Then, since fV (x) ∗W f (x) ∗W f (y) ∗W fV (y),
it follows that fV (x) ∗V fV (y). By transfer, we have fV (x) V fV (y). Hence
fV (U [x]) ⊆ V

[
fV (x)

]
for all x ∈ X. Therefore, fV is uniformly V -continuous.

Let x ∈ ∗X. By [11, Theorem 8.4.34], there exists a ξ ∈ X such that ξ ∗U x.
From the previous paragraph, we have that ∗fV (x) ∗W 3 fV (ξ) by transfer. Since
fV (ξ) ∗W f (ξ) ∗W f (x), we conclude that ∗fV (x) ∗V f (x). �

Remark 4.8. This lemma can be easily refined as follows: let (X,A) and (Y,B)
be standard uniform pairs. Let f : ∗(X,A) → ∗(Y,B) be an internal map such
that f (∗X) ⊆ pns (Y ) and f (∗A) ⊆ pns (B), where pns (−) denotes the set of all
prenearstandard points. If f is S-continuous on X, then for each entourage V of
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Y , there exists a (non-uniformly) V -continuous map fV : (X,A) → (Y,B) such
that fV (x) ∗V f (x) holds for all x ∈ X. Moreover, if f is S-continuous also on
∗X \X, fV can be uniformly V -continuous. Furthermore, if X is precompact, we
can ensure that ∗fV (x) ∗V f (x) holds also for all x ∈ ∗X \X.
Theorem 4.9. Let G be a standard abelian group. Let (X,A) and (Y,B) be
standard precompact uniform pairs. Every internal S-continuous map f : ∗(X,A)→
∗(Y,B) functorially induces a homomorphism Ȟu

• (f ;G) : Ȟu
• (X,A;G)→ Ȟu

•
(Y,B;G).

Proof. For each entourage V , fix a symmetric entourage
√
V with

√
V

2 ⊆
V . By Lemma 4.7, for each entourage V of Y , there exists a

√
V -preshadow

f
√
V : (X,A) → (Y,B). For a sufficiently small entourage U of X, f

√
V is a

simplicial map from (XU , AU ) to (YV , BV ). It induces a homomorphism fV :=
H•

(
f
√
V ;G

)
◦ pU : Ȟu

• (X,A;G)→ H• (YV , BV ;G).
On the other hand, by [11, Theorem 8.4.23], there exists a symmetric entourage

U of X such that f (∗U [x]) ⊆ ∗√
V [f (x)] for all x ∈ ∗X. For simplicity, we

abbreviate f
√
V =

∗
f
√
V . Taking U to be sufficiently small, we may assume that

f
√
V (∗U [x]) ⊆ ∗

√
V
[
f
√
V (x)

]
holds for all x ∈ ∗X. Let us prove that f and f

√
V

are internally contiguous as internal simplicial maps from ∗(XU , AU ) to ∗(YV , BV ).
Let (a0, . . . , ap) be an internal p-simplex of ∗XU (resp. ∗AU ). There exists an
x ∈ ∗X such that ak ∗U x for all 0 ≤ k ≤ p. Since f (ak) ∗

√
V f (x) ∗

√
V

f
√
V (x), we have f (ak) ∗V f

√
V (x). Moreover f

√
V (ak) ∗V f

√
V (x) holds. Hence(

f (a0) , . . . , f (ap) , f
√
V (a0) , . . . , f

√
V (ap)

)
is an internal (2p+ 1)-simplex of ∗YV

(resp. ∗BV ).
Now, we will prove that the following diagram commutes for all V ⊇W :

Ȟu
• (X,A;G)

fV

vvmmmmmmmmmmmm
fW

((QQQQQQQQQQQQ

H• (YV , BV ;G) pWV // H• (YW , BW ;G)

As we proved above, f and f
√
V are internally contiguous, and so are f and f

√
W .

It follows that
∗(
H•

(
f
√
W ;G

))
= (∗H•) (f ; ∗G) =

∗(
pWV ◦H•

(
f
√
V ;G

))
. By

transfer, we have that H•
(
f
√
W ;G

)
= pWV ◦ H•

(
f
√
V ;G

)
, and hence fW =

pWV ◦ fV . By the universal property of Ȟu
• (Y,B;G), we obtain a homomorphism

Ȟu
• (f ;G) : Ȟu

• (X,A;G) → Ȟu
• (Y,B;G). We can also show that Ȟu

• (f ;G) is
independent of the choice of preshadows.

Suppose that f : ∗(X,A) → ∗(Y,B) and g : ∗(Y,B) → ∗(Z,C) are internal
S-continuous maps, where (X,A), (Y,B) and (Z,C) are standard precompact
uniform pairs. Let V be an entourage of Z. Let g

√
V be a

√
V -preshadow of g.

There is an entourage U of Y such that g
√
V (U [x]) ⊆

√
V
[
g
√
V (x)

]
. Let f

√
U be
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a
√
U -preshadow of f . Then, g

√
V ◦ f

√
U is a

√
V -preshadow of g ◦ f . There is an

entourage W of X such that f
√
U (W [x]) ⊆

√
U
[
f
√
U (x)

]
and g

√
V ◦f

√
U (W [x]) ⊆

√
V
[
g
√
V ◦ f

√
U (x)

]
for all x ∈ X. The following diagram is commutative:

Ȟu
• (X,A;G)

��

Ȟu• (f ;G) //

Ȟu• (g;G)◦Ȟu• (f ;G)

##
Ȟu
• (Y,B;G)

��

Ȟu• (g;G) // Ȟu
• (Z,C;G)

��
H• (XW , AW ;G)

H•
(
f
√
U ;G
)

//

H•
(
g
√
V ◦f

√
U ;G
)

<<
H• (YU , BU ;G)

H•
(
g
√
V ;G
)

// H• (ZV , CV ;G)

We have that Ȟu
• (g ◦ f ;G) = Ȟu

• (g;G) ◦ Ȟu
• (f ;G). �

Theorem 4.10. Let G be a standard abelian group. Let (X,A) and (Y,B) be stan-
dard precompact uniform pairs. If two internal S-continuous maps f, g : ∗(X,A)→
∗(Y,B) are S-homotopic, then Ȟu

• (f ;G) = Ȟu
• (g;G).

Proof. Let h : ∗(X,A)× ∗[0, 1]→ ∗(Y,B) be an internal S-homotopy between f
and g. Fix an infinite N ∈ ∗N. Define hi := h (·, i/N) for i = 0, 1, . . . , N . Let V
be an entourage of Y . Let

√
V be a symmetric entourage of Y with

√
V

2 ⊆ V .
By [11, Theorem 8.4.23], there exists a symmetric entourage U of X such that
hi (∗U [x]) ⊆ ∗

√
V [hi (x)] for all x ∈ ∗X and 0 ≤ i ≤ N .

All his are internal simplicial maps from ∗(XU , AU ) to ∗(YV , BV ). Let us prove
that hi and hi+1 are internally contiguous for all 0 ≤ i < N . Let (a0, . . . , ap) be a
p-simplex of ∗XU (resp. ∗AU ). There exists an x ∈ ∗X with (ak, x) ∈ ∗U for all 0 ≤
k ≤ n. Since hi (ak) ∗

√
V hi (x) ∗

√
V hi+1 (x), we have hi (ak) ∗V hi+1 (x). Moreo-

ver hi+1 (ak) ∗V hi+1 (x) holds. Hence (hi (a0) , . . . , hi (ap) , hi+1 (a0) , . . . , hi+1 (ap))
is a (2p+ 1)-simplex of ∗YV (resp. ∗BV ). It follows that (∗H•) (f ; ∗G) = (∗H•) (g; ∗G)
and ∗fV = ∗gV . By transfer, we have fV = gV and therefore Ȟu

• (f ;G) =
Ȟu
• (g;G). �

Theorem 4.11 ([3, Theorem 12]). Let (X,A) be a standard uniform pair and
let (Y,B) be a subpair of (X,A). Suppose that Y and B are dense in X and A,
respectively. Then there exists an internal S-deformation retraction r : ∗(X,A)→
∗(Y,B).

Combining with the S-homotopy axiom (Theorem 4.5 and Theorem 4.10), we
obtain the following two results.
Corollary 4.12. Let G be an internal abelian group. Let (X,A) be a standard
uniform pair and let (Y,B) be a subpair of (X,A). Suppose that Y and B are dense
in X and A, respectively. Then the inclusion map i : (Y,B) ↪→ (X,A) induces an
isomorphism Hµ

• (i;G) : Hµ
• (Y,B;G) ∼= Hµ

• (X,A;G).
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Corollary 4.13. Let G be an abelian group. Let (X,A) be a precompact uniform
pair and let (Y,B) be a subpair of (X,A). Suppose that Y and B are dense in
X and A, respectively. Then the inclusion map i : (Y,B) ↪→ (X,A) induces an
isomorphism Ȟu

• (i;G) : Ȟu
• (Y,B;G) ∼= Ȟu

• (X,A;G).

Notice that the latter generalises the fact that Q/Z and R/Z have the same
uniform Vietoris homology.

4.3. The precompact case. Based on these preparations, we now prove the main
results in this section.

Theorem 4.14. Let G be a standard abelian group. Let (X,A) be a standard
precompact uniform pair. Then, Hµ

• (X,A; ∗G) ∼= Ȟu
• (X,A; ∗G).

Proof. Let X̄ be a (standard) uniform completion of X. Let Ā be the clo-
sure of A in X̄. Since X is precompact, X̄ is compact, and so is Ā. By Corol-
lary 4.12, Hµ

• (X,A; ∗G) ∼= Hµ
•
(
X̄, Ā; ∗G

)
. By Proposition 4.1, Hµ

•
(
X̄, Ā; ∗G

) ∼=
Ȟu
•
(
X̄, Ā; ∗G

)
. Finally, by Corollary 4.13, Ȟu

•
(
X̄, Ā; ∗G

) ∼= Ȟu
• (X,A; ∗G). The

proof is completed. �

Corollary 4.15. Let G be a standard abelian group. Let (X,A) be a standard
pseudocompact completely regular pair such that A is normally embedded in X.
Then, HK

• (X,A; ∗G) ∼= Ȟn
• (X,A; ∗G).

Proof. By Proposition 3.4, we have that HK (X,A; ∗G) = Hµ
• (FX,A; ∗G). Since

X is pseudocompact, FX is precompact. Hence Hµ
• (FX,A; ∗G) ∼= Ȟu

• (FX,A; ∗G).
By [4, Theorem 20], we have that Ȟu

• (FX,A; ∗G) ∼= Ȟn
• (X,A; ∗G). �

4.4. Counterexample in the general case. The above-mentioned isomorphisms
do not hold in general. The cause is that the elementary embedding U ↪→ ∗U does
not preserve infinitary operations such as infinite direct sums.

Proposition 4.16. There exist a standard uniform space X and a standard abelian
group G such that Hµ

• (X; ∗G) 6∼= Ȟu
• (X; ∗G).

Proof. Let X be the discrete uniform space N. Let G be any (standard) nontrivial
finite abelian group. Then, by transfer, ∗G = G. It is easy to see that Ȟu

0 (X;G) ∼=
G⊕N. The cardinality of Ȟu

0 (X;G) is ℵ0. On the other hand, we have Hµ
0 (X;G) ∼=

∗(
G⊕N). By weak saturation, each element of GN can be extended to an element

of ∗
(
G⊕N). Since the cardinality of GN is 2ℵ0 , the cardinality of Hµ

0 (X;G) must
be at least 2ℵ0 . Hence Ȟu

0 (X;G) and Hµ
0 (X;G) cannot be isomorphic. �

Corollary 4.17. There exist a standard completely regular space X and a standard
abelian group G such that HK

• (X; ∗G) 6∼= Ȟn
• (X; ∗G).

Proof. Let X and G be the same as in Proposition 4.16. Since X is fine, we have
that HK

• (UX;G) = Hµ
• (X;G) 6∼= Ȟu

• (X;G) = Ȟn
• (UX;G). �
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5. Homology of nonstandard subsets

Let X be a standard uniform space. We call a (possibly external) subset A of
∗X a uniform E-set, and denote the whole space X by Amb (A). The notion of
uniform E-set is the uniform analogue of E-set (see Wattenberg [12]). We say that a
map f : A→ B between uniform E-sets is an S-map if f has an internal extension
F : ∗Amb (A)→ ∗Amb (B) that is S-continuous on A. The collection of uniform
E-sets and S-maps forms a category uES . We denote by uE2,S the category of
pairs of uniform E-sets with S-maps.
µ-homology can be extended to uES (and to uE2,S) as follows. First, define the

microchain complex of A ∈ uES by

Cµp (A;G) :=
{∑

i

giσi ∈ Cµp (Amb (A) ;G) | σi ⊆ A for all i
}
,

where Cµp (Amb (A)) in the right hand side is defined as in Section 2. Given an
S-map f : A→ B, choose an internal extension F : ∗Amb (A)→ ∗Amb (B) that is
S-continuous on A, and define a homomorphism Cµ• (f ;G) : Cµ• (A;G)→ Cµ• (B;G)
by letting

Cµp (f ;G) (a0, . . . , ap) := (∗F (a0) , . . . , ∗F (ap)) .

It is independent of the choice of F . Obviously Cµ• is a functor on uES . Finally,
let Hµ

• (·;G) := H•C
µ
• (·;G).

We can show (in the same way as in [3]) that the extended µ-homology satisfies
the homotopy, exactness, excision, dimension and finite additivity axioms. The
excision axiom is formulated as follows.

Definition 5.1. Let X be a uniform E-set. Let A and B be subsets of X. We say
that A is strongly contained in B (and we write A b B) if µuAmb(X) (A) ∩X ⊆ B.

Proposition 5.2. Let X be a uniform E-set. Let A,B be subsets of X such that
either of them is internal. If X \A b B (or X \B b A), then the inclusion map
i : (A,A ∩B) ↪→ (X,B) induces an isomorphism Hµ

• (i;G) : Hµ
• (A,A ∩B;G) ∼=

Hµ
• (X,B;G).

Proof. Similarly to Proposition 2.10, we can prove that each microsimplex of X is
contained in either A or B. Given u :=

∑
i giσi ∈ Cµp (X;G), if A is internal, then

u can be decomposed into
∑
σi⊆A giσi ∈ C

µ
p (A;G) and

∑
σi*A giσi ∈ C

µ
p (B;G).

If B is internal, then u can be decomposed into
∑
σi⊆B giσi ∈ Cµp (B;G) and∑

σi*B giσi ∈ C
µ
p (A;G). �

Remark 5.3. The internality condition of the excision axiom cannot be omitted.
Otherwise, the excision axiom causes a contradiction as follows. Let G be any
standard nontrivial finite abelian group. (Note that G = ∗G by transfer.) By
applying the Mayer-Vietoris theorem to the triad (∗R;µR (0) , ∗R \ µR (0)), we
obtain the following exact sequence:

0 // Hµ
0 (µR (0) ;G)⊕Hµ

0 (∗R \ µR (0) ;G) // Hµ
0 (∗R;G) // 0
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It is not difficult to see that Hµ
0 (µR (0) ;G) ∼= G, Hµ

0 (∗R \ µR (0) ;G) ∼= G ⊕ G
and Hµ

0 (∗R;G) ∼= G. However, by exactness G ⊕ G ⊕ G ∼= Hµ
0 (µR (0) ;G) ⊕

Hµ
0 (∗R \ µR (0) ;G) ∼= Hµ

0 (∗R;G) ∼= G, which makes a contradiction.

6. Use of the saturation principle

The saturation principle is not necessary to construct the microsimplicial ho-
mology theories. The satisfaction of the Eilenberg-Steenrod axioms can be proved
without the full saturation principle (only using the weak saturation principle, i.e.
the enlargement property of the nonstandard universe). The equivalences among
the microsimplicial homology theories can also be proved without saturation. On
the other hand, the equivalences between the Vietoris-type and microsimplicial
homology theories depend on saturation (see [2, Theorem 4]). The proofs of the
continuities of Korppi and µ-homology also depend on saturation.
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