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KYBERNET IKA — VOLUME 5 7 ( 2 0 2 1 ) , NUMBER 2 , PAGES 3 3 2 – 3 5 1

SOME NOTES ON THE CATEGORY OF FUZZY
IMPLICATIONS ON BOUNDED LATTICES

Amin Yousefi, Mashaallah Mashinchi and Radko Mesiar

In this paper, we introduce the product, coproduct, equalizer and coequalizer notions on
the category of fuzzy implications on a bounded lattice that results in the existence of the
limit, pullback, colimit and pushout. Also isomorphism, monic and epic are introduced in this
category. Then a subcategory of this category, called the skeleton, is studied. Where none of
any two fuzzy implications are Φ-conjugate.

Keywords: fuzzy implication, t-norm, category, skeleton of category

Classification: 03B52, 03E72

1. INTRODUCTION

Fuzzy logic connectives play an important role in the theory of fuzzy sets and fuzzy
logic [11, 20]. Fuzzy implications have an important role both in theory and applications
[2, 3, 6]. For example in approximate reasoning, decision theory, control theory, expert
systems, image processing and so on [13, 17, 21]. On the other hand, in fuzzy logic it
has been very common to use lattice theory to deal with it in a more general setting
[5, 9, 19]. T-norms and R-implications were defined on bounded lattices [20]. On
the other hand the category theory is an abstract structure which plays an important
role in mathematics composed by a collection of objects together with a collection of
morphisms between them [1]. The number of t-norms especially on finite chains has
been studied in many articles [9, 10, 12, 14]. We have discussed the number of t-norms
and R-implications (on a finite bounded lattice L), which is clearly the same, see [19].
This number is growing exponentially and thus the study of all such implications is a
difficult task. This fact has initiated our study of category of fuzzy implications. In this
paper, we define equalizer, coequalizer, product and coproduct on the category FI and
we prove that it has limit, colimit, pullback and pushout. Then, we introduce skeleton
on the category FI on a bounded lattice and we show that none of two fuzzy implications
in the skeleton are Φ-conjugate, where Φ denotes the family of all increasing bijections
homomorphisms. In Section 4 we show that every fuzzy implication is an Ω-algebra and
the category of FI is a full subcategory of Alg(Ω).
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2. PRELIMINARIES

In this section, we present some main concepts that will be used in this work such as
bounded lattice, triangular norms, homomorphism, fuzzy implication, category and so
on. For more details about these concepts see [1–4, 7, 11, 15].

Definition 2.1. (Davey and Priestley [8]) Let L be a non-empty ordered set.

(1) If x ∨ y and x ∧ y exist for each x, y ∈ L, then L is called a lattice.

(2) If
∨
S and

∧
S exist for each S ⊆ L, then L is called a complete lattice.

Lemma 2.2. (Davey and Priestley [8]) Let L be a lattice and x, y ∈ L. Then the
following are equivalent:

(i) x ≤ y;

(ii) x
∨
y = y;

(iii) x
∧
y = x.

Definition 2.3. (Davey and Priestley [8]) Let ∧ and ∨ be two binary operations on
a non-empty set L. Then, the algebraic structure < L,∨,∧ > is a lattice if for each
x, y, z ∈ L, the following properties hold:

(1) x ∧ y = y ∧ x and x ∨ y = y ∨ x,

(2) (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨ (y ∨ z),

(3) x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x.
If there are elements 1 and 0 in L such that, for each x ∈ L, x∧1 = x and x∨0 = x,
then < L,∨,∧, 0, 1 > is called a bounded lattice. Sometimes we write 1L and 0L.

Remark 1. (Davey and Priestley [8]) Note that Definitions 2.1 and 2.3 are equivalent.

The followings are examples of bounded lattices,

Examples 2.4. (Davey and Priestley [8])

1. L> =< {1},∨,∧, 1, 1 >, where L = {1}, 1 ∨ 1 = 1 and 1 ∧ 1 = 1.

2. L⊥ =< {0, 1},∨,∧, 0, 1 >, where L = {0, 1}, ∨ and ∧ are as max and min functions
in the Boolean algebra.

3. Mk =< {0, a1, a2, . . . , ak, 1},∨,∧, 0, 1 >, where 0 < a1, a2, . . . , ak < 1 and ai∨aj =
1 and ai∧aj = 0, for each i, j = 1, 2, . . . k and i 6= j as depicted diagram in Figure 1.

4. L =< [0, 1],∨,∧, 0, 1 >, where [0, 1] is unit interval in the real numbers R, ∨ and
∧ are as max and min functions in real numbers R.
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1

a1 a2 . . . ak−1 ak

0

Fig. 1. The lattice Mk.

Definition 2.5. (Davey and Priestley [8]) Let L and K be lattices. A map φ : L→ K
is said to be a lattice homomorphism if for each x, y ∈ L,

φ(x ∨ y) = φ(x) ∨ φ(y) and φ(x ∧ y) = φ(x) ∧ φ(y).

Definition 2.6. (Davey and Priestley [8]) Let P and Q be ordered sets. A map ϕ :
P → Q is said to be order-embedding if

x ≤ y in P⇐⇒ ϕ(x) ≤ ϕ(y) in Q.

From now on we assume L is a bounded lattice unless otherwise stated.

Definition 2.7. (Yu et al. [20]) A binary operation T on lattice L is called a t-norm
if for each a, b, c ∈ L the following properties hold:

(1) T (T (a, b), c) = T (a, T (b, c)),

(2) T (a, b) = T (b, a),

(3) if b ≤ c then T (a, b) ≤ T (a, c),

(4) T (a, 1) = a.

Moreover if T satisfies conditions (1− 3) and

(5) T (a, 0) = a, then T is called an s-norm (or t-conorm).

T0 and S0 are t-norm and t-conorm on a lattice L, respectively, where

T0(a, b) =

{
a ∧ b if a = 1 or b = 1

0 otherwise
S0(a, b) =

{
a ∨ b if a = 0 or b = 0

1 otherwise.

Observe that for any t-norm T and t-conorm S on L it holds, T0 ≤ T ≤ ∧ ≤ ∨ ≤
S ≤ S0.

Definition 2.8. (Baczynski et al. [3]) A function IL : L × L → L is called a fuzzy
implication on L if for each x, y, z ∈ L we have that

(1) if x ≤ y then IL(y, z) ≤ IL(x, z),
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(2) if y ≤ z then IL(x, y) ≤ IL(x, z),

(3) IL(0, 0) = 1,

(4) IL(1, 1) = 1,

(5) IL(1, 0) = 0.

The collection of all fuzzy implications on any arbitrary bounded lattice will be denoted
by I.

Definition 2.9. (Baczynski et al. [3]) A fuzzy implication IL on bounded lattice L is
said to satisfy

(i) the left neutrality property (NP) if

IL(1, y) = y, y ∈ L;

(ii) the exchange principle (EP), if

IL(x, IL(y, z)) = IL(y, IL(x, z)), x, y, z ∈ L;

(iii) the identity principle (IP), if

IL(x, x) = x, x ∈ L;

(iv) the ordering property (OP), if

IL(x, y) = 1⇐⇒ x ≤ y, x, y ∈ L;

(v) the left boundary condition (LB), if

IL(0, y) = 1, y ∈ L;

(vi) the right boundary condition (RB), if

IL(x, 1) = 1, x ∈ L;

(vii) the normality condition (NC )

IL(0, 1) = 1.

Note that properties (v), (vi) and (vii) are satisfied for each fuzzy implication IL, inde-
pendently of the lattice L.

Lemma 2.10. (Yu et al. [20]) Let T be a t-norm on a complete lattice L. The function
IT : L × L → L is a fuzzy implication which is called residual implication (in short,
R-implication) generated by the t-norm T, where

IT (x, y) =
∨
{t ∈ L|T (x, t) ≤ y}, x, y ∈ L. (1)
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Definition 2.11. (Baczynski and Jayaram [4]) Let IL and JL′ be fuzzy implications on
bounded lattices L and L′, respectively, and Φ be the family of all increasing bijections
(isomorphisms) from L to L′. Then, IL and JL′ are called Φ-conjugate if there exists
ϕ ∈ Φ such that,

IL(x, y) = ϕ−1(JL′(ϕ(x), ϕ(y))).

Then we denote it as IL = (JL′)ϕ.

For some infinite bounded lattices, there are many ϕ ∈ Φ. For example in [0, 1], we have
xp ∈ Φ for any rational positive power p. [4]

Definition 2.12. (Adámek et al. [1]) A category is a quadruple A = (Obj(A), hom, id, ◦)
consisting of

(1) a class Obj(A), whose members are called A-objects,

(2) for each pair (A,B) of A-objects, a set hom(A,B), whose members are called
A-morphisms from A to B denoted f : A→ B.

(3) for each A-object A, a morphism idA : A→ A, called the A-identity on A,

(4) a composition law associating with each A-morphism f : A → B and each A-
morphism g : B → C an A-morphism g ◦f : A→ C, called the composite of f and
g, subject to the following conditions:

(i) the composition is associative,

(ii) A-identities act as identities with respect to composition,

(ii) the sets hom(A,B) are pairwise disjoint.

Definition 2.13. (Adámek et al. [1]) If A and B are categories, then a functor F from
A to B is a function that assigns to each A-object A a B-object F (A), and to each
A-morphism f : A → A

′
a B-morphism F (f) : F (A) → F (A

′
), such that F preserves

both composition and A-identity morphisms.

Definition 2.14. (Adámek et al. [1]) An object A is called an initial object provided
that for each object of B there is exactly one morphism from A to B.

Definition 2.15. (Adámek et al. [1]) An object of A is called a terminal object pro-
vided that for each object of B there is exactly one morphism from B to A.

Definition 2.16. (Adámek et al. [1]) A category A is said to be a subcategory of a
category B provided that the following conditions are satisfied:

(1) Ob(A) ⊆ Ob(B),

(2) for each A,A′ ∈ Ob(A), homA(A,A′) ⊆ homB(A,A′),

(3) for each A-object A, the B-identity on A is the A-identity on A,

(4) the composition law in A is the restriction of the composition law in B to the
morphisms of A,
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(5) A is called a full subcategory of B if, in addition to the above conditions (1− 4),
homA(A,A0) = homB(A,A0), for each A,A0 ∈ Ob(A).

Definition 2.17. (Adámek et al. [1]) A diagram in a category A is a functor D : I→ A
with codomain A. The domain, I is called the scheme of the diagram.

Definition 2.18. (Adámek et al. [1]) Let D : I→ A be a diagram.

(1) An A-source (D : A
fi // Di)i∈Obj(I) is said to be natural for D provided that

for each I-morphism i
d // j , the triangle

A

fi

��

fj

  
Di

Dd
// Dj

commutes.

(2) A limit of D is a natural source (B
bi // Di)i∈Obj(I) for D with the (universal )

property that each natural source (D : A
fi // Di)i∈Obj(I) for D uniquely factors

through it; i. e., for every such source there exists a unique morphism f : A → B
with fi = bi ◦ f for each i ∈ Obj(I).

Definition 2.19. (Adámek et al. [1]) A square

P
f //

g

��

B

g

��
A

f
// C

is called a pullback square provided that it commutes and that for any commuting
square of the form

P ′
f ′ //

g′

��

B

g

��
A

f
// C
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there exists a unique morphism P ′
k // P for which the following diagram commutes.

P ′
f ′

""

g′

��

k

  
P

f

//

g

��

B

g

��
A

f
// C

Definition 2.20. (Adámek et al. [1]) A full subcategory A of a category B is called
isomorphism-dense provided that every B-object is isomorphic to some A-object.

Definition 2.21. (Adámek et al. [1]) A skeleton of a category C is a full, isomorphism-
dense subcategory of C in which no two distinct objects are isomorphic.

Theorem 2.22. (Adámek et al. [1])

(1) Every category has a skeleton.

(2) Any two skeletons of a category are isomorphic.

(3) Any skeleton of a category C is equivalent to C.

Theorem 2.23. (Bedregal [5]) Let A be the collection of all t-norms on a bounded
lattice and hom(TL, TL′ ), TL, TL′ ∈ A, be the set of all lattice homomorphisms so that

for each ρ from L to L
′
, we have

ρ(TL(x, y)) = TL′ (ρ(x), ρ(y)), for all x, y ∈ L.

Note that TL act on L and TL′ on L′. Then quadruple T −NORM = (A, hom, id, ◦) is
the category of t-norms.

Remark 2. (Yousefi and Mashinchi [18]) Let IL : L × L → L and JL′ : L′ × L′ → L′

be two fuzzy implications and ϕ be a lattice homomorphism such that the diagram in
Figure 2 commutes and ϕ satisfies the property ϕ(IL(x, y)) = JL′(ϕ(x), ϕ(y)) for each
x, y ∈ L. We denote this ϕ with extra property by ϕ∗ : IL → JL′′ . So ϕ∗ is just ϕ with
the extra property, ϕ(IL(x, y)) = JL′(ϕ(x), ϕ(y)).

Lemma 2.24. (Yousefi and Mashinchi [18]) Let I be the collection of all fuzzy impli-
cations on bounded lattices. Let ϕ∗ : IL → JL′ and ψ∗ : JL′ → KL′′ be two morphisms
defined in Remark 2, where ψ∗ ◦ϕ∗ = (ψ ◦ϕ)∗ and 1∗ is identity lattice homomorphism,
where IL, JL′ and KL′′ are fuzzy implications on bounded lattices L, L′ and L′′ respec-
tively. Then FI = (I, hom(IL, JL′), 1

∗, ◦) is a category.
We call FI the category of fuzzy implications.

Remark 3. (Yousefi and Mashinchi [18]) Note that on a singleton lattice L>, there
is a unique binary operation which is simultaneously t-norm, t-conorm and a fuzzy
implication. Therefore I> : L> × L> → L> that defined by I>(1, 1) = 1 is a fuzzy
implication on L>.
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L× L
ϕ×ϕ //

IL
��

L′ × L′

JL′

��
L

ϕ
// L′

Fig. 2. Arrow in category FI.

Theorem 2.25. (Yousefi and Mashinchi [18]) Let IL be a fuzzy implication on a
bounded lattice L and ϕ> : L→ L> be defined by ϕ>(x) = 1 for each x ∈ L, Then ϕ∗>
is the unique morphism from IL to I>. Thus, I> is a terminal object of category FI.

Lemma 2.26. (Yousefi and Mashinchi [18]) Let I⊥ : L⊥ × L⊥ → L⊥ be defined by
I⊥(0, 0) = I⊥(1, 1) = I⊥(0, 1) = 1 and I⊥(1, 0) = 0. Then I⊥ is a fuzzy implication (
implication in classical logic) on the bounded lattice L⊥.

Theorem 2.27. (Yousefi and Mashinchi [18]) Let IL be a fuzzy implication on a
bounded lattice L and ϕ⊥ : L⊥ → L be defined by ϕ⊥(0) = 0 and ϕ⊥(1) = 1. Then ϕ∗⊥
is the unique morphism from I⊥ to IL. Thus I⊥ is an initial object of category FI.

Lemma 2.28. (Yousefi and Mashinchi [18]) Let IT be the collection of all R-implications
on any complete lattice and ϕ∗ be a t-norm morphism in the category T-NORM and ϕ
be order-embedding on the lattice, then FRI = (IT , hom(IT , IT ′ )) is a subcategory of
FI.

Theorem 2.29. (Yousefi and Mashinchi [18]) Let F be a function from FRI to T-
NORM such that F (IT ) = T and F (ϕ) = ϕ. Then F is a functor.

Theorem 2.30. Let F be functor in the Theorem 2.29 and G be a function from T-
NORM to FRI such that G(T ) = IT and G(ϕ) = ϕ. Then G is a functor and F ◦G =
G ◦ F = id and so F is isomorphism.

3. SOME RESULTS ON THE CATEGORY OF FUZZY IMPLICATIONS(FI)

IL′′
χ∗

))

ψ∗
55 IL

ϕ∗ // IL′

Fig. 3. ϕ∗ is a monic in FI.
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Theorem 3.1. Let ϕ : L → L′ be a lattice monomorphism. Then ϕ∗ : IL → IL′ is
a monic in FI.

P r o o f . If ψ∗ and χ∗ are two morphisms from IL′′ to IL such that ϕ∗◦ψ∗ = ϕ∗◦χ∗ as de-
picted diagram in Figure 3 , then ϕ◦ψ(IL′′(x, y)) = ϕ◦χ(IL′′(x, y)). So ϕ(ψ(IL′′(x, y))) =
ϕ(χ(IL′′(x, y))). Since ϕ is a lattice monomorphism, we have ψ(IL′′(x, y)) = χ(IL′′(x, y)).
Hence ψ∗ = χ∗ and ϕ∗ is monic. �

IL
ϕ∗ // JL′

χ∗
++

ψ∗
33 KL′′

Fig. 4. ϕ∗ is an epic in FI.

Theorem 3.2. If ϕ : L → L′ is an epimorphism as a lattice homomorphism, then
ϕ∗ : IL → JL′ is epic as an arrow in FI.

P r o o f . Let ϕ be an epimorphism from bounded lattice L to bounded lattice L′ and
ψ∗ ◦ ϕ∗ = χ∗ ◦ ϕ∗ for some parallel arrow, ψ∗ and χ∗ from JL′ to KL′′ as depicted
diagram in Figure 4. Now let x′ and y′ be in L′, then there exist x and y in L such that
ϕ(x) = x′ and ϕ(y) = y′, and

ψ∗(JL′(x
′, y′)) = ψ∗(JL′(ϕ(x), ϕ(y)))

= ψ∗(ϕ∗(IL(x, y)))

= ψ∗ ◦ ϕ∗(IL(x, y))

= χ∗ ◦ ϕ∗(IL(x, y))

= χ∗(ϕ∗(IL(x, y)))

= χ∗(JL′(ϕ(x), ϕ(y)))

= χ∗(JL′(x
′, y′)).

Therefore ψ∗ = χ∗ and ϕ∗ is epic. �

Theorem 3.3. Let IL and JL′ be fuzzy implications and there exist an epic ϕ∗(IL) =
JL′ , then

(1) If IL satisfies LB, then JL′ satisfy LB.

(2) If IL satisfies RB, then JL′ satisfy RB.

(3) If IL satisfies NP, then JL′ satisfy NP.

(4) If IL satisfies IP, then JL′ satisfy IP.

(5) If IL satisfies EP, then JL′ satisfy EP.
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(6) If IL satisfies NC, then JL′ satisfy NC.

P r o o f . Case 5 is proved, other cases can be proved similarly. Let x, y, z ∈ L′ and ϕ∗

be epic, then there exist a, b, c ∈ L such that ϕ(a) = b , ϕ(b) = y and ϕ(c) = c, so that

JL′(x, JL′(y, z)) = JL′(ϕ(a), JL′(ϕ(b), ϕ(c))

= JL′(ϕ(a), ϕ(IL(b, c)))

= ϕ(IL(a, IL(b, c)))

= ϕ(IL(b, IL(a, c)))

= JL′(ϕ(b), ϕ(IL(a, c)))

= JL′(ϕ(b), JL′(ϕ(a), ϕ(c))

= JL′(y, JL′(x, z)).

�

Theorem 3.4. Let IL and JL′ be fuzzy implications in I and define

IL × JL′((x1, x2), (y1, y2)) := (IL(x1, y1), JL′(x2, y2)), ∀(x1, x2) & (y1, y2) ∈ L× L′.

Then IL × JL′ is a product on the category FI.

P r o o f . Let IL and JL′ be fuzzy implications on lattices L and L′, respectively. Then
we prove that IL × JL′ is fuzzy implication on the lattice L× L′. Note that we have

IL × JL′((0, 0), (0, 0)) = (IL(0, 0), JL′(0, 0)) = (1, 1)

IL × JL′((1, 1), (1, 1)) = (IL(1, 1), JL′(1, 1)) = (1, 1)

IL × JL′((0, 0), (1, 1)) = (IL(0, 1), JL′(0, 1)) = (1, 1)

IL × JL′((1, 1), (0, 0)) = (IL(1, 0), JL′(1, 0)) = (0, 0).

Now if (x1, x2) ≤ (y1, y2), then x1 ≤ y1 and x2 ≤ y2. So IL(y1, z1) ≤ IL(x1, z1) and
JL′(y2, z2) ≤ JL′(x2, z2). Hence (IL(y1, z1), JL′(y2, z2)) ≤ (IL(x1, z1), JL′(x2, z2)). Thus
IL × JL′((y1, y2), (z1, z2)) ≤ IL × JL′((x1, x2), (z1, z2)). Similarly, if (x1, x2) ≤ (y1, y2),
then IL × JL′((z1, z2), (x1, x2)) ≤ IL × JL′((z1, z2), (y1, y2)). Therefore IL × JL′ is fuzzy
implication. Now let π1 and π2 be two projections from L×L′ to L and L′, respectively.
Then we prove π∗1 and π∗2 are two projections from IL × JL′ to IL and J ′L, respectively.
Note that

π1(IL × JL′((x1, x2), (y1, y2))) = π1((IL(x1, y1), JL′(x2, y2)))

= IL(x1, y1) = IL(π1(x1, x2), π1(y1, y2)).

Thus π∗1 is a projection. Similarly, π∗2 is a projection. Finally, we prove that IL × JL′
satisfies the universal property. LetKL′′ be a fuzzy implication on the bounded lattice L′′

and let ρ1 and ρ2 be fuzzy implications morphism from KL′′ to IL and JL′ , respectively.
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IL IL × JL′
π1oo π2 // JL′

KL′′

ρ1

dd

ρ

OO

ρ2

::

Fig. 5. IL × JL′ is a product on the category FI.

Then, we show there exists a morphism ρ from KL′′ to IL × JL′ such that diagram in
Figure 5 commutes.
Let ρ(x) = (ρ1(x), ρ2(x)), then

ρ(KL′′(x, y)) = (ρ1(KL′′(x, y)), ρ2(KL′′(x, y)))

= (IL(ρ1(x), ρ1(y)), JL′(ρ2(x), ρ2(y)))

= IL × JL′((ρ1(x), ρ2(x)), (ρ1(y), ρ2(y)))

= IL × JL′(ρ(x), ρ(y)).

So, ρ is a morphism. Now suppose that ρ′ is another morphism from KL′′ to IL × JL′
such that the diagram in Figure 5, commutes. Then, π1(ρ′(KL′′(x, y))) = ρ1(KL′′(x, y))
and π2(ρ′(KL′′(x, y))) = ρ2(KL′′(x, y)). Thus ρ′ = ρ and hence ρ is unique. �

Theorem 3.5. Let IL and JL′ be two fuzzy implication with the same property in I,
then IL × JL′ preserves properties of IL and JL′ . That is

(1) If IL and JL′ satisfy LB, then IL × JL′ satisfy LB.

(2) If IL and JL′ satisfy RB, then IL × JL′ satisfy RB.

(3) If IL and JL′ satisfy NP, then IL × JL′ satisfy NP.

(4) If IL and JL′ satisfy EP, then IL × JL′ satisfy EP.

(5) If IL and JL′ satisfy IP, then IL × JL′ satisfy IP.

(6) If IL and JL′ satisfy OP, then IL × JL′ satisfy OP.

(7) If IL and JL′ satisfy NC, then IL × JL′ satisfy NC.

P r o o f . Cases 4 and 6 are proved, other cases can be proved similarly.

(4):

IL × JL′((m,n), IL × JL′((p, q), (r, s))) = IL × JL′((m,n), (IL(p, r), JL′(q, s)))

= (IL(m, IL(p, r)), JL′(n, JL′(q, s)))

= (IL(p, IL(m, r)), JL′(q, JL′(n, s)))

= IL × JL′((p, q), (IL(m, r), JL′(n, s)))

= IL × JL′((p, q), IL × JL′((m,n), (r, s)))
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(6):

IL × JL′((m,n), (p, q)) = (1, 1)⇔ (IL(m, p), JL′(p, q)) = (1, 1)

⇔ IL(m, p) = 1 & JL′(p, q) = 1

⇔ m < p & n < q

⇔ (m,n) < (p, q)

�

Theorem 3.6. If IL and JL′ are two objects in category FI.Then IL⊕JL′ is coproduct
with coproduct injections, ϕ∗ : IL → IL ⊕ JL′ and ψ∗ : JL′ → IL ⊕ JL′ , where IL ⊕
JL′((m,n), (p, q)) = (IL(m, p), JL′(n, q)) for all m, p ∈ L and n, q ∈ L′.

P r o o f . Let ϕ : L → L× L′ and ψ : L′ → L× L′ be two lattice homomorphism such
that ϕ(x) = (x, 0L′) and ψ(y) = (0L, y).Then ϕ∗ : IL → IL ⊕ JL′ and ψ∗ : JL′ →
IL ⊕ JL′ are two arrows in category FI . Now let there exist a fuzzy implication KL′′

on bounded lattice L′′ and f∗ : IL → KL′′ and g∗ : JL′ → KL′′ be two arrows. Then we
define arrow [f∗, g∗](IL, JL′) = f∗(IL) ∧ g∗(JL′). Therefore,

ϕ∗(IL(x, y)) = IL ⊕ JL′(ϕ(x), ϕ(y))

= IL ⊕ JL′((x, 0L′), (y, 0L′))
= (IL(x, y), JL′(0L′ , 0L′))

= (IL(x, y), 1L′)

= f(IL(x, y)) ∧ g(1L′)

= f(IL(x, y)) ∧ 1L′′

= f(IL(x, y)).

and we also have

ψ∗(JL′(x, y)) = IL ⊕ JL′(ψ(x), ψ(y))

= IL ⊕ JL′((0L, x), (0L, y))

= (IL(0L, 0L), JL′(x, y))

= (1L, JL′(x, y))

= f(1L) ∧ g(JL′(x, y))

= 1L′′ ∧ g(JL′(x, y))

= g(JL′(x, y)).

Hence diagram in Figure 6 commutes, and IL ⊕ JL′ is coproduct with coproduct injec-
tions, ϕ∗ : IL → IL ⊕ JL′ and ψ∗ : JL′ → IL ⊕ JL′ . �

Theorem 3.7. Let ϕ∗ and ψ∗ be two parallel morphisms from IL to JL′ in I and
P × P = {(x, y) ∈ L × L|ϕ(IL(x, y)) = ψ(IL(x, y))} and EP = IL|P×P . Then the
inclusion morphism i∗ : EP → IL is an equalizer of ϕ∗ and ψ∗ as depicted diagram in
Figure 7.
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IL
ϕ∗ //

f∗ $$

IL ⊕ JL′

[f∗,g∗]

��

JL′
ψ∗oo

g∗zz
KL′′

Fig. 6. IL ⊕ JL′ is coproduct on FI.

EP
i∗ // IL

ϕ∗

**

ψ∗
44 JL′

KL′′

χ∗

==

f∗

OO

Fig. 7. i∗ : EP → IL is an equalizer of ϕ∗ and ψ∗.

P r o o f . For each (x, y) ∈ P × P , we have:

ϕ ◦ i(EP (x, y)) = ϕ(i(EP (x, y)))

= ϕ(IL(i(x), i(y)))

= ϕ(IL(x, y))

= ψ(IL(x, y))

= ψ(IL(i(x), i(y)))

= ψ(i(EP (x, y)))

= ψ ◦ i(EP (x, y)).

Thus ϕ∗ ◦ i∗ = ψ∗ ◦ i∗. Now let KL′′ be an object in category FI and χ∗ be a morphism
from KL′′ to IL such that ϕ∗ ◦ χ∗ = ψ∗ ◦ χ∗. Then χ∗ is a morphism from KL′′ to EP ,
i∗ ◦ χ∗ = χ∗ and χ∗ is unique, because if there exists a morphism f∗ from KL′′ to EP
such that i∗ ◦ f∗ = χ∗, we have

χ(KL′′(x, y)) = i ◦ f(KL′′(x, y)) = i(EP (f(x), f(y)))

= IL(i(f(x)), i(f(y)))

= IL(f(x), f(y))

= f(KL′′(x, y)).

Thus i∗ : EP → IL is an equalizer of ϕ∗ and ψ∗. �
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Theorem 3.8. Let ϕ∗ and ψ∗ be two parallel arrows from IL to JL′ in category FI and
let ∼ be the smallest equivalence relation on L′ such that ϕ(IL(x, y)) ∼ ψ(IL(x, y)) for
all x, y ∈ L. Then χ∗ : JL′ → JL′/∼ is a coequalizer, where χ∗(JL′(x, y)) = [JL′(x, y)].

P r o o f . First we should prove that χ∗ ◦ ϕ∗ = χ∗ ◦ ψ∗. Note that χ∗(JL′(x, y)) =
[JL′(x, y)] = JL′/∼([x], [y]). Where [x] is equivalence class of x.

χ∗ ◦ ϕ∗(IL(x, y)) = χ(JL′(ϕ(x), ϕ(y)))

= [JL′(ϕ(x), ϕ(y))]

= JL′/∼([ϕ(x)], [ϕ(y)])

= JL′/∼([ψ(x)], [ψ(y)])

= [JL′(ψ(x), ψ(y))]

= χ(JL′(ψ(x), ψ(y)))

= χ∗ ◦ ψ∗(IL(x, y))

Now if there exist a fuzzy implication KL′′ on bounded lattice L′′ and an arrow f∗ :
JL′ → KL′′ such that f∗ ◦ ϕ∗ = f∗ ◦ ψ∗, then we defined f : JL′/∼ → KL′′ such

that f([x]) = f(x) . clearly f is an arrow and diagram in Figure 8 commutes. So
χ∗ : JL′ → JL′/∼ is coequalizer. �

IL

ϕ∗

**

ψ∗
44 JL′

χ∗ //

f∗ ""

JL′/∼

f

��
KL′′

Fig. 8. χ∗ : JL′ → JL′/∼ is a coequalizer.

Remark 4. From Theorems 3.4 and 3.7 the category FI has limit and pullback. From
Theorems 3.8 and 3.6 the category FI has colimit and pushout.

Lemma 3.9. Let IL and JL′ are Φ-conjugates in I, then there exists a morphism from
IL to JL′ .

P r o o f . Let IL and JL′ are Φ-conjugates, then there exists ϕ ∈ Φ such that IL(x, y) =
ϕ−1(JL′(ϕ(x), ϕ(y))). So ϕ(IL(x, y)) = JL′(ϕ(x), ϕ(y)). Thus there exists a morphism
from IL to JL′ . �

In the following example, we show that not all morphisms are Φ-conjugate.
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Example 3.10. Let L = {0, a, b, c, 1} and L′ = {0, a′, 1} be two lattices such that,
0 < a, b < c < 1 and 0 < a′ < 1. Then ϕ is a morphism from L to L′, where

ϕ(0) = ϕ(a) = 0, ϕ(b) = ϕ(c) = a′, ϕ(1) = 1.

Let IL and IL′ be fuzzy implications defined as in Table 1.

IL 0 a b c 1
0 1 1 1 1 1
a 1 1 1 1 1
b b b 1 1 1
c b b 1 1 1
1 0 0 b b 1

IL′ 0 a′ 1
0 1 1 1
a′ a′ 1 1
1 0 a′ 1

Tab. 1. Fuzzy implications IL and IL′ .

Then ϕ is a lattice homomorphism from L to L′ with extra property ϕ(IL(x, y)) =
IL′(ϕ(x), ϕ(y)) for each x, y ∈ L. So ϕ∗ is a morphism from IL to IL′ by Lemma 2.24.
But ϕ is not bijective hence ϕ /∈ Φ, therefore IL is not Φ-conjugate of IL′ .

Definition 3.11. (Baczynski and Jayaram [4]) Let I be a fuzzy implication and Iϕ = I
for each ϕ ∈ Φ. Then I is self-conjugate or invariant.

Remark 5. There are many fuzzy implications which are invariant in the lattice [0, 1].
For example, Godel, Rescher and Weber fuzzy implications are invariant. See [4]. In
particular, any {0, 1} -valued fuzzy implication is invariant under any ϕ ∈ Φ, i. e., it is
self-conjugate.

Theorem 3.12. The morphism ϕ∗ : IL → JL′ is isomorphism if the lattice homomor-
phism ϕ : L→ L′ is lattice isomorphism.

P r o o f . Let ϕ be an isomorphism. Then there exists the homomorphism ψ : L′ → L
such that ϕ ◦ ψ = 1L′ and ψ ◦ ϕ = 1L so,

ϕ∗ ◦ ψ∗ = (ϕ ◦ ψ)∗ = (1L′)
∗ = 1JL′

and
ψ∗ ◦ ϕ∗ = (ψ ◦ ϕ)∗ = (1L)∗ = 1IL .

Thus ϕ∗ is an isomorphism. �

Remark 6. The morphism ϕ∗ : IL → JL′ is isomorphism if and only if IL is Φ-conjugate
of JL′ and IL = (JL′)ϕ.

P r o o f . Let ϕ∗ be isomorphism. Then ϕ is increasing bijection function and ϕ(IL(x, y)) =
JL′(ϕ(x), ϕ(y)). Hence ϕ−1 ◦ ϕ(IL(x, y)) = ϕ−1(JL′(ϕ(x), ϕ(y))).
So IL(x, y) = ϕ−1(JL′(ϕ(x), ϕ(y))) and IL is Φ-conjugate of JL′ . The converse is easy.

�
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Lemma 3.13. Let ∼ be the relation on objects of category FI defined by,

IL ∼ JL′ ⇔ ϕ∗(IL) = JL′ where ϕ∗ is an isomorphism.

Then ∼ is an equivalence relation.

P r o o f . Let ϕ be identity morphism, then ϕ∗(IL) = IL, so IL ∼ IL. Now suppose IL ∼
JL′ , hence there exist an isomorphism ϕ∗ such that ϕ∗(IL) = JL′ . So (ϕ∗)−1(JL′) = IL
and (ϕ∗)−1 is isomorphism, therefore, JL′ ∼ IL. If IL ∼ JL′ and JL′ ∼ KL′′ , then
there exist two isomorphism ϕ∗ and ψ∗ such that ϕ∗(IL) = JL′ and ψ∗(JL′) = KL′′ .
So ψ∗ ◦ ϕ∗ is isomorphism and ψ∗ ◦ ϕ∗(IL) = KL′′ , therefore IL ∼ KL′′ . Thus ∼ is an
equivalence relation. �

Since ∼ is equivalence relation, so ‖IL‖ = {JL′ ∈ I|JL′ ∼ IL} is the equivalence class
of I. So, we have the following lemma.

Lemma 3.14. FIL/∼ = {‖IL‖|IL ∈ I} is a partition of I.

Theorem 3.15. Let SKL = {IL ∈ I| ‖IL‖ 6= ‖JL′‖, ∀IL, JL′ ∈ SKL}.
Then SKL = (SKL, hom, id, ◦) is a full subcategory of FI .

Remark 7. Note that SKL is not empty.

(1) All of the invariant fuzzy implications such as Godel, Rescher and Weber and some
others are in SKL. So it is not empty.

(2) Let N be set of natural numbers and let L = N ∪ {>} and L′ = {
√
x|x ∈ N} ∪

{>} be bounded lattices with the top element >, then ϕ : L → L′ is a lattice
homomorphism in Φ, where

ϕ(x) =

{
> if x = >√
x if x < > and the inverse of ϕ is ϕ−1(x) =

{
> if x = >
x2 if x < >

Then

IL(x, y) =

{
> if x ≤ y
y if x > y

is a fuzzy implication on L and JL′ = ϕ−1(IL(ϕ(x), ϕ(y))) is a fuzzy implication
on L′. So IL and JL′ are Φ- conjugate, therefore if IL is in SKL, then JL′ is not
in SKL. In other words, both IL and JL′ cannot be in SKL. See Remark 8.

Remark 8. Any two different members of SKL are not isomorphic. So any two ele-
ments in SKL are not Φ-cojugate.

Remark 9. Let L = [0, 1] and IL(x, y) = min(1, 1 − x + y) be Lukasiewicz fuzzy
implication. Then IλL(x, y) = [min(1, 1− xλ + yλ)]1/λ for each λ > 0 and λ 6= 1 and IλL
are ϕλ-conjugate of IL and hence it is a family of fuzzy implications in I, which are not
in SKL. So SKL is proper subset of I.
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P r o o f . Let ϕλ(x) = x1/λ be an increasing bijection function from [0, 1] to [0, 1]. Then
ϕ−1
λ (IL(ϕλ(x), ϕλ(y))) = IλL(x, y), so IλL for each λ > 0 are Φ- conjugate of IL, so
‖IL‖ = ‖IλL‖ and IλL is not in SKL for each λ > 0 and λ 6= 1. �

Theorem 3.16. SKL as defined in Theorem 3.15 is the unique skeleton of FI.

P r o o f . By Theorem 3.15, we have that SKL is a full subcategory of category FI. Let
IL and JL′ be in SKL and suppose there exists an isomorphism from IL to JL′ . Then
by Theorem 3.13, ‖IL‖ = ‖JL′‖. So IL = JL′ , by Theorem 3.15. Let IL ∈ FI. Then
by Theorem 3.15, there exist JL′ ∈ SKL such that JL′ ∈ ‖IL‖. So, by Theorem 3.13,
IL is an isomorphism to JL′ . If we introduce another skeleton S on the category FI.
Then by Theorem 2.22 we have that S is isomorphism to SKL. So SKL is unique up
to isomorphism. �

Remark 10. Let If be the collection of all fuzzy implications on finite bounded lattices.
Then FIf is the category of all fuzzy implications on finite bounded lattices and SKLf
is the skeleton of FIf . In this category, skeleton is not proper. In other words, SKLf
is equal to If , the class of all fuzzy implications on finite bounded lattices. This means
that any two different fuzzy implication on finite bounded lattices are not Φ-conjugate.
Therefore to study similar properties of any two fuzzy implications, we need new tools
rather than conjugacy.

Category theory and universal algebra are closely related. Both of these theories can
be a way to study algebraic structures. In the following section, we prove that any fuzzy
implication can be interpreted as an Ω-algebra and the category FI is a full subcategory
of the category Alg(Ω, E), where Alg(Ω, E) stands for category of universal algebra [1]
(see Lemma 4.3 and Lemma 4.4).

4. RELATIONS BETWEEN UNIVERSAL ALGEBRAS CATEGORY AND FUZZY
IMPLICATIONS CATEGORY

Definition 4.1. (Pierce et al. [16]) Let Ω be a set of operator symbols, equipped with a
mapping ar from elements of Ω to natural numbers; for each ω ∈ Ω, ar(ω) is the arity of
ω. An Ω-algebra A is a set |A| (the carrier of A)equipped with a system of functions aω,
ω ∈ Ω, such that for each operator ω of arity ar(ω), a function aω : |A|ar(ω) → |A|, called
the interpretation of ω, maps ar(ω)-tuples of elements of the carrier back into the carrier.
An Ω-homomorphism from an Ω-algebra A to an Ω-algebra B is a function h : |A| → |B|
such that for each operator ω ∈ Ω and tuple X1, X2..., Xar(ω) of elements of |A|, the
following equation holds: h(aω(x1, X2, ..., Xar(ω)) = bω(h(X1), h(X2), ..., h(xar(ω))). The
category Alg(Ω) has Ω-algebras as objects and Ω-homomorphisms as arrows. This
construction can be refined by adding to the signature Ω a set E of equations between
expressions built from elements of Ω and a set {x, y, z, ...} of variable symbols. Then
the Ω-algebras A for which the equations in E are satisfied under all assignments of
elements of |A| to the variable symbols form the objects of a category Alg(Ω, E).

For example, if
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• Ω = {., e}

• ar(.) = 2

• ar(e) = 0

• E = {x.(y.z) = (x.y).z, e.x = x, x.e = x},

then Alg(Ω, E) is another name for category of monoids.

Example 4.2. If,

• |A| = L× L× L, such that (L,∧,∨, 0, 1) is a bounded lattice,

• Ω = {∗, (0, 0, 1), (1, 1, 1), (1, 0, 0)},

• ar(∗) = 2, ar((0, 0, 1)) = ar((1, 1, 1)) = ar((1, 0, 0)) = 0,

• E = {(x, y, z) ∗ (x′, y′, z′) = (x ∧ x′, y ∨ y′, z′′)} such that z′′ is from set of {l ∈
L|z ∨ z′ < l},

then A is an Ω-algebra and Alg(Ω, E) is a category.

Lemma 4.3. Let IL be a fuzzy implication on the bounded lattice L and IL(x, y) = z
implies (x, y, z) ∈ L×L×L, then IL = {(x, y, z) ∈ L×L×L|z = IL(x, y)} is Ω-algebra
defined in Example 4.2.

P r o o f . Let IL be a fuzzy implication on L, then IL(0, 0) = 1, IL(1, 1) = 1 and
IL(1, 0) = 0. Therefore (0, 0, 1), (1, 1, 1) and (1, 0, 0) are constant in algebra. Let
x1 ≤ x2 then (x1, y, z1) ∗ (x2, y, z2) = (x1 ∧ x2, y ∨ y, z′). On the other hand z1 > z2 so
z1 > z1 ∨ z2. Therefore z′ = IL(x1 ∧x2, y∨ y) = IL(x1, y) = z1 and ∗ is well defined and
IL is the Ω-algebra. �

Lemma 4.4. Category FI is a full subcategory of Alg(Ω, E).

P r o o f . Let IL ∈ Ob(FI), then by Lemma 4.3, IL is an Ω-algebra. So Ob(FI) ⊆
Ob(Alg(Ω, E)). Now suppose IL and JL′ be in Ob(FI) and ϕ∗ be a morphism in
homFI(IL, JL′). Then ϕ(IL(x, y)) = JL′(ϕ(x), ϕ(y)), so
ϕ(x, y, z) = (ϕ(x), ϕ(y), ϕ(z)). Therefore ϕ is an arrow in Alg(Ω, E), because ϕ is a
lattice homomorphism. Hence homFI(IL, JL′) ⊆ homAlg(Ω,E)(IL, JL′). Clearly, identity
and composition are preserving and
homFI(IL, JL′) = homAlg(Ω,E)(IL, JL′) for all IL and JL′ in ob(FI). So FI is a full
subcategory of the category Alg(Ω, E)). �

Remark 11. Many familiar mathematical objects (e. g., semigroups, monoids, groups,
abelian groups, rings, lattices, boolean algebras, vector spaces, etc.) can be defined
by means of operations and equations. Moreover, the corresponding categories can be
obtained as full subcategories of categories of the form Alg(Ω), consisting of those
objects that satisfy suitable equations. On the other hand, all of these structures alone
are important and useful for studying as they have special properties. So FI is not
isomorphism or equivalent to Alg(Ω), however FI is an algebraic structure as a category.



350 A. YOUSEFI, M. MASHINCHI, AND R. MESIAR

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have defined monic, epic and isomorphism on the category of fuzzy
implications (FI). We have defined product, coproduct, equalizer and coequalizer on
FI in such a way it has pullback and limit, but also pushout and colimit. We have
introduced the skeleton of FI and we have shown that the members of the skeleton are
not Φ-conjugate and we shown that FI is a full subcategory of Alg(Ω, E), therefore FI
is an algebraic structure category.
For the future work, one can introduce the category of S-implications and Q-implications
and then study the relations between them. Also seeking for applications of these cate-
gories in real-world problems is worth to follow.
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