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Abstract. Let p be an odd prime. By using the elementary methods we prove that:
(1) if 2 ∤ x, p ≡ ±3 (mod 8), the Diophantine equation (2x − 1)(py − 1) = 2z2 has no
positive integer solution except when p = 3 or p is of the form p = 2a20 + 1, where a0 > 1
is an odd positive integer. (2) if 2 ∤ x, 2 | y, y 6= 2, 4, then the Diophantine equation
(2x − 1)(py − 1) = 2z2 has no positive integer solution.
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1. Introduction to main results

In 2000, Szalay in [10] proved that the Diophantine equation (2n−1)(3n−1) = x2

has no positive integer solution, and Walsh in [13] proved that the Diophantine

equation (2n − 1)(3m − 1) = x2 has no positive integer solution. The Diophantine

equations (an − 1)(bn − 1) = x2 and (am − 1)(bn − 1) = x2 are studied in [3], [4], [5],

[6], [7], [9], [11], [14] and important results are obtained. In this paper, we further

generalize these results by studying the equation

(1.1) (2x − 1)(py − 1) = 2z2, p > 0.

We partly solve the situation with 2 ∤ x and the following results are proved:

Theorem 1.1. Let p be an odd prime. When 2 ∤ x, p ≡ ±3 (mod 8), the Dio-

phantine equation (1.1) has no positive integer solution except that when p = 3 it
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has only positive integer solutions x = 1, y = 5, z = 11; x = 1, y = 2, z = 2; x = 1,

y = 1, z = 1; and when p = 2a20 + 1 it has only the positive integer solution x = 1,

y = 1, z = a0 with 2 ∤ a0 > 1.

Theorem 1.2. Let p be an odd prime. When 2 ∤ x, 2 | y, y 6= 2, 4, the Diophantine

equation (1.1) has no positive integer solution.

2. Lemmas

In order to prove main results in this paper, we first state the following lemmas.

Lemma 2.1 ([12]). The Diophantine equation x3 − 1 = 2y2 has only the integer

solution (x, y) = (1, 0).

Lemma 2.2 ([1]). The Diophantine equation

xp − 1 = 2y2, p is a prime, p > 3

has only the positive integer solution p = 5, x = 3, y = 11.

Lemma 2.3 ([8]). Let D be a non-square number, with the Pell equation

(2.1) x2 −Dy2 = 1, (x, y) = 1, D > 0.

Let x > 0, y > 0 be a solution of equation (2.1), and ε = x0 + y0
√
D be a fun-

damental solution of equation (2.1). If x |∗ x0 (x0 is divisible by every prime factor

of x), then x+ y
√
D = ε.

Lemma 2.4 ([2]). The Diophantine equation x4 − 2y2 = 1 has only integer solu-

tions x = ±1, y = 0.

Lemma 2.5. The Diophantine equation

(2.2) ay − 1 = 2z2, y 6= 2

has only the positive integer solutions a = 3, y = 5, z = 11 and a = 2a20 + 1, y = 1,

z = a0.
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P r o o f. If 4 | y, from (2.2), we have (ay/4)4 − 2z2 = 1, by Lemma 2.4, equa-

tion (2.2) has only integer solutions ay/4 = ±1, z = 0, which contradicts z > 0,

therefore 4 ∤ y. If 2 | y, let y = 2y1, then 2 ∤ y1. If y1 > 1, then there exists an odd

prime p, such that p | y1, let y1 = py2; then from (2.2), we have

(a2y2)p − 1 = 2z2.

If p = 3, from Lemma 2.1, the above equation has only integer solution

(a2y2 , z) = (1, 0), which contradicts z > 0. If p > 3, from Lemma 2.2, the above

equation has only the positive integer solution p = 5, a2y2 = 3, z = 11, which is

obviously impossible. Therefore y1 = 1, that is y = 2, which contradicts y 6= 2.

If 2 ∤ y, y > 1, then there exists an odd prime p, such that p | y, let y = py1; then

from (2.2), we have

(ay1)p − 1 = 2z2.

If p = 3, from Lemma 2.1, the above equation has only the integer solution

(ay1 , z) = (1, 0), which contradicts z > 0. If p > 3, from Lemma 2.2, the above

equation has only the positive integer solution p = 5, ay1 = 3, z = 11, and so a = 3,

y1 = 1, y = py1 = 5, and equation (2.2) has only the positive integer solution a = 3,

y = 5, z = 11.

If y = 1, then a = 2a20 + 1, z = a0; here equation (2.2) has only positive integer

solution (a, y, z) = (2a20 + 1, 1, a0). �

Lemma 2.6 ([2]). The Diophantine equation x4 − 2y2 = −1 has only the integer

solutions x = ±1, y = ±1.

Lemma 2.7 ([2]). Let p be an odd prime. If the Diophantine equation xp+1 = 2y2

has a positive integer solution, then 2p | y is true except that it has the positive
integer solution (x, y) = (1, 1) and when p = 3 it has only positive integer solutions

(x, y) = (1, 1), (23, 78).

3. Proof of the theorems

P r o o f of the Theorem 1.1. We prove our result in two situations.

(I) The case of 2 ∤ z. Since 2 ∤ z, therefore 2 ∤ y. In fact, if 2 | y, from (1.1),
we have 2z2 ≡ 0 (mod 8), then 2 | z, which contradicts 2 ∤ z, therefore 2 ∤ y. If

p ≡ −3 (mod 8), from equation (1.1), we have 2z2 ≡ (2x − 1)(p − 1) ≡ 4(2x − 1)

(mod 8), and so z2 ≡ 2(2x − 1) (mod 4), which contradicts 2 ∤ z. If p ≡ 3 (mod 8),

from equation (1.1), we have 2z2 ≡ (2x − 1)(p − 1) ≡ 2(2x − 1) (mod 8), and so
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z2 ≡ 2x − 1 (mod 4). If x > 2, then z2 ≡ −1 (mod 4), we have a contradiction;

therefore x = 1. Here from equation (1.1), we have

py − 1 = 2z2, p ≡ 3 (mod 8).

From Lemma 2.5, the above equation has only the positive integer solutions p = 3,

y = 5, z = 11 and p = 2a20 + 1, y = 1, z = a0, 2 ∤ a0; that is equation (1.1) has only

the positive integer solutions p = 3, x = 1, y = 5, z = 11 and p = 2a20 + 1, x = 1,

y = 1, z = a0, 2 ∤ a0.

(II) The case of 2 | z. Since 2 | z, therefore 2 | y. In fact, if 2 ∤ y, from (1.1),

we have 2z2 ≡ (2x − 1)(±3 − 1) (mod 8), and so z2 ≡ 2x − 1, 2(2x − 1) ≡ ±1, 2

(mod 4), which contradicts 2 | z; therefore 2 | y. Assume (2x − 1, py − 1) = d, then

from equation (1.1), we have

(3.1)











2x − 1 = ds2,

py − 1 = 2dt2,

z = dst,

where (s, t) = 1, 2 ∤ s, 2 ∤ d.

From the assumption of 2 ∤ x, again from the first equation in (3.1), we have

2(2(x−1)/2)2 − 1 = ds2, and it is converted into

(3.2) (2(2(x−1)/2)2 + ds2)2 − 2d(2(x+1)/2s)2 = 1.

Let the Pell equation be

X2 − 2dY 2 = 1, (X,Y ) = 1.

We assume that ε2d = T + U
√
2d is a fundamental solution of the above equa-

tion, then all positive integer solutions of the above equation are Xk + Yk

√
2d =

(T + U
√
2d)k, k > 0. Therefore from equation (3.2) and second equation in (3.1),

we obtain the simultaneous equations

(3.3)

{

2(2(x−1)/2)2 + ds2 + (2(x+1)/2s)
√
2d = Xr + Yr

√
2d,

py/2 + t
√
2d = Xl + Yl

√
2d.

From the second equality in (3.3), if l = 2h, then py/2 = X2h = 2X2
h − 1, and so

(3.4) py/2 = 2X2
h − 1.

Hence, from (3.4), we have

1 =
(1

p

)

=
(2X2

h − py/2

p

)

=
(2X2

h

p

)

= −1,
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which is impossible. Therefore 2 ∤ l. Let l = 2h + 1; then py/2 = X2h+1. Since

X1 | X2h+1, hence T | py/2. Since p is an odd prime, if T = 1, then t = 0, and so

z = 0, it is not positive integer solution. Hence T > 1, and so T = pT0 , T0 > 1.

From Lemma (2.3), the second equality in (3.3) has only the positive integer solution

(py/2, t) = (pT0 , U), and so the second equation in (3.1) has only the positive integer

solution (y, t) = (2T0, U).

From the first equality in (3.3), it follows that Xr is an odd number. Now, if

r = 2h, then Xr = 2X2
h− 1 and 2(x+1)/2s = Yr = 2XhYh, since 2 ∤ Xh, (Xh, Yh) = 1,

hence Xh = b1, Yh = 2(x−1)/2b2, (b1, b2) = 1, 2 ∤ b1. Therefore we have

(3.5) Xr = 2b21 − 1.

From the first equation in (3.1), we have

(3.6) ds2 = 2x − 1.

From the first equality in (3.3), we haveXr = 2(2(x−1)/2)2+ds2, and it is converted

into

(3.7) Xr = 2x + ds2.

Plugging equation (3.6) into (3.7), we obtain Xr = 2x + 2x − 1 = 2 · 2x − 1.

From (3.5),we easily know 2b21 − 1 = 2 · 2x − 1, that is b21 = 2x, which is impossible.

Hence 2 ∤ r.

Since 2 ∤ d, if 2 ∤ Y , then X2 = 2dY 2 +1 ≡ 2d+1 ≡ 3 (mod 4); this is impossible.

Hence 2 | Y . Therefore U = 2U0U1, 2 ∤ U1, U0 > 1, and so Y1 = U = 2U0U1,

Y2 = 2X1Y1 = pT0 · 2U0+1U1. Let r = 2h+ 1. Since Y1 | Yr, hence we have

(3.8) Y2h+1 = 2X1Y2h − Y2h−1 = 2X1Y1
Y2h

Y1
− Y2h−1 = pT0 · 2U0+1U1

Y2h

Y1
− Y2h−1

≡ −Y2h−1 (mod 2U0+1).

and

(3.9) Y2h+1 ≡ Y2h−1 ≡ Y2h−3 ≡ . . . ≡ Y3 ≡ Y1 ≡ 2U0U1 ≡ 2U0 (mod 2U0+1).

Hence, 2(x+1)/2s = Y2h+1 ≡ 2U0 (mod 2U0+1), when (x+ 1)/2 > U0, 0 ≡ 2U0

(mod 2U0+1), this is impossible. Therefore, (x + 1)/2 6 U0, and so x 6 2U0 − 1.

Here, X2h+1 = 2x + ds2 = 2x+1 − 1. When h = 0, 2x+1 − 1 = X2h+1 = X1 = pT0 ,
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since 2 | (x + 1), hence (2(x+1)/2 + 1)(2(x+1)/2 − 1) = pT0 . Since (2(x+1)/2 + 1,

2(x+1)/2 − 1) = 1, p is an odd prime, hence we have:

(3.10)

{

2(x+1)/2 + 1 = pT0 ,

2(x+1)/2 − 1 = 1.

From the second equation in (3.10), we have 2(x+1)/2 = 2, and so x = 1. From the

first equation in (3.10), we have pT0 = 3, and so p = 3, T0 = 1. Here, y = 2T0 = 2,

and from (3.1), we have s = d = 1, t = 2, z = dst = 2. Therefore we have the

positive integer solution p = 3, x = 1, y = 2, z = 2.

When h > 0, since x+ 1 6 2U0, 2
x+1 − 1 = X2h+1, hence

(3.11) 2x+1 − 1 =
h
∑

t=0

C2t
2h+1(p

T0)2h+1−2t22tU0U2t
1 (2d)t ≡ (p2h+1)T0 (mod 22U0+1).

Therefore, −1 ≡ (p2h+1)T0 (mod 2x+1), when x > 1, −1 ≡ (p2h+1)T0 ≡
(±3)T0 ≡ ±3, 1 (mod 8), this is impossible. Hence x = 1. Since p > 3, we

have:

(3.12) 3 = 2x+1−1 = X2h+1 =

h
∑

t=0

C2t
2h+1(p

T0)2h+1−2t22tU0U2t
1 (2d)t > 3T0+C2

3 > 6,

which is impossible. �

P r o o f of the Theorem 1.2. Since 2 ∤ x, 2 | y, let (2x − 1, py − 1) = d, from

equation (1.1), we know that simultaneous equation (3.1) is true. Hence the proof

methods of Theorem 1.2 with the exception of equations (3.4) and (3.11) are the

same as those of Theorem 1.1 following equation (3.1). The proofs for equations (3.4)

and (3.11) are given below only when p ≡ ±1 (mod 8).

Since 2 | y, hence let y = 2wy1, w > 1, 2 ∤ y1 > 0. If y1 > 1, then there exists

an odd prime q, such that q | y1, and when q = 3, equation (3.4) is converted into

(py/6)3 + 1 = 2X2
h, and from Lemma 2.7, it has only the positive integer solutions

(py/6, Xh) = (1, 1), (23, 78), and since p is an odd prime and 2 ∤ Xh, this is im-

possible. When q > 3, equation (3.4) is converted into (py/2q)q + 1 = 2X2
h. Since

(py/2q, Xh) 6= (1, 1), from Lemma 2.7, we know 2q | Xh, which contradicts 2 ∤ Xh,

hence y1 = 1. Therefore y = 2w. If w > 3, then equation (3.4) is converted into

(p2
w−3

)4 − 2X2
h = −1, and from Lemma 2.6, it has only the positive integer solution

p2
w−3

= 1, Xh = 1, which contradicts that p is an odd prime. Hence w 6 2. Then

y = 2w = 2, 4, which contradicts y 6= 2, 4.
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From the proof of Theorem 1.1, when p ≡ 1 (mod 8), equation (3.11) is obviously

impossible. When p ≡ −1 (mod 8), that is p = 2uv − 1, u > 3, 2 ∤ v > 0, we have

p2 = (2uv−1)2 ≡ 1 (mod 2u+1), and from equation (3.11), we know −1 ≡ (p2h+1)T0

(mod 2x+1) is true, and when x > u, −1 ≡ (p2h+1)T0 ≡ pT0 ≡ 1, p ≡ 1, 2u − 1

(mod 2u+1) are contradictory. Hence x 6 u− 1. From equation (3.11), we have

(3.13) 2u − 1 > 2x+1 − 1 =

h
∑

t=0

C2t
2h+1(p

T0)2h+1−2t22tU0U2t
1 (2d)t > (p2h+1)T0 > p2

= 22uv2 − 2u+1v + 1 > 2u+1 + 1,

which is contradictory. This completes the proof. �
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