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Abstract. We study Morse-Bott functions with two critical values (equivalently, non-
constant without saddles) on closed surfaces. We show that only four surfaces admit such
functions (though in higher dimensions, we construct many such manifolds, e.g. as fiber
bundles over already constructed manifolds with the same property). We study properties
of such functions. Namely, their Reeb graphs are path or cycle graphs; any path graph, and
any cycle graph with an even number of vertices, is isomorphic to the Reeb graph of such
a function. They have a specific number of center singularities and singular circles with
nonorientable normal bundle, and an unlimited number (with some conditions) of singular
circles with orientable normal bundle. They can, or cannot, be chosen as the height func-
tion associated with an immersion of the surface in the three-dimensional space, depending
on the surface and the Reeb graph. In addition, for an arbitrary Morse-Bott function on
a closed surface, we show that the Euler characteristic of the surface is determined by the
isolated singularities and does not depend on the singular circles.
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1. Introduction

A smooth function on a compact manifold has at least two critical values, the

minimum and the maximum. We study some properties of the Morse-Bott functions

on a closed surface that have no other critical values, as well as a related class of

functions: Morse-Bott functions with no saddle singularities, i.e., with all singular

points being local extrema.

In the class of well-known Morse functions (smooth functions with nondegenerate

singularities), the choice of such functions is very narrow. A function with two

critical values is possible only on a sphere Sn, see [13], Theorem 4.1. It can be

chosen as a height function of an embedding of the sphere in Rn+1; moreover, in the
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two-dimensional case, any Morse function can be realized as a height function of an

immersion of the surface in R
3, see [9], Theorem 1. Any Morse function with two

critical levels has exactly two critical points: a minimum and a maximum, both of the

center type. All its level sets are connected, i.e., its Reeb graph (the space obtained

by contracting connected components of the level sets to points) is a closed interval.

In contrast, the class of Morse-Bott functions (smooth functions whose critical

set is a submanifold with the function being nondegenerate in the normal direction)

offers much greater variety: for example, a Morse-Bott function with two critical

values can have any number of connected components of the critical submanifold;

such a function does not necessarily admit a representation as a height function, and

its Reeb graph is not necessarily an interval.

We study Morse-Bott functions with two critical values on a closed surface. For

a given closed surface, existence of such function with certain relevant properties is

equivalent to existence of a nonconstant function without saddle singularities, i.e.,

with all critical points being local extrema, see Proposition 4.1.

The critical set of a nonconstant Morse-Bott function on a closed surface consists

of a finite number of isolated singularities and singular circles; the latter can only be

local extrema. An interesting fact is that in the case of surfaces, the Euler charac-

teristic of the manifold depends only on isolated singularities but not on the critical

circles even in the presence of critical circles with nonorientable normal bundle (see

Proposition 3.1); contrary to a widespread misconception (found in, e.g. [2], [7], [8]),

in arbitrary dimension the situation (see Proposition 2.1) is different, see [17].

Whereas a Morse function with two critical values is possible only on the sphere,

the set of closed surfaces admitting Morse-Bott functions with two critical values

consists of the sphere S2, the projective plane RP 2, the torus T 2, and the Klein

bottle K2. The Reeb graph of such a function is a path graph or a cycle graph,

depending on the surface. Such a function can have arbitrarily many singular circles

with orientable normal bundle, though in the case of the Reeb graph being a cycle

graph their number is to be even and nonzero (see Theorem 4.1). Any path graph

and any cycle graph with an even number of vertices is isomorphic to the Reeb graph

of such a function (see Corollary 4.1).

Such a function can have from zero to two center singularities and from zero

to two singular circles with nonorientable normal bundle in different combinations,

depending, again, on the surface and the Reeb graph, and can, or cannot, be chosen

as the height function of an immersion of the surface in R3, depending on the presence

of singular circles with nonorientable normal bundle. The possible combinations of

these parameters are summarized in Table 1.

Martínez-Alfaro et al. in [11] introduced the notion of topological conjugacy of

Morse-Bott functions and used the Reeb graphs for their classification on surfaces.
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We show that on a connected surface there are up to two classes of topological

conjugacy of Morse-Bott functions with two connected components of the critical

set, and specify such classes for each surface, see Proposition 5.2. Functions with

two connected components of the critical set (not necessarily Morse-Bott), especially

when these components are projective spaces, were studied by Duan and Rees, see [3].

Our main results allow for various generalizations. We show that they can be

extended to a wider class of functions, namely, topological Morse-Bott functions, see

Corollary 5.1. Another research direction is the study of higher-dimensional cases.

While for two-dimensional case, only four closed surfaces admit Morse-Bott func-

tions with two critical values, higher dimensions, apart from very similar examples

(see Example 6.1), offer much greater variety, which explodes with dimension, see

Example 6.2. In particular, we show that if a manifold admits such functions, so do

fiber bundles over it (see Lemma 6.1); this allows us to construct many new such

manifolds out of a few basic examples. We will study a classification of n-manifolds,

n > 3, admitting a Morse-Bott function with two critical values in a future work.

This paper is organized as follows. In Section 2, we introduce the notation we use,

clarify the definitions, and give some known facts. In Section 3, we show that the

Euler characteristic of a surface does not depend on singular circles of an Morse-Bott

function, including those with nonorientable normal bundle. In Section 4, we give our

main result: the set of surfaces that admit Morse-Bott functions with two critical

values, along with some properties of such functions. In Section 5, we generalize

our results to topological Morse-Bott functions and give a classification of Morse-

Bott functions with two connected components of the critical set up to topological

congugacy. Finally, in Section 6 we show that in higher dimensions many more

manifolds admit Morse-Bott functions with two critical values.

2. Definitions and useful facts

We use the following notation for specific manifolds: Sn for an n-dimensional

sphere, Dn for a closed disk (ball), RPn for a projective space, T n for a torus,

and K2 for the Klein bottle.

2.1. Morse-Bott functions. A Morse-Bott function f : M → R is a smooth

function on a smooth manifoldM , whose critical set Crit(f) is a closed submanifold1

with the Hessian being nondegenerate in the normal direction. A Morse function is

a Morse-Bott function with zero-dimensional critical manifold.

1We assume that connected components of a submanifold can have different dimensions:
for example, a submanifold can consist of a point and a circle.
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Theorem 2.1 (Morse-Bott Lemma [1], Theorem 2). Let f : M → R, with

dimM = n, be a Morse-Bott function, Nj a connected component of Crit(f) of

codimension c, and x ∈ Nj . Then in some neighborhood U of x there is a coordinate

system
(x1, . . . , xk, xk+1, . . . , xc︸ ︷︷ ︸

normal to Nj

, xc+1, . . . , xn︸ ︷︷ ︸
in Nj

)

such that

(2.1) f
∣∣
U
= f(Nj)−

k∑

i=1

x2
i +

c∑

i=k+1

x2
i .

The number k in (2.1) does not depend on the choice of point x ∈ Nj and is called

the index i(Nj) (sometimes called Morse index ) of the connected component of the

critical submanifold. In particular, all points in a connected component of Crit(f)

are, or are not, local extrema (and if so, of the same type), so one can refer to the

whole connected component of Crit(f) as a local minimum or maximum.

On a closed surface, connected components of the critical submanifold of a Morse-

Bott function are points pj and circles S
1
j . An isolated critical point pj can be

a center (minimum or maximum) or a saddle point, their indices being i(pmin
j ) = 0,

i(psaddlej ) = 1, and i(pmax
j ) = 2. A critical circle S1

j can only be a minimum or

a maximum; i(Smin
j ) = 0 and i(Smax

j ) = 1; its normal bundle can be orientable

or nonorientable. In the case of orientable normal bundle, a critical circle S1
j has

a product neighborhood; otherwise, a tubular neighborhood of the critical circle is

a Möbius strip.

Proposition 2.1 ([14], Corollary 2.6.6). Let f be a Morse-Bott function on

a closed manifoldM such that for every connected componentNj of Crit(f), the neg-

ative normal bundle E−(Nj) is orientable. Then for the Euler characteristics χ(M)

it holds
χ(M) =

∑

Nj

(−1)i(Nj)χ(Nj),

where i(Nj) is the index, i.e., the rank of the negative normal bundle E
−(Nj).

Contrary to a widespread misconception, exemplified by [2], [7], [8], the condition

for orientability of the normal bundle in this statement is, generally, important [17].

However, below (see Proposition 3.1) we show that in the two-dimensional case this

condition is indeed irrelevant.

2.2. Graphs. We consider finite graphs that allow loop edges and multiple edges

(a loop edge is an edge incident to only one vertex; it is counted twice in the degree of

this vertex). Such graphs can be represented as one-dimensional CW complexes. Two
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graphs are isomorphic when there exists a homeomorphism of the CW complexes

that maps cells to cells, i.e., in combinatorial terms, when there is a correspondence

between their vertices and edges, preserving incidence between vertices and edges.

The cycle rank b1(G) of a graph G is the first Betti number of the graph considered

as a one-dimensional CW complex; in computational geometry this value is called

the number of loops (not to be confused with loop edges).

A trivial graph has one vertex and no edges. A path graph Pn is a finite tree with

two of its n vertices being of degree 1 (and all other, if any, of degree 2); note that we

consider a path graph to be connected and nontrivial. A cycle graph Cn is a finite

connected graph with all its n vertices being of degree 2; again, we consider a cycle

graph to be nontrivial, so b1(Cn) = 1.

2.3. Reeb graph. For a continuous function f : M → R on a manifold M , con-

sider the quotient spaceM/∼ endowed with the quotient topology, where the equiv-

alence relation x ∼ y holds whenever x and y belong to the same contour (connected

component of a level set) of f . For a closed manifold M and a smooth function

f : M → R with a finite number of critical values, Saeki (see [18], Theorem 3.1)

showed that this quotient space is homeomorphic to a finite graph (allowing multiple

edges) (V,E), represented as a one-dimensional CW complex, where the set of ver-

tices V corresponds to the set of the critical contours (contours containing a critical

point). We will call this graph the Reeb graph Rf of the function f .

The quotient map ϕ : M → Rf , called the Reeb quotient map, induces a continuous

function F = f ◦ ϕ−1 : Rf → R; this function is an embedding on the edges of the

graph. The graph can be endowed with an orientation according to the increasing

direction of the function F .

For a Morse-Bott function on a compact manifold, since its critical set has a finite

number of connected components, the corresponding Reeb graph is a finite graph.

2.4. Corank of the fundamental group. The corank of a finitely generated

group G is the maximum rank of a free homomorphic image of G. For a path-

connected topological spaceX , consider the fundamental group π1(X). If it is finitely

generated, as in the case of compact manifolds, then corankπ1(X) is finite. Obvi-

ously, corankπ1(X) 6 b1(X), the first Betti number. For a surface M of genus g, it

holds

(2.2) corank(π1(M)) =






g if M is orientable, see [10],
⌊g
2

⌋
otherwise, see [5], equation (4.1).
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For a connected locally path-connected topological space X and a continuous

function f : X → R whose Reeb graph Rf is a finite topological graph, it holds [6],

Theorem 3.1

(2.3) b1(Rf ) 6 corank(π1(X)),

where b1(Rf ) is the cycle rank. For connected smooth closed manifolds, this inequal-

ity is tight, see [6], Proposition 3.9.

3. Euler characteristic of a surface with a Morse-Bott function

We show that in the case of closed surfaces, the condition of orientability of neg-

ative normal bundles in Proposition 2.1 is not needed:

Proposition 3.1. Let f : M → R be a Morse-Bott function on a closed sur-

face M . Then for the Euler characteristic of M it holds

(3.1) χ(M) = |{pcenterj }| − |{psaddlej }|,

where {pcenterj } is the set of all center singularities of f , and {psaddlej } is the set of all

isolated saddle singularities of f .

Note that for a closed surface, χ(M) does not depend on the number |{S1
j }| of

critical circles (irrespective of the orientability of their normal bundles).

P r o o f. If all normal bundles of all critical circles Sj = S1
j of f are orientable,

then, since χ(Sj) = 0 and χ(pj) = 1, Proposition 2.1 gives

χ(M) =
∑

pj

(−1)i(pj)χ(pj) = |{pcenterj }| − |{psaddlej }|.

Now, denote by S̃j all critical circles S̃j of f with nonorientable normal bundle.

For each S̃j , a small f -saturated tubular neighborhood Tj is a Möbius strip, its

boundary ∂Tj = S1 being a circle on which f is regular and constant. Replace

each Tj with a disk Dj and extend f on Dj as a Morse function with one center.

This gives a surface M ′ with a Morse-Bott function f ′ having |{pcenterj }| + |{S̃j}|

centers, all its critical circles having orientable normal bundles. By the above, we

obtain χ(M ′) = |{pcenterj }|+ |{S̃j}|− |{psaddlej }|. However, since M is M ′ with |{S̃j}|

Möbius strips glued, we have χ(M) = χ(M ′)− |{S̃j}|, which again gives (3.1). �
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4. Surfaces admitting Morse-Bott functions with two critical values

The class of functions we are interested in can be described in various ways:

Proposition 4.1. LetM be a closed surface. Denote by F the set of Morse-Bott

functions f : M → R, with a given2 Reeb graph, such that there exists (does not

exist) an immersion of M in R
3 with f being its associated height function.

Then the following conditions are equivalent:

(i) F includes a function with two critical values,

(ii) F includes a nonconstant function with no saddle singularities,

(iii) F includes a nonconstant function with all critical points being local extrema.

The parentheses here mean two different versions of the statement.

P r o o f. (i)⇒ (ii): Since a saddle singularity is not an extremum, a function with

such singularity has at least three critical values.

(ii) ⇒ (iii): Critical points that are not saddles either are centers or belong to

critical circles. Since M is a surface, they are local extrema.

(iii) ⇒ (i): Given a Morse-Bott function f with all its singular points or circles

being local extrema, by suitable distortion of the function in a small saturated neigh-

borhood of its critical set one can obtain a Morse-Bott function f ′ with all its local

maxima at the same high enough level, and all its local minima at the same low

enough level. This can be done in such a way that all level sets of f ′ be level sets

of f and vice versa.

Indeed, let s be a center or circle singularity of f that is not a global extremum;

without loss of generality assume it to be a local maximum. Consider a small

connected f -saturated neighborhood U of s containing no other singularities; thus

f(s) = max f(U) and f(∂U) = inf f(U). Denote I = f(U), a half-open interval.

Consider a smooth function g : I → R such that g ≡ 1 near the left end of I and

g ≡
(
max
M

f
)
/f(s) > 1 near its right end, monotonously increasing in between. De-

note gs : M → R such that gs = g ◦ f on U and gs ≡ 1 on M \ U . This is a smooth

function constant on level sets of f , the product f ′

s = gsf being a Morse-Bott func-

tion with the same decomposition of M into level sets, the same critical set, and

f ′

s(s) = max
M

f . Repeating this operation for all center or circle singularities of f , we

obtain the desired function f ′ with all local maximum values being max
M

f (similarly,

all local minimum values being min
M

f).

Note that if one of the two functions can be represented as the height function of

a suitable immersion of M in R
3, then so can be the other. �

2We say that functions share the same Reeb graph when they define the same decompo-
sition of M into contours and their critical sets coincide.
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In the class of Morse functions, a function with two critical values (i.e., noncon-

stant without saddles, or nonconstant with all critical points being local extrema)

is possible only on S2; such a function is the height function associated with an

immersion (actually, embedding) of S2 in R3, its Reeb graph is a path graph, and all

singularities have orientable normal bundle. In contrast, in the class of Morse-Bott

functions there are more options:

Theorem 4.1. Let M be a connected closed surface. Then there exists a Morse-

Bott function f : M → R with exactly two critical values (equivalently, nonconstant

without saddle singularities, or nonconstant with all critical points being local ex-

trema) if and only if M is S2, RP 2, T 2, or K2.

The function f can be chosen with the Reeb graph isomorphic to a given graph G

(with possible loop edges and multiple edges) if and only if

⊲ G is a path cycle graph Pn and M is S2, RP 2, or K2, or

⊲ G is a cycle graph Cn with an even n, and M is T 2 or K2.

Such function f can be chosen as the height function associated with an immersion

of M in R
3 if and only if G is a cycle graph or M is S2.

The function f has center singularities and singular circles with nonorientable

normal bundle only when Rf is a path graph: on S2 (two centers), on RP 2 (one

center and one circle), and on K2 (two circles). There exist such functions with any

number of singular circles with orientable normal bundle when Rf is a path graph,

and with any even number (at least two) of such circles when Rf is a cycle graph.

The cases listed in the theorem are summarized in Table 1. Note that we consider

path and cycle graphs to be finite and nontrivial.

1 2 3 4 5 6 7

Reeb S1 orient. S1 orient. S1 nonor. Centers Height Surface

graph bundle no. bundle min. bundle function

0 2 yes S2

path any 0 1 1 no RP 2

2 0 no K2

cycle even 2 0 0 yes T 2, K2

Table 1. All cases of a Morse-Bott function f with two critical values on closed surfaces,
according to Theorem 4.1. Columns 2 and 3 indicate the possible number and
the minimum number of singular circles S1 of f with orientable normal bundle;
there are functions with any number of such circles satisfying these restrictions.
Column 4 indicates the number of singular circles of f with nonorientable normal
bundle. Column 5 indicates the number of isolated singularities of f (they are of
the center type). Column 6 indicates whether the function can be chosen as the
height function associated with an immersion of the surface in R

3.
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P r o o f. The equivalence of the definitions of the class of the functions of interest

is given by Proposition 4.1. Now, in one direction, let such a function f exist. Since

it is nonconstant, its Reeb graph Rf is not trivial.

Consider the restrictions stated in the columns 1, 5 and 7 of Table 1.

Since f has no saddles psaddlej , i.e., the set of its isolated singularities is {pj} =

{pcenterj }, Proposition 3.1 gives

(4.1) b1(M) = b2(M) + 1− |{pj}|.

If M is orientable, then b2(M) = 1 and (4.1) implies either the genus g(M) = 0 with

|{pj}| = 2, or g(M) = 1 with |{pj}| = 0. By (2.3) and (2.2), the only option for S2

is a path graph. For T 2, the graph could be path or cycle; however, a path graph is

ruled out by the fact that, given |{pj}| = 0, the function f on T 2 has only singular

circles S1
j ; since their normal bundles are orientable (an orientable surface cannot

have submanifolds with nonorientable normal bundle), the Reeb graph Rf has only

vertices of degree 2.

If M is nonorientable, then b2(M) = 0 and b1(M) > 1, so (4.1) gives g(M) = 1

with |{pj}| = 1 or g(M) = 2 with |{pj}| = 0. Again, (2.3) implies that G is a path

graph for RP 2, or path or cycle graph for K2.

Let us show that in the case of G being a path graph and M being nonorientable,

the function f cannot be the height function associated with an immersion of M

to R
3 (column 6 of the table). Since in this case we have |{pj}| 6 1, at least one

of the extrema is to be a singular circle S1. For the corresponding vertex of Rf

to have the degree one, its normal bundle has to be nonorientable, a small tubular

neighborhood of S1 being a Möbius strip. Suppose such an immersion exists. Since

df = 0 on S1, by the implicit function theorem the projection to the horizontal

plane gives an immersion of this Möbius strip in R
2. It is, however, impossible to

immerse a nonorientable manifold into an orientable one of the same dimension;

a contradiction.

We have seen that in the case of Rf being a cycle graph, the only type of singu-

larities is singular circles with orientable normal bundle. Since minima and maxima

go in alternating order along the cycle graph, the number of such singular circles in

this case is even (column 2 of the table). Since these are the only singularities, their

number is positive (column 3).

Finally, singular circles with nonorientable normal bundle (Möbius strip) represent

vertices of degree 1 of the Reeb graph. Thus, they are possible only for Rf being

a path graph, and their number is the complement to 2 of the number of center

singularities, which also correspond to the vertices of degree 1 (column 4).

In the opposite direction, we only need to give examples of the five combinations

of the type of G and the type of M with the function f being the height function
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associated with an immersion of M in R
3 whenever possible. We will first describe

examples with the minimum number of singular circles (column 3).

The orientable case is easy: the desired function is the height function on a unit

sphere S2 or on a T 2 embedded as a doughnut lying flat on the table.

(a) (b)

Figure 1. (a) An immersion of a torus T 2 in R3 with coordinates (x, y, z) with the associated
height function f being of Morse-Bott type and having no isolated singularities.
The rectangles represent horizontal planes {z = const.} at different levels, with
the images (8-shaped) of the corresponding level sets of f shown. In thick lines,
the images of the singular circles (minimum and maximum) of f are shown,
along with a nearby level set each. Arrows show the evolution of orientation
on the connected components of the level sets; it is seen that the orientation is
consistent, implying that the obtained circle bundle over S1 is orientable, i.e., T 2.
(b) An immersion of the Klein bottle K2 with the same properties. The twist
(left) results in inconsistent orientation, as the evolution of the arrows, seen clock-
wise starting from the top, shows; therefore, the obtained circle bundle over S1

is nonorientable, i.e., K2.

An immersion of Klein bottle K2 in R
3 with the associated height function f of

Morse-Bott type having only circle singularities with Rf being a path graph was

found by Panov (see [15]); we briefly describe it here for completeness. The above

example for T 2 (doughnut lying flat on the table) can also be implemented via an

immersion of T 2 with the images of the connected components of the level sets of the

height function f being 8-shaped, as in Figure 1 (a). Now, twist one of the tubes,

as in Figure 1 (b). The obtained surface is a circle bundle over S1; since the fiber

changes its orientation, this is K2.
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For G being a path graph and M = RP 2, the desired function f cannot be

obtained as the height function associated with an immersion in R
3. To construct

the function f , represent RP 2 as a closed unit disk D with the opposite points of

the boundary ∂D identified, and consider f as the distance function from the center

of D, suitably smoothed near its extrema. This is a Morse-Bott function with one

center singularity (minimum) at the center of D and one singular circle (maximum)

at the boundary ∂D; see Figure 2 (a).

(a) (b)

Figure 2. The two nonorientable surfaces M admitting a Morse-Bott function f with two
critical values, the Reeb graph Rf being a path graph. The critical set is shown
in thick lines and a thick point; other level sets are shown as rounded thin lines.
(a) M = RP 2, the projective plane, shown as its fundamental square with the
sides identified according to the arrows. The function f has one singular point
and one singular circle. (b) M = K2, the Klein bottle, shown as the connected
sum K2 = RP 2#RP 2, with two singular circles.

Finally, a desired function on K2 with Rf being a path graph can be obtained as

a connected sum of two copies of RP 2 with the function described above. Namely,

remove a small f -saturated neighborhood of the singular point in each copy and

glue them together by the resulting boundary. Mirror the function from one of the

copies to the other and suitably smooth it near the place of gluing. The obtained

Morse-Bott function f on K2 has two singular circles (a maximum and a minimum)

and no isolated singularities, all its level sets being connected; see Figure 2 (b).

The only thing missing now is the column 2 of the table: once we have an example

of a function with a minimum number of singular circles with orientable normal

bundle, we can add more such circles. Consider a connected component c of a regular

level of f . This is a circle; some its saturated neighborhood C is a cylinder, its fibers

being level sets of f
∣∣
C
, see [4], Lemma 3.1.

If the Reeb graph Rf is a path graph, then c is homologically trivial, i.e., M \ c =

M1 ∪ M2 is not connected. Assume, without loss of generality, f(c) = 0. Define

g
∣∣
c∪M1

= f and g
∣∣
M2

= −f , and smooth it near c; see Figure 3 (a). We obtained

a Morse-Bott function g having one more singular circle with orientable normal bun-

dle than f , preserving other relevant properties, including the possibility of defining

875



it as the height function of an immersion of M in R
2 (the M2 part of M is now

immersed upside-down). Repeating this operation, we can obtain any number of

such circles.

(a) (b)

Figure 3. (a) Adding a singular circle with orientable normal bundle by turning half of the
surface upside-down. (b) Two such operations result in two such singular circles
without affecting the function on the rest of the surface.

If Rf is a cycle graph, we can add such additional singular circles in pairs, without

distorting the function outside a small cylinder C; see Figure 3 (b). �

Recall that a path graph is nontrivial.

Corollary 4.1. A graph (admitting loop edges and multiple edges) is isomorphic

to the Reeb graph of a Morse-Bott function on a closed surface with two critical

values (equivalently, to the Reeb graph of a nonconstant Morse-Bott function on

a surface without saddles) if and only if it is a (finite) path graph, or a (finite) cycle

graph with an even number of vertices.

5. A generalization: Topological Morse-Bott functions

Our results can be generalized to wider classes of functions. One possible simple

generalization can proceed as follows.

Two smooth functions f, g : M → R are topologically equivalent if there exist

homeomorphisms h : M → M and r : R → R such that g = r−1 ◦ f ◦ h:

M
f

// R

M g
//

h

OO

R.

r

OO

Martínez-Alfaro et al. in [11], Definition 4 introduced a notion of (topological) con-

jugacy for Morse-Bott functions, which we can extend to arbitrary smooth functions:
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Definition 5.1. Two topologically equivalent smooth functions f, g : M → R

are topologically conjugate if r preserves orientation and Crit(f) = h(Crit(g)).

Such functions have the same Reeb graph:

Proposition 5.1. Let f, g : M → R be topologically conjugate smooth functions

with finite number of critical values on a closed manifoldM . Then their Reeb graphs

are isomorphic.

P r o o f. By [18], Theorem 3.1, both Reeb graphs Rf and Rg have the structure

of finite graphs. If L = g−1(a) is a level of g, then h(L) = f−1(r(a)) is a level of f ;

moreover, h maps individual contours of g to contours of f . Denote by ϕf : M → Rf

and ϕg : M → Rg the Reeb quotient maps; see Section 2.3. Obviously, ϕf ◦ h ◦ϕ
−1
g :

Rg → Rf is a homeomorphism of CW complexes that maps cells to cells; thus the

corresponding graphs are isomorphic. �

By a topological Morse-Bott function we mean a smooth function topologically

conjugate to a Morse-Bott function. Such functions are not necessarily Morse-Bott:

for example, the Hessian on the critical set can be degenerate in the normal direction,

and the critical set itself can even be not a submanifold but, e.g. have corners. For

our main results, Proposition 5.1 implies:

Corollary 5.1. Theorem 4.1 and Corollary 4.1 also hold for topological Morse-

Bott functions.

Morse-Bott functions with only two connected components of the critical set are

minimal on the four surfaces on which they exist: S2, RP 2, T 2 and K2. By [16],

Table 1 on these surfaces all minimal functions with isolated singularities are topo-

logically conjugate. In contrast, for minimal Morse-Bott functions on these surfaces

there are more options:

Proposition 5.2. On a connected surface, there are at most two classes of topo-

logical conjugacy of Morse-Bott functions whose critical set has two connected com-

ponents:

(i) on S2 and T 2, all such functions are topologically conjugate;

(ii) on RP 2, the two classes A and B differ in the sign: B = {−f | f ∈ A};

(iii) on K2, the two classes differ in the Reeb graph: path vs. cycle.

P r o o f. Theorem 4.1 lists all possible cases; see Table 1.

(i) On S2 and T 2, all such functions define the same Reeb graph (P2 or C2,

respectively), which admits only one acyclic orientation. By [11], Theorem 22, such

functions are topologically conjugate.
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(ii) In the case of RP 2, the Reeb graph is again P2, but its vertices correspond

to different critical contours: one is a center, the other is a singular circle with

nonorientable normal bundle. In terms of [11], Theorem 22, we have two different

labeled digraphs, so [12], Theorem 5.7 gives two classes of topological conjugacy.

(iii) Finally, for K2 there are two graphs, P2 and C2, in which both vertices are

of the same type, so [12], Theorem 5.7 again gives two classes. �

6. Higher dimensions

The fact that only few surfaces admit Morse-Bott functions with two critical values

is interesting in the context of that higher dimensions offer much greater variety of

such manifolds. Below, we will give some examples; a more detailed study will be

the topic of a separate paper.

Example 6.1. The following closed manifolds admit Morse-Bott functions with

two critical values:

(i) Sn, a sphere n > 1;

(ii) RPn, a projective space, n > 2;

(iii) L(p; q), a 3-dimensional lens space.

Indeed, (i) Sn admits a Morse function with two extrema.

(ii) Similarly to Figure 2 (a), represent RPn = RPn−1
⋃
π

Dn, where Dn is a unit

ball and the attaching map is the projection π : Sn−1 → RPn−1. Consider the

function fD : Dn → R that is the distance from the center p ∈ Dn, suitably

smoothed near p, its center singularity (minimum), and the boundary ∂Dn = Sn−1,

on which fD is constant: fD(∂Dn) ≡ 1. Its extension on RPn−1 is constant,

so the Morse-Bott function f : RPn−1
⋃
π

Dn → R has two critical submanifolds:

p and RPn−1.

(iii) Similarly, represent L(p; q) as two solid tori S1 × D2 glued by their bound-

ary T 2. On each solid torus, consider a function g = (1 − fD) ◦ π, where π is the

projection to the second factor and fD is as above; this function is constant zero at

the boundary T 2 and increases to a maximum on a singular circle S1 × p, where p is

as above. Now, consider f : L(p; q) → R with f = g on one of the two solid tori and

f = −g on the other. This is a Morse-Bott function with two critical circles, one in

each of the two solid tori.

Lemma 6.1. Let M be a closed manifold, π : M → N be a fiber bundle over N ,

and f : N → R be a Morse-Bott function with k critical values. Then so is the

composition g = π ◦ f : M → R.
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P r o o f. Since N is also a closed manifold and f is a Morse-Bott function, its

critical set Crit(f) =
⋃
j

Nj is the finite union of closed submanifolds Nj ⊂ N with

nondegenerate Hessian in the normal direction. The bundle projection π is a sub-

mersion, so Crit(g) = π−1(Crit(f)) =
⋃
j

Mj, where each Mj = π−1(Nj) is a closed

submanifold of M .

Consider x ∈ Mj. Let n = dimN and m = dim π(Mj). By the Morse-Bott

Lemma (see Theorem 2.1), in a neighborhood U of π(x) in N there are coordinates

(

N︷ ︸︸ ︷
x1, . . . , xn−m︸ ︷︷ ︸
normal to π(Mj)

, xn−m+1, . . . , xn︸ ︷︷ ︸
π(Mj)

)

such that f
∣∣
U
= f(π(x))+

n−m∑
i=0

±x2
i . Denote by F the fiber, l = dimF , and complete

this coordinate system to a coordinate system

(

N︷ ︸︸ ︷
x1, . . . , xn−m︸ ︷︷ ︸
normal to π(Mj)︸ ︷︷ ︸
normal to Mj

xn−m+1, . . . , xn︸ ︷︷ ︸
π(Mj)

,

F︷ ︸︸ ︷
xn+1, . . . , xn+l)

︸ ︷︷ ︸
Mj

in a neighborhood V of x in M with π(V ) = U . In this coordinate system, we have

the same expression g = g(x)+
n−m∑
i=0

±x2
i , since g does not depend on the coordinates

in the fiber F . We obtained that the Hessian of g is nondegenerate in the normal

direction to Mj; thus g is a Morse-Bott function.

Finally, the critical levels and critical values of g correspond to those of f , thus g

has the same number k of critical values. �

This lemma allows us to construct iteratively new closed manifolds with functions

having two critical values, their variety increasing with dimension, e.g.:

Example 6.2. The following closed manifolds admit a Morse-Bott function with

two critical values:

(i) manifolds from Theorem 4.1 and Example 6.1: Sn, RPn, T 2, K2, L(p; q);

(ii) connected sums M1#M2 by a center of such function, see Figure 2 (b);

(iii) similarly, connected sums along a manifold (when Rf is a path graph);

(iv) products Mn = Mk ×Mn−k, Mk being an already constructed manifold;

(v) fiber bundles over already constructed manifolds;

(vi) torus T n and mapping tori (as fiber bundles over S1);

(vii) compact nilmanifolds (as iterated torus bundles over a torus), e.g. the Heisen-

berg nilmanifold H3 or the Kodaira-Thurston nilmanifold H3 × S1.
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