
Mathematica Bohemica

Stephan Foldes; Sándor Radelecki
On distances and metrics in discrete ordered sets

Mathematica Bohemica, Vol. 146 (2021), No. 3, 251–262

Persistent URL: http://dml.cz/dmlcz/149068

Terms of use:
© Institute of Mathematics AS CR, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/149068
http://dml.cz


146 (2021) MATHEMATICA BOHEMICA No. 3, 251–262

ON DISTANCES AND METRICS IN DISCRETE ORDERED SETS

Stephan Foldes, Sándor Radeleczki, Miskolc

Received July 1, 2019. Published online September 29, 2020.
Communicated by Radomír Halaš

Abstract. Discrete partially ordered sets can be turned into distance spaces in several
ways. The distance functions may or may not satisfy the triangle inequality and restrictions
of the distance to finite chains may or may not coincide with the natural, difference-of-height
distance measured in a chain. It is shown that for semilattices the semimodularity ensures
the good behaviour of the distances considered. The Jordan-Dedekind chain condition,
which is weaker than semimodularity, is equivalent to the basic criterion that the graph-
theoretic distance (realized by zig-zagging up and down freely in the poset to connect two
points) is compatible with distances measured on chains by the relative height. Semimod-
ularity is shown to be equivalent to the validity of the triangle inequality of a restricted
graph-theoretic distance, called the up-down distance. The fact that the up-down distance
corresponds to the computation of degrees of kinship in family trees leads to the observation
that the less familiar canon-law method of computation corresponds also to a mathemat-
ically well behaved Chebyshev-type distance on discrete semilattices. For the Chebyshev
distance also semimodularity is shown to imply the validity of the triangle inequality. The
reverse implication fails, but assuming the validity of the triangle inequality, the semimod-
ularity is shown to have a local characterization by a forbidden six-element subsemilattice.
Like in the classical case of real spaces, the Chebyshev semilattice distance is shown to be
the limit of a converging sequence of distances, all of them verifying the triangle inequality
if the semilattice is semimodular.
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1. Proximity in trees

The degree of kinship between individuals has been considered relevant in ancient

and contemporary societies alike, in the normative context of laws of inheritance,

marriage prohibitions, rules against nepotism, and independence of judges or jurors,

to name a few examples. Mathematically these degrees of kinship can be represented

as distance functions d(x, y) on a discrete partially ordered set (poset). The elements

of the poset represent persons (human individuals) belonging to some population of

individuals living at present or other times (possibly all humanity, or all females,

or everyone who has or had an aristocratic title) and the partial order is defined

as the reflexive-transitive closure of the child-parent relation. Remaining within

the realm of biological child-parent relationships, and within some framework of

currently accepted biological facts and beliefs, this closure will indeed be a partial

order. If, in addition, only male and only female individuals, and only son-father and

daughter-mother relations, respectively, are considered, then the partial order will

consist of trees, or it will be a single tree if any two individuals in the population have

a common ancestor within the population. Trees are the classical model of dynastic

succession in patrilineal (male line) regimes, while they are obviously meaningless in

the context of marriage prohibitions. The legally problematic situation of a couple

in an avunculate marriage and their child is described by a 5-element partial order,

for example the historically somewhat known marriage between

(a) the princess Pauline Sándor de Slavnicza, daughter of

(b) Leontine von Metternich, who was a daughter of

(c) Klemens Wenzel von Metternich, the Austrian chancellor,

(d) and the prince Richard von Metternich, son of the chancellor,

(e) of which a child named Sophie was born.

This poset is indeed a five-element lattice with the minimum (e), maximum (c)

and maximal chains e− a− b− c and e− d− c.

In Roman law, according to a method now referred to as the “civil-law method”,

the degree of kinship between two individuals, say Ego and Alter, was computed

by determining their nearest common ancestor X (which can be Ego or Alter if

these two are in a direct line related), and then adding the number h(E,X) of

generations from X to Ego and the number h(A,X) of generations from X to Alter.

According to another ancient method, adopted in Europe in the Middle Ages and

called the “canon-law method”, the degree of kinship is computed as the greater of

the numbers h(E,X) and h(A,X) (for a historical account see Bouchard [1], Garner’s

legal dictionary [6] or Burtsell’s article in the Catholic Encyclopedia [2]).

In the poset model, assuming the existence of common upper bounds for any pair

of elements E, A, the civil law degree of kinship between E and A corresponds to
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the smallest number of the form h(E,X) + h(A,X) where X is a common upper

bound of E and A and h(E,X) is the length of the shortest maximal chain from E

to X (and similarly for h(A,X)). We call this the top-down distance, since it is

computed by going up from E to X and then down to A. In contrast, the canon

law degree of kinship between E and A corresponds to the smallest number of the

form max(h(E,X), h(A,X)), which, in the context of upper semilattices, we call (for

reasons to be seen later) the “Chebyshev distance”.

Abstracting from any possible applications or social context, we formulate both the

“civil-law” and “canon-law” methods of kinship degree computation in the general

abstract framework of partially ordered sets with a connected Hasse diagram, exam-

ine the relationship between these and some other distance functions, and address

the question of validity of the triangle inequality.

In the mathematical development, non-symmetric distance functions also arise.

This points to questions beyond the purpose of this note, but we bear in mind that

while both the civil law and canon law degrees of kinship are symmetric (the distance

functions modeling them are symmetric functions of two variables), the parentela

systems of fundamental importance in some civil codes (e.g. in Switzerland and

Hungary), designed to measure (in intestate succession) how close is the heir to the

decedent, are by nature asymmetric (the nephew is in the second parentela of the

uncle, but the uncle is in the third parentela of the nephew). Parentela systems could

be formalized similarly to the non-symmetric semilattice distance function appearing

in Section 2 below.

2. Distances in discrete partially ordered sets

By a distance function on a set S we mean a symmetric map d from S2 to the

non-negative reals for which d(x, y) = 0 if and only if x = y. A distance function

may or may not satisfy the triangle inequality

(1) d(x, y) + d(y, z) > d(x, z),

while the term metric is used for a distance function that does. If we omit the

symmetry requirement from the definition of distance function, then we get the

broader concept of a directed distance. Such a directed distance concept appears for

example in Chartrand, Johns, Tian and Winters [3] or Deza and Panteleeva [4].

In the sequel, a given partially ordered set, finite or infinite, is called discrete, if

every maximal chain in every order-convex interval [x, y] is finite. This is a stronger

condition than the requirement that the order relation be generated as the transitive-

reflexive closure of its covering relation, which is a broader definition of discreteness
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adopted for example in [5]. However, discrete posets in the more restrictive sense

presently understood have the convenient property that the order induced on any of

their subsets is also discrete.

A distance function on a discrete poset is called chain-compatible if its restriction

to any maximal chain coincides with this natural chain distance. This is a rather

strong requirement, such distance functions may not always exist.

A poset is said to be upper semimodular (or simply semimodular) if whenever for

a pair of distinct elements x, y there is an element z covered by both x and y, there

also exists an element w covering both x and y (see Monjardet [9] or Haskins and

Gudder [7]). For lattices this means just lattice semimodularity, but the extension

obviously includes trees as well. Lower semimodular posets are defined dually.

In a discrete poset, if two elements are comparable, say x 6 y, then by the height

of y above x, denoted indifferently by h(x, y) or h(y, x) we mean the number that

equals the least cardinality of a finite maximal chain in [x, y] minus 1.

The covering relation of any partial order defines a simple directed graph with

an arrow from element x to element y if and only if x is covered by y, in symbols

x ≺ y. Forgetting the orientation of the arrows, we obtain a simple undirected graph

called the poset’s Hasse diagram. If the Hasse diagram is connected, then we call

the poset connected. Between any two elements of a connected poset, we use the

term zigzag distance for their graphic distance measured in the Hasse diagram of

the poset. Zigzag distance satisfies the triangle inequality (1) (this is so in fact in

non-discrete connected posets as well).

Recall that a poset has the upper (or lower) filtering property if any two elements

have a common upper (or lower, respectively) bound. In a discrete poset with the

upper (lower) filtering property, the up-down (down-up, respectively) distance of

elements x and y is defined as the smallest number of the form h(x, u) + h(y, u)

(or the form h(u, x) + h(u, y), respectively), where u is a common upper (lower)

bound of x and y. These notions are dual, trees and other join semilattices have

the upper filtering property, and lattices have both filtering properties. Obviously,

on any discrete chain, the up-down, down-up and zigzag distance functions coin-

cide and yield what is conceivably the most natural notion of distance on a chain.

On any discrete join-semilattice, define the“Chebyshev” distance function d(x, y) =

max[h(x, x ∨ y), h(y, x ∨ y)]. Generally this distance need not satisfy the triangle

inequality. Note also that the Chebyshev distance, like the zigzag distance, is always

less than or equal to the up-down distance.

A sublattice K of a lattice L is said to be cover-preserving, if for any a, b ∈ K, a is

covered by b in K if and only if a is covered by b in L, too.

Our first observation, which follows easily from the definitions, is the following:
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Proposition 2.1. Suppose that a set is partially ordered by a discrete tree order

(i.e. all order-convex intervals [x, z] are finite, and each pair x, y of incomparable

elements has a least common upper bound x ∨ y but has no common lower bound).

Then the distance function d(x, y), which assigns to the elements x, y the greater of

(Card[x, x∨ y])− 1 and (Card[y, x∨ y])− 1, satisfies the triangle inequality d(x, y) 6

d(x, v) + d(v, y).

The next proposition shows that the existence of a chain-compatible distance

function on a poset is a rather strong requirement:

Proposition 2.2. For any discrete, connected partially ordered set satisfying

either one of the upper or lower filtering properties, the following conditions are

equivalent:

(i) there is a chain-compatible distance function on the poset,

(ii) the zigzag distance on the poset is chain-compatible,

(iii) the poset satisfies the Jordan-Dedekind chain condition (in any given interval

[x, y] all maximal chains have the same number of elements).

P r o o f. As each of the conditions (i)–(iii) is self-dual, we may suppose, without

loss of generality, that the poset satisfies the upper filtering condition.

Obviously condition (ii) implies (i), and (i) implies (iii). To show that (iii) im-

plies (ii), assume (iii) and suppose that there are elements x < y for which the zigzag

distance d(x, y) is less than h(x, y): this will lead to a contradiction. For each such

pair of elements x < y there is a smallest positive integer n = n(x, y) with the

property that there is a sequence of elements x = x0, . . . , y = xn, with xi being com-

parable to xi+1 for 0 6 i 6 n−1, and such that h(x, y) > h(x0, x1)+. . .+h(xn−1, xn).

Choose x < y so that n = n(x, y) is minimal. Then n > 3, x < x1, x1 > x2 and

xn−1 < y. Let u be a common upper bound of x1 and y. We must have, as xn−1 < u

and n is minimal,

h(x1, u) 6 h(x1, x2) + . . .+ h(xn−1, u) = h(x1, x2) + . . .+ h(xn−1, y) + h(y, u)

and

h(x, y) + h(y, u) = h(x, u) = h(x, x1) + h(x1, u)

6 h(x, x1) + h(x1, x2) + . . .+ h(xn−1, y) + h(y, u),

and further

h(x, y) 6 h(x, x1) + h(x1, x2) + . . .+ h(xn−1, y).

�
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For join semilattices the following is not difficult to verify, it is also a consequence

of broader statements appearing in Haskins and Gudders [7] in the context of semi-

modular posets in general (see also Lemma 3.6 in the paper of Kharat, Waphare and

Thakare [8]).

Proposition 2.3. The Jordan-Dedekind chain condition is satisfied in every dis-

crete, semimodular join semilattice.

Making use of this, again as in the case of lattices, we can see that for dis-

crete join semilattices, semimodularity is equivalent to the condition that when-

ever elements x, y have an element z as a common lower bound, we should have

h(x, x ∨ y) 6 h(z, y).

Semimodularity is not necessary for the Jordan-Dedekind condition to hold. Semi-

modularity can be characterized by a condition similar to the triangle inequality as

follows:

Proposition 2.4. A discrete join semilattice is semimodular if and only if we

have for all elements x, y, z the inequality

(2) h(x, x ∨ y) + h(y, y ∨ z) > h(x, x ∨ z).

P r o o f. Assume semimodularity. As x is a common lower bound of x ∨ y, and

x ∨ z and x ∨ y ∨ z is their join, we have

h(x, x ∨ y) > h(x ∨ z, x ∨ y ∨ z)

and similarly we have

h(y, y ∨ z) > h(x ∨ y, x ∨ y ∨ z).

Therefore

h(x, x ∨ y) + h(y, y ∨ z) > [h(x, x ∨ y)− h(x ∨ z, x ∨ y ∨ z)] + h(x ∨ y, x ∨ y ∨ z).

But the right-hand side of this latter inequality equals h(x, x ∨ z).

Conversely, if semimodularity fails, there are elements x, y, z such that both x

and z cover y but x is not covered by x ∨ z. Then

h(x, x ∨ y) = h(x, x) = 0, h(y, y ∨ z) = h(y, z) = 1, h(x, x ∨ z) > 2

and (2) fails. �
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A further characterization of semimodularity can be given in terms of the up-

down distance. In any discrete poset with the upper filtering property, the up-down

distance is always greater than or equal to the zigzag distance, and if it satisfies the

triangle inequality, then it must be identical to the zigzag distance, as explained at

the beginning of the proof of the next proposition. We note that this result can be

derived also from Monjardet (see [9], Theorem 8).

Proposition 2.5. The following conditions are equivalent for any discrete join

semilattice L:

(i) L is semimodular,

(ii) the up-down distance on L satisfies the triangle inequality,

(iii) the up-down distance on L coincides with the zigzag distance.

P r o o f. First of all, in any discrete poset with the upper filtering property, clearly

the up-down distance between any two elements is at least equal to their zigzag

distance. Also (iii) implies (ii) trivially. Conversely, assume that (ii) holds. An

inductive argument on the zigzag distance d(x, y) between elements x, y shows that

every such pair of elements x, y has a common upper bound z such that d(x, y) =

h(x, z) + h(y, z). Thus (ii) and (iii) are equivalent.

If L is not semimodular, then the element z is covered by both x and y for some

elements x, y, z, but the join x ∨ y does not cover x, i.e. h(x, x ∨ y) > 2. Then

3 6 d(x, y) and the triangle inequality d(x, y) 6 d(x, z) + d(z, y) = 2 fails for the

up-down distance.

Conversely, assume that L is semimodular. If the triangle inequality failed for the

up-down distance, for some elements x, y, z we would have

h(x, x ∨ y) + h(y, x ∨ y) + h(y, y ∨ z) + h(z, y ∨ z) < h(x, x ∨ z) + h(z, x ∨ z).

But this is impossible, since by Proposition 2.4 we must have

h(x, x ∨ y) + h(y, y ∨ z) > h(x, x ∨ z)

and

h(z, z ∨ y) + h(y, y ∨ x) > h(z, z ∨ x).

�

As we mentioned earlier, generally the Chebyshev distance need not satisfy the

triangle inequality. However, it does satisfy the triangle inequality in a large class of

semilattices, including trees.

Proposition 2.6. On any discrete, semimodular join semilattice, the Chebyshev

distance satisfies the triangle inequality.
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P r o o f. Assume that the triangle inequality fails in some semilattice, denote the

Chebyshev distance by d, and let x, y, z be elements such that d(x, y) + d(y, z) <

d(x, z). Let a, b, c, d and f , e denote the heights h(x, x ∨ y), h(y, x ∨ y), h(y, y ∨ z),

h(z, y ∨ z) and h(x, x ∨ z), h(z, x ∨ z), respectively, in that order. Without loss of

generality f > e, and then f must be (strictly) greater than each one of the numbers

a+ c, a+ d, b+ c, b+ d. Denote by g, h, i the heights of x∨ y ∨ z above x∨ y, x∨ z,

y∨ z, respectively. By the Jordan-Dedekind condition, f +h = a+ g. From this and

from f > a+ c it follows that

a+ c+ h < a+ g

which implies c < g. This contradicts semimodularity because c = h(y, x ∨ z) and

g = h[x ∨ y, (x ∨ y) ∨ (y ∨ z)]. �

In contrast to the equivalence of (i) and (ii) in Proposition 2.5, semimodularity is

only sufficient but not necessary for the triangle inequality to hold for the Chebyshev

distance in a discrete join semilattice, as the example of a six-element poset N6

displayed in Figure 1 shows.

Figure 1. Poset N6.

Finally, by analogy with classical lp distances, for any real p > 1 consider the

distance function dp on any discrete join semilattice, given by

(3) dp(x, y) = [h(x, x ∨ y)p + h(y, x ∨ y)p]1/p.

Obviously d1 is the up-down distance, and as expected the Chebyshev distance is

the limit of the dp distances as p tends to infinity:

lim
p→∞

dp(x, y) = max[h(x, x ∨ y) + h(y, x ∨ y)].

In fact, again as expected, the dp distance on any discrete semimodular join semi-

lattice (including all discrete semimodular lattices and trees) satisfies the triangle

inequality. In contrast to the Chebyshev distance, semimodularity is characterized

by the triangle inequality for any of the dp distances on a discrete join semilattice,

generalizing the equivalence of (i) and (ii) in Proposition 2.5.

Proposition 2.7. Let p > 1. A discrete join semilattice L is semimodular if and

only if the dp distance function (3) on L satisfies the triangle inequality.
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P r o o f. Assume semimodularity. Proposition 2.4 allows to deduce the triangle

inequality from Minkowski’s inequality (on which the triangle inequality is based in

classical lp spaces). In fact we only need the following specialized two-dimensional

case of Minkowski’s inequality: if a1, a2, b1, b2 are non-negative real numbers and

1 6 p < ∞, then

(4) (ap1 + a
p
2)

1/p + (bp1 + b
p
2)

1/p > [(a1 + b1)
p + (a2 + b2)

p]1/p.

To establish the triangle inequality for the distance dp in L as defined by (3), we

need to show that for all semilattice elements x, y, z,

(5) dp(x, y) + dp(y, z) > dp(x, z).

Letting a1 = h(x, x ∨ y), a2 = h(y, x ∨ y), b1 = h(y, y ∨ z), b2 = h(z, y ∨ z), the

left-hand side of (5) is equal to the left-hand side of (4), while the right-hand side

of (4) is

(6) {[h(x, x ∨ y) + h(y, y ∨ z)]p + [h(z, y ∨ z) + h(y, x ∨ y)]p}1/p.

Now by Proposition 2.4

[h(x, x ∨ y) + h(y, y ∨ z)]p > h(x, x ∨ z)p,

[h(z, y ∨ z) + h(y, x ∨ y)]p > h(z, z ∨ x)p

and thus (6) is at least dp(x, y), completing the proof of (5).

Conversely, if semimodularity fails, then for some elements x, y covering an ele-

ment z, the join x ∨ y does not cover x and thus

h(x, x ∨ y)p > 2p, dp(x, y)
p > 2p, dp(x, y) > 2,

but dp(x, z) = dp(y, z) = 1 and therefore dp(x, z) + dp(z, y) > dp(x, y) fails. �

While, in contrast with the dp distances, the equivalence of semimodularity with

the validity of the triangle inequality fails for the Chebyshev distance, Proposition 2.6

above can still be complemented by the following statement. The Jordan-Dedekind

condition is assumed, as otherwise chain-compatibility cannot hold for any distance

by Proposition 2.2 above.

Proposition 2.8. Let L be a discrete join semilattice in which the Chebyshev

distance is chain-compatible and satisfies the triangle inequality. Then the following

conditions are equivalent:

(i) L is semimodular,

(ii) L does not contain N6 as a join-subsemilattice with height 3 in L.
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P r o o f. (i) obviously implies (ii). Suppose (i) does not hold. Observe that the

Jordan-Dedekind condition holds in L by Proposition 2.2. Since L is not semimodu-

lar, there are elements a, b covering an element x such that y = a∨ b does not cover

the elements a, b. By the triangle inequality for the Chebyshev distance, y must be

at height 2 above a and b, because otherwise the triangle inquality is violated by

d(a, b) > 2 = d(a, x) + d(x, b).

Thus there are elements q and r in L covered by y such that a is covered by q

and b is covered by r. Now x, a, b, q, r, y constitute an N6 join-subsemilattice of

height 3 in L. �

Observe that in any non-semimodular join-semilattice L, if the chain-compatible

Chebyshev distance satisfies the triangle inequality, then the two atoms of any N6

subsemilattice of height 3must be join-irreducible elements in L: for if such an atom b

covers any other element c than the null element x ofN6, then the Chebyshev distance

between c and the other atom a ofN6 would be 3, however d(c, x)+d(x, a) = 1+1 = 2

in the Chebyshev metric.

In the remainder, we focus on (discrete) lattices. Let L be a lattice satisfying the

Jordan-Dedekind chain condition, and a, b, p, q ∈ L with a ∧ b ≺ a ≺ p ≺ a ∨ b and

a∧ b ≺ b ≺ q ≺ a∨ b. Since p∨ q = a∨ b, if p∧ q = a∧ b, then the elements a∧ b, a,

b, p, q, a ∨ b form a cover-preserving sublattice of L isomorphic to N6. In the case

a ∧ b 6= p ∧ q, the chains a ∧ b < p ∧ q < p < a ∨ b and a ∧ b < p ∧ q < q < a ∨ b

must be the maximal chains of length 3, therefore we get a ∧ b ≺ p ∧ q ≺ p, q.

Observe that this implies that {a ∧ b, a, b, p ∧ q, p, q, a ∨ b} forms a cover-preserving

sublattice of L isomorphic to S∗

7 on Figure 2. (Note that the lattice S
∗

7 admits N6

as a join-subsemilattice.)

p ∧ q
q

a ∨ b

p

a

a ∧ b=0

b

Figure 2. Lattice S∗

7 .

Corollary 2.1. Let L be an atomistic and discrete lattice in which the Chebyshev

distance is chain-compatible and satisfies the triangle inequality. Then the following

conditions are equivalent:

(i) L is semimodular,

(ii) L does not contain a cover-preserving sublattice with the bottom element 0

isomorphic to N6 or S
∗

7 .
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P r o o f. (i)⇒(ii) is obvious.

(ii)⇒(i). Observe that (ii) implies that L does not contain N6 as a height 3 join-

subsemilattice, therefore, (i) follows from Proposition 2.8. Indeed, suppose that L

contains a join-subsemilattice {a ∧ b, a, b, p, q, a ∨ b} given in the proof of Propo-

sition 2.8. Since the only join-irreducible elements in an atomistic lattice are its

atoms, the elements a, b must be atoms in L, and hence a ∧ b = 0. Now, ei-

ther {0, a, b, p, q, a ∨ b} is a cover-preserving sublattice of L isomorphic to N6, or

{0, a, b, p∧ q, p, q, a ∨ b} is a cover-preserving sublattice of L isomorphic to S∗

7 . �

3. Conclusion

The investigation presented in this paper originated from the observation that in

trees the triangle inequality is valid not only for the usual distance, but also for a

Chebyshev-type distance function (see Proposition 2.1). The class of posets examined

was enlarged from trees to semilattices, in the case of Proposition 2.2 in fact to posets

with the filtering property, in which larger context of the Jordan-Dedekind chain

condition was seen to be equivalent to chain-compatibility of the graph-theoretical

zigzag distance. From this point on, semimodularity was in the focus of the state-

ments made, starting with the observation stated in Proposition 2.3 that it implies

the Jordan-Dedekind condition and the technical result that the directed, asymmet-

ric distance function h(x, x∨y) also validates the triangle inequality in semimodular

semilattices. Relying partly on this, we established Propositions 2.5–2.7, which state

that semimodularity of a semilattice implies the validity of the triangle inequality of

the following distance functions:

(i) the up-down distance (being a restricted graph-theoretical zigzag distance);

(ii) the Chebyshev distance (being a variant of the up-down distance where the

heights of x ∨ y above x and y are not added, but their maximum is taken);

(iii) any of the dp distances (that analogously to lp spaces converge to the Chebyshev

distance, d1 being in fact the up-down distance).

Semimodularity, however, is a necessary condition for the triangle inequality only

for the dp distances, including the up-down distance (Propositions 2.5 and 2.7): it is

only in the absence of a forbidden six-element subsemilattice that semimodularity is

implied by the validity of the triangle inequality for the Chebyshev distance.
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261



References

[1] C.B. Bouchard: Consanguinity and noble marriages in the tenth and eleventh centuries.
Speculum 56 (1981), 268–287. doi

[2] R.Burtsell: Canonical adoption. The Catholic Encyclopedia Vol. 1. Robert Appleton
Company, New York, 1907. Available at
http://www.newadvent.org/cathen/01147b.htm.

[3] G.Chartrand, G. L. Johns, S. Tian, S. J.Winters: Directed distance in digraphs: Cen-
ters and medians. J. Graph Theory 17 (1993), 509–521. zbl MR doi

[4] M.M.Deza, E.Panteleeva: Quasi-semi-metrics, oriented multi-cuts and related polyhe-
dra. Eur. J. Comb. 21 (2000), 777–795. zbl MR doi

[5] S.Foldes, R.Woodroofe: Antichain cutsets of strongly connected posets. Order 30
(2013), 351–361. zbl MR doi

[6] B.A.Garner: A Dictionary of Modern Legal Usage. Oxford University Press, Oxford,
2001.

[7] L.Haskins, S. Gudder: Height on posets and graphs. Discrete Math. 2 (1972), 357–382. zbl MR doi
[8] V.S.Kharat, B.N.Waphare, N.K.Thakare: On forbidden configurations for strong
posets. Algebra Univers. 51 (2004), 111–124. zbl MR doi

[9] B.Monjardet: Metrics on partially ordered sets–A survey. Discrete Math. 35 (1981),
173–184. zbl MR doi

Authors’ addresses: Stephan Foldes, Institute of Informatics, University of Miskolc,
H3515 Miskolc-Egyetemváros, Hungary, e-mail: foldes.istvan@uni-miskolc.hu; Sándor
Radeleczki, Institute of Mathematics, University of Miskolc, H3515 Miskolc-Egyetemváros,
Hungary, e-mail: matradi@uni-miskolc.hu.

262

http://dx.doi.org/10.2307/2846935
https://zbmath.org/?q=an:0781.05018
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1231014
http://dx.doi.org/10.1002/jgt.3190170408
https://zbmath.org/?q=an:0966.52010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1791206
http://dx.doi.org/10.1006/eujc.1999.0383
https://zbmath.org/?q=an:1282.06009
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3063192
http://dx.doi.org/10.1007/s11083-012-9248-2
https://zbmath.org/?q=an:0238.06002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0306059
http://dx.doi.org/10.1016/0012-365X(72)90014-3
https://zbmath.org/?q=an:1079.06006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2067152
http://dx.doi.org/10.1007/s00012-004-1851-7
https://zbmath.org/?q=an:0463.46016
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0620670
http://dx.doi.org/10.1016/0012-365X(81)90206-5

