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Abstract. We consider the numerical solvability of the general linear boundary value
problem for the systems of linear ordinary differential equations. Along with the contin-
uous boundary value problem we consider the sequence of the general discrete boundary
value problems, i.e. the corresponding general difference schemes. We establish the effec-
tive necessary and sufficient (and effective sufficient) conditions for the convergence of the
schemes. Moreover, we consider the stability of the solutions of general discrete linear
boundary value problems, in other words, the continuous dependence of solutions on the
small perturbation of the initial dates. In the direction, there are obtained the necessary
and sufficient condition, as well. The proofs of the results are based on the concept that
both the continuous and discrete boundary value problems can be considered as so called
generalized ordinary differential equation in the sense of Kurzweil. Thus, our results follow
from the corresponding well-posedness results for the linear boundary value problems for
generalized differential equations.
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1. Statement of the problem and basic notation

The work is dedicated to the investigation of the numerical solvability of the gen-

eral linear boundary value problem for the system of ordinary differential equations

dx

dt
= P (t)x+ q(t),(1.1)

l(x) = c0,(1.2)
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where P and q are, respectively, real matrix valued and vector valued functions with

Lebesque integrable components defined on a closed interval [a, b], where c0 ∈ R
n

is a real vector and l is a linear bounded operator from the space of all continuous

vector valued functions defined on [a, b].

Throughout the paper, we will assume that the absolutely continuous vector func-

tion x0 : [a, b] → R
n is the unique solution of problem (1.1), (1.2) (the conditions

guaranteeing these can be found in [4], for example).

Along with problem (1.1), (1.2) we consider the difference scheme

∆y(k − 1) =
1

m
(G1m(k)y(k) +G2m(k − 1) y(k − 1)(1.1m)

+ g1m(k) + g2m(k − 1)), k = 1, . . . ,m,

Lm(y) = γm,(1.2m)

where m ∈ N and Gjm and gjm (j = 1, 2) are, respectively, mappings of the set

Nm = {1, . . . ,m} into R
n×n and R

n, γm ∈ R
n. Furthermore, for a given m ∈ Nm,

Lm is a linear continuous mapping of the space of vector valued functions from N

into Rn and with values in R
n×n.

In the paper, we want to present the effective necessary and sufficient (moreover,

the effective sufficient) conditions for the convergence of the difference scheme (1.1m),

(1.2m) to x0. Moreover, a criterion is obtained for the stability of the difference

scheme (1.1m), (1.2m).

The problem of numerical stability is a classical one. Up to now it has been

considered by many authors, see e.g. [5], [6], [7], [8], [9], [11], [14] and references

therein. Among them we can highlight the monograph [7], where a.o. the numerical

solvability of the Cauchy-Nicoletti problem for a system of nonlinear functional-

differential equations was treated. Let us note that both in this monograph as well

as in the other above mentioned references, no necessary and the more so no necessary

and sufficient conditions were found.

The problem analogous to the one considered in the paper is investigated in [5]

for the initial problem.

Finally, we note that, like in [3], the second order difference linear problem can be

reduced to some first order difference linear problem of the type (1.1m), (1.2m) and

therefore we can obtain the necessary and sufficient conditions for the convergence

of corresponding second order difference schemes. Analogously, we can consider the

third order difference problem and so on.

The following notations and definitions will be used:

⊲ N, Z and R are, respectively, the sets of all natural, integer and real numbers,

Ñ = {0} ∪ N, R+ = [0,∞[, [a, b] is a closed interval.
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⊲ R
n×m is the space of all real n×m-matrices X = (xij)

n,m
i,j=1 with the norm

‖X‖ = max
j=1,...,m

n∑

i=1

|xij |.

⊲ R
n = R

n×1 is the space of all real column n-vectors x = (xi)
n
i=1.

⊲ On×m (or O) is the zero n×m-matrix. In is an identity n× n matrix.

⊲ 0n is the zero n-vector.

⊲ lim sup
k→∞

xk is the upper limit of the sequence xk ∈ R, k = 1, 2, . . .

⊲ X(t−) and X(t+) are the left and the right limits of the matrix valued function

X : [a, b] → R
n×n at the point t (we assume that X(t) = X(a) for t 6 a and

X(t) = X(b) for t > b, if necessary);

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t);

‖X‖∞ = sup{‖X(t)‖ : t ∈ [a, b]}.

⊲ det(X) is the determinant of the n× n-matrix X .

⊲
b∨
a

(X) is the total variation of the matrix valued function X : [a, b] → R
n×m,

i.e. the sum of total variations of its components xij , i = 1, . . . , n; j = 1, . . . ,m.

⊲ BV([a, b];Rn×m) is the space of all bounded variation matrix valued functions

X : [a, b] → R
n×m, i.e. such that

b∨
a

(X) < ∞ with the norm ‖X‖∞.

⊲ C([a, b];Rn×m) is the space of all matrix valued functions X : [a, b] → R
n×m with

continuous components on [a, b] with the standard norm

‖X‖c = max{‖X(t)‖ : t ∈ [a, b]}.

⊲ AC([a, b];Rn×m) is the set of all matrix valued functions X : [a, b] → R
n×m with

absolutely continuous components.

⊲ L([a, b];Rn×m) is the set of all matrix valued functions X : [a, b] → R
n×m whose

components are Lebesgue integrable.

⊲ |||l||| is the norm of a linear bounded vector valued functional l.

⊲ s1, s2 and sc : BV([a, b];R) → BV([a, b];R) are the operators defined, respectively,

by

s1(x)(a) = 0 s2(x)(a) = 0, sc(x)(a) = x(a),

s1(x)(t) =
∑

a<τ6t

d1x(τ), s2(x)(t) =
∑

a6τ<t

d2x(τ), sc(x)(t) = x(t) −

2∑

j=1

sj(x)(t)

for a < t 6 b.
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If g ∈ BV([a, b];R), f : [a, b] → R and a 6 s < t 6 b, then we assume

∫ t

s

x(τ) dg(τ) = (L− S)

∫

]s,t[

x(τ) dg(τ) + f(t) d1g(t) + f(s) d2g(s),

where (L − S)
∫
]s,t[ f(τ) dg(τ) is Lebesgue-Stieltjes integral over the open interval

]s, t[. It is known (see [13]) that if this integral exists, then the right-hand side of

the integral equality equals to Kurzeil-Stieltjes integral (K-S)
∫ t

s
f(τ) dg(τ) (see [10],

[12], [15]) and therefore
∫ t

s
x(τ) dg(τ) = (K-S)

∫
]s,t[

x(τ) dg(τ).

If a = b, then we assume
∫ b

a
x(t) dg(t) = 0.

If G = (gik)
l,n
i,k=1 ∈ BV([a, b];Rl×n) and F = (fkj)

n,m
k,j=1 : [a, b] → R

n×m, then

Sc(G)(t) ≡ (sc(gik)(t))
l,n
i,k=1, xj(G)(t) ≡ (sj(gik)(t))

l,n
i,k=1, j = 1, 2

and ∫ b

a

dG(τ) · F (τ) =

( n∑

k=1

∫ b

a

fkj(τ) dgik(τ)

)l,m

i,j=1

.

For X ∈ BV([a, b];Rl×n) and Y ∈ BV([a, b];Rn×m), we define

B(X,Y )(t) = X(t)Y (t)−X(a)Y (a)−

∫ t

a

dX(τ) · Y (τ) for t ∈ [a, b],

I(X,Y )(t) =

∫ t

a

d(X(τ) + B(X,Y )(τ)) ·X−1(τ) for t ∈ [a, b].

The operator B has the property

B

(
X,

∫
·

a

dY (τ) · Z(τ)

)
(t) =

∫ t

a

dB(X,Y )(τ) · Z(τ) for t ∈ [a, b](1.3)

(see Lemma 2.1 from [2]).

Further, notice (cf. [15]) that the following relations hold for all f, g ∈ BV([a, b];Rn)

∫ b

a

f(t) dg(t) =

∫ b

a

f(t) dg(t−) + f(b) d1g(b) =

∫ b

a

f(t) dg(t+) + f(a) d2g(a),(1.4)

∫ b

a

f(t) dg(t) +

∫ b

a

g(t) df(t) = f(b)g(b)− f(a)g(a)(1.5)

+
∑

a<t6b

d1f(t) · d1g(t)−
∑

a6t<b

d2f(t) · d2g(t)

(integration-by-parts formula),
∫ b

a

f(t) ds1(g)(t) =
∑

a<t6b

f(t) d1g(t),

∫ b

a

f(t) ds2(g)(t) =
∑

a6t<b

f(t) d2g(t),(1.6)
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and

(1.7) dj

(∫ t

a

f(s) dg(s)

)
= f(t) djg(t) for t ∈ I, j = 1, 2.

For m ∈ N, we will denote Nm = {1, . . . ,m} and Ñm = {0, 1, . . . ,m}. If J ⊂ Z,

then E(J ;Rn×m) is the space of all bounded matrix valued functions Y : J → R
n×m

with the norm

‖Y ‖J = max{‖Y (k)‖ : k ∈ J}.

Form ∈ N, Y ∈ E(Ñm;Rn×m) and i ∈ Nm, we denote ∆Y (i−1) = Y (i)−Y (i−1).

Further, τm = (b−a)/m, τ0m = a, τkm = a+kτm and Ikm = ]τk−1m, τkm[ for m ∈ N

and k ∈ Nm. Moreover, for m ∈ N we define the function νm by

νm(t) =
[ t− a

b− a
m
]
for t ∈ [a, b],

where [T ] stands for the integer part of T . Obviously, νm(τkm) = k for all m ∈ Nm

and k ∈ Ñm.

Now, assume that P ∈ L([a, b];Rn×n), q ∈ L([a, b];Rn) and l : C([a, b];Rn) → R
n

is a linear bounded vector valued functional. Let Gjm ∈ E(Nm;Rn×n), j = 1, 2,

gjm ∈ E(Nm;Rn) and let Lm : E(J ;Rn×m) → R
n be a given linear bounded vector

valued functional for m ∈ N and j ∈ {1, 2}. In addition, assume

G1m(0) = G2m(m) = On×n and g1m(0) = g2m(m) = 0n for m ∈ N.

For all m ∈ N, define the operators pm : BV([a, b];Rn) → E(Ñm;Rn) and qm :

E(Ñm;Rn) → BV([a, b];Rn), respectively, by

pm(x)(k) = x(τkm) for x ∈ BV([a, b];Rn), k ∈ Ñm

and

qm(y)(t)

=





y(k) if t = τkm for some k ∈ Ñm,

y(k)−
1

m
G1m(k)y(k)−

1

m
g1m(k) if t ∈ ]τk−1m, τkm[ for some k ∈ Ñm,

for y ∈ E(Ñm;Rn) and t ∈ [a, b].
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2. Formulation of the main results

2.1. The convergence of difference schemes. We give the proofs of the results

of this chapter below, in Chapter 4.

Definition 2.1. We say that a sequence (G1m, G2m, g1m, g2m;Lm) (m = 1, 2, . . .)

belongs to the set CS(P, q, l) if for every c0 ∈ R
n and the sequence γm ∈ R

n,

m = 1, 2, . . . satisfying the condition

lim
m→∞

γm = c0,

the difference problem (1.1m), (1.2m) has a unique solution ym ∈ E(Ñm;Rn) for any

sufficiently large m and

lim
m→∞

‖ym − pm(x0)‖Ñm
= 0.

Theorem 2.1. Let the conditions

lim
m→∞

Lm(pm(x)) = l(x) for x ∈ BV([a, b];Rn),(2.1)

lim sup
m→∞

|||Lm||| < ∞(2.2)

hold. Then

((G1m, G2m, g1m, g2m;Lm))∞m=1 ∈ CS(P, q; l)(2.3)

if and only if there exist a matrix valued function H ∈ AC([a, b];Rn×n) and a

sequence of matrix valued functions H1m, H2m ∈ E(Ñm;Rn×n), m ∈ N, such that

the conditions

lim sup
m→∞

m∑

k=1

(∥∥∥H2m(k)−H1m(k) +
1

m
H1m(k)G1m(k)

∥∥∥(2.4)

+
∥∥∥H1m(k)−H2m(k − 1) +

1

m
H1m(k)G2m(k − 1)

∥∥∥
)
< ∞,

inf{| det(H(t))| : t ∈ [a, b]} > 0,(2.5)

lim
m→∞

max
k∈Ñm

{‖Hjm(k)−H(τkm)‖} = 0, j = 1, 2(2.6)

hold, and the conditions

lim
m→∞

1

m

νm(t)∑

k=1

H1m(k) (G1m(k) +G2m(k − 1)) =

∫ t

a

H(τ)P (τ) dτ,(2.7)

lim
m→∞

1

m

νm(t)∑

k=1

H1m(k) (g1m(k) + g2m(k − 1)) =

∫ t

a

H(τ)q(τ) dτ(2.8)

are fulfilled uniformly on [a, b].
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R em a r k 2.1. The limits equalities (2.7) and (2.8) are fulfilled uniformly on

[a, b] if and only if the conditions

lim
m→∞

max
l∈Nm

{∣∣∣∣
1

m

l∑

k=1

H1m(k) (G1m(k) +G2m(k − 1))−

∫ τlm

a

H(τ)P (τ) dτ

∣∣∣∣
}

= On×n,

lim
m→∞

max
l∈Nm

{∣∣∣∣
1

m

l∑

k=1

H1m(k)(g1m(k) + g2m(k − 1))−

∫ τlm

a

H(τ)q(τ) dτ

∣∣∣∣
}

= 0n

hold, respectively.

Let X be the fundamental matrix of the system dx/ dt = P (t)x on [a, b] such that

X(a) = In, and for any m ∈ N let Ym be the fundamental matrix of the system

∆y(k − 1) =
1

m
(G1m(k) y(k) +G2m(k − 1) y(k − 1)), k ∈ Nm(2.9)

such that Ym(0) = In.

Theorem 2.2. Let conditions (2.1), (2.2) and

det
(
In + (−1)j

1

m
Gjm(k)

)
6= 0, j = 1, 2; k ∈ Nm; m ∈ N(2.10)

hold. Then inclusion (2.3) holds if and only if the conditions

lim
m→∞

max
k∈Ñm

{‖Y −1
m (k)−X−1(τkm)‖} = 0(2.11)

and

(2.12) lim
m→∞

max
l∈Nm

{∣∣∣∣
1

m

l∑

k=1

Y −1
m (k)(g1m(k) + g2m(k − 1))

−

∫ τlm

a

X−1(τ)q(τ) dτ

∣∣∣∣
}
= 0n

hold.

R em a r k 2.2.

(a) It is well known that if P (t)
∫ t

t0
P (τ) dτ ≡

∫ t

t0
P (τ) dτ · P (t) for some t0 ∈ [a, b],

then X(t) ≡ exp
( ∫ t

t0
P (τ) dτ

)
;

(b) By (2.10) we conclude

Ym(k) =
1∏

i=k

(
In −

1

m
G1m(i)

)−1(
In +

1

m
G2m(i− 1)

)
, k ∈ Nm(2.13)

for every natural m;

(c) In Theorem 2.3, condition (2.4) automatically holds because Ym is the funda-

mental matrix of the homogeneous system (2.9) for every natural m.
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Now we give a method of constructing discrete real matrix valued and vector

valued functions, respectively, Gjm and gjm (j = 1, 2; m ∈ N) for which the condi-

tions of Theorem 2.3 hold. For the construction we use the inductive method. Let

Em : Ñm → R
n×n and ξm : Ñm → R

n, m ∈ N, be discrete matrix valued and vector

valued functions, respectively, such that

lim
m→∞

‖Em‖
Ñm

= 0 and lim
m→∞

m‖ξm‖
Ñm

= 0.

Let

Plm = X(τlm) + Em(l) for l ∈ Ñm and m ∈ N.

Let m be an arbitrary natural number and let G1m(1) and G2m(0) be such that

Ym(1) = P1m.

According to (2.13) we get

(
In −

1

m
G1m(1)

)−1(
In +

1

m
G2m(0)

)
= P1m.

Therefore G1m(1) and G2m(0) are arbitrary matrices such that

G1m(1) = m(In − P−1
1m)−G2m(0)P−1

1m .

Now, let G1m(k), G2m(k − 1) and Ym(k), k = 1, . . . , l − 1, be constructed. For the

construction of G1m(l) and G2m(l − 1) we use the equalities

Ym(l) = Plm

and

Ym(l) =
(
In −

1

m
G1m(l)

)−1(
In +

1

m
G2m(l − 1)

)
Ym(l − 1).

As above, we obtain the relation

G1m(l) = m(In − Pl−1mP−1
lm )−G2m(l − 1)Pl−1m P−1

lm .

So G1m(l) and G2m(l − 1) will be an arbitrary matrix satisfying the last equality.

Let us now construct the discrete vector valued functions g1m and g2m, m ∈ N.

As g1m(l) and g2m(l − 1) we choose arbitrary vectors satisfying the equalities

1

m
Y −1
m (l)(g1m(1) + g2m(l − 1)) = qlm, l ∈ Nm,

where

qlm = ξm(l) +

∫ τlm

a

X−1(τ)q(τ) dτ, l ∈ Nm
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for every natural m. Therefore, we have the equalities

g1m(l) + g2m(l − 1) = mYm(l)qlm, l ∈ Nm, m ∈ N

for the definition of the vector valued functions g1m and g2m, m ∈ N. It is evident

that the constructed vector valued functions satisfy condition (2.12). We use the

above constructed discrete matrix valued and vector valued functions in the following

example.

E x am p l e 2.1. Let X(t) ≡ exp
( ∫ t

a
P (τ) dτ

)
be the fundamental matrix of sys-

tem (1.1) and let Em ≡ On×n and ξm ≡ 0n for m ∈ N. Then

Plm = exp

(∫ τlm

a

P (τ) dτ

)
for l ∈ Ñm and m ∈ N.

If we choose

G2m(l − 1) = PlmP−1
l−1m = exp

(∫ τlm

τl−1m

P (τ) dτ

)
for l ∈ Nm and m ∈ N,

then

G1m(l) = (m− 1)In −m exp

(
−

∫ τlm

τl−1m

P (τ) dτ

)
for l ∈ Nm and m ∈ N.

For the definition of the discrete vector valued functions g1m and g2m we have the

relations

g1m(l) + g2m(l − 1) = m

∫ τlm

a

C(τlm, τ)q(τ) dτ for l ∈ Nm and m ∈ N,

where C(t, τ) is the Cauchy matrix of system (1.1).

In particular, we can take

g1m(l) = αm

∫ τlm

a

C(τlm, τ)q(τ) dτ

and

g2m(l − 1) = (1− α)m

∫ τlm

a

C(τlm, τ)q(τ) dτ

for l ∈ Nm and m ∈ N, where α is some number.

Moreover, we can choose these discrete vector valued functions for the connection

with the Cauchy formulae for system (1.1).
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Theorem 2.3. Let conditions (2.1), (2.2) and

lim sup
m→∞

m∑

k=1

( 1

m
(‖G1m(k)‖+ ‖G2m(k − 1)‖)

)
< ∞

hold and let the conditions

lim
m→∞

1

m

νm(t)∑

k=1

(G1m(k) +G2m(k − 1)) =

∫ t

a

P (τ) dτ,(2.14)

and

lim
m→∞

1

m

νm(t)∑

k=1

(g1m(k) + g2m(k − 1)) =

∫ t

a

q(τ) dτ(2.15)

be fulfilled uniformly on I. Then inclusion (2.3) holds.

Proposition 2.1. Let conditions (2.1), (2.2), (2.4), (2.5), (2.6) and

lim
m→∞

1

m
max
k∈Ñm

{‖Gjm(k)‖+ ‖gjm(k)‖} = 0, j = 1, 2(2.16)

hold and let conditions (2.7) and (2.8) be fulfilled uniformly on [a, b], where H ∈

AC([a, b];Rn×n), H1m, H2m ∈ E(Ñm;Rn×n), m ∈ N. Let, moreover, either

lim sup
m→∞

(
1

m

m∑

k=0

(‖Gjm(k)‖+ ‖gjm(k)‖)

)
< ∞, j = 1, 2

or

lim sup
m→∞

m∑

k=0

(‖H2m(k)−H1m(k)‖+ ‖H1m(k)−H2m(k − 1)‖) < ∞.

Then inclusion (2.3) holds.

Theorem 2.4. Let conditions (2.1), (2.2), (2.4), (2.5), (2.6) and (2.16) hold and

let conditions (2.14), (2.15),

lim
m→∞

1

m

νm(t)∑

k=1

H1m(k) (G1m(k) +G2m(k − 1)) =

∫ t

a

P∗(τ) dτ

and

lim
m→∞

1

m

νm(t)∑

k=1

H1m(k)(g1m(k) + g2m(k − 1)) =

∫ t

a

q∗(τ) dτ
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be fulfilled uniformly on [a, b], where P∗ ∈ L([a, b];Rn×n), q∗ ∈ L([a, b];Rn), H ∈

AC([a, b];Rn×n), H1m, H2m ∈ E(Nm;Rn×n), m ∈ N. Let moreover the system

dx

dt
= (P (t)− P∗(t))x+ q(t)− q∗(t)

have a unique solution under the boundary value condition (1.2). Then

((G1m, G2m, g1m, g2m;Lm))∞m=1 ∈ CS(P − P∗, q − q∗; l).

Corollary 2.1. Let conditions (2.1) and (2.2) hold and there exist a natural µ

and matrix valued functions Bjl ∈ E(Ñm;Rn×n), Bjl(a) = On×n (j = 1, 2; l =

0, . . . , µ− 1) such that

lim sup
m→∞

m∑

k=1

(∥∥∥H2mµ(k)−H1mµ(k) +
1

m
H1mµ(k)G1mµ(k)

∥∥∥

+
∥∥∥H1mµ(k)−H2mµ(k − 1) +

1

m
H1mµ(k)G2mµ(k − 1)

∥∥∥
)
< ∞,

lim
m→∞

max
k∈Ñm

{‖Hjmµ(k)− In‖} = 0, j = 1, 2

and let the conditions

lim
m→∞

1

m

νm(t)∑

k=1

(G1mµ(k) +G2mµ(k − 1)) =

∫ t

a

P (τ) dτ,

lim
m→∞

1

m

νm(t)∑

k=1

(g1mµ(k) + g2mµ(k − 1)) =

∫ t

a

q(τ) dτ

be fulfilled uniformly on [a, b], where

H1m0(k) = H2m0(k) ≡ In,

H1ml+1(k) ≡
( 1

m
H1ml(k)G1m(k) +Q1(H1ml, G1m, G2m)(k) +B1 l+1(k)

)
H1ml(k),

H2ml+1(k) ≡ (Q2(H1ml, G1m, G2m)(k) + B2 l+1(k))H2ml(k),

G1ml+1(k) ≡ H1ml(k)G1m(k), G2m l+1(k) ≡ H1ml(k + 1)G2m(k),

g1ml+1(k) ≡ Hml(k)g1m(k), g2ml+1(k) ≡ Hml(k + 1)g2m(k),

Qj(H1ml, G1m, G2m)(k) ≡ 2In −Hjml(k)−
1

m

k∑

i=1

H1ml(i) (G1m(i) +G2m(i− 1))

j = 1, 2; l = 0, . . . , µ− 1; m = 1, 2, . . .

Then inclusion (2.3) holds.
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If µ = 1 and Bj0(t) ≡ On×n, j = 1, 2, then Corollary 2.1 has the form of

Theorem 2.3.

R em a r k 2.3. In Theorems 2.1, 2.4, Proposition 2.1 and Corollary 2.1, if condi-

tion (2.10) holds, we can assume that Hm(t) ≡ Y −1
m (t), where Ym is the fundamental

matrix of the homogeneous system (2.9), defined by (2.13), for every natural m.

Moreover, condition (2.4) and analogous conditions automatically hold everywhere

in the results circumscribed above, as well.

2.2. The stability of difference schemes. Consider now the question of the

stability of a solution of the difference linear boundary value problem

∆y(k − 1) = G1(k) y(k) +G2(k − 1)y(k − 1)(2.17)

+ g1(k) + g2(k − 1), k ∈ Nm0
,

L(y) ≡

m0∑

k=0

B(k)y(k) = γ0,(2.18)

where m0 > 2 is a fixed natural number, Gj ∈ E(Nm0
;Rn×n), j = 1, 2, γ0 ∈ R

n,

g ∈ E(Nm0
;Rn), and B ∈ E(Nm0

;Rn).

Along with problem (2.17), (2.18) consider the sequence of the problems

∆y(k − 1) = G1m(k) y(k) +G2m(k − 1) y(k − 1)(2.17m)

+ g1m(k) + g2m(k − 1), k ∈ Nm0
,

Lm(y) ≡

m0∑

k=0

Bm(k)y(k) = γm, m ∈ N,(2.18m)

where Gjm ∈ E(Nm0
;Rn×n), j = 1, 2, gm ∈ E(Nm0

;Rn), Bm ∈ E(Nm0
;Rn), and

γm ∈ R
n for every natural m. As above, we assume that

G1(0) = G1m(0) = On×n, g1(0) = g1m(0) = 0n, m ∈ N,

G2(m0) = G2m(m0) = On×n, g2(m0) = g2m(m0) = 0n, m ∈ N

and problem (2.17), (2.18) has the unique solution y0 ∈ E(Ñm0
;Rn) (the necessary

and sufficient conditions are given in [3], for example).

Definition 2.2. We say that a sequence (G1m, G2m, g1m, g2m;Lm), m = 1, 2, . . .,

belongs to the set S(G1, G2, g1, g2;L) if for every γ0 ∈ R
n and the sequence γm ∈ R

n,

m = 1, 2, . . ., satisfying the condition

lim
m→∞

γm = γ0,
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the difference boundary value problem (2.17m), (2.18m) has a unique solution ym ∈

E(Ñm0
;Rn) for any sufficiently large m and

lim
m→∞

‖ym − y0‖Ñm0

= 0.

Theorem 2.5. Let

(2.19) det(In + (−1)jGj(k)) 6= 0 for k ∈ Ñm0
, j = 1, 2

and

(2.20) lim
m→∞

Bm(k) = B(k) for k ∈ Ñm0
.

Then

((G1m, G2m, g1m, g2m;Lm))∞m=1 ∈ S(G1, G2, g1, g2;L)(2.21)

if and only if

(2.22) lim
m→∞

(G1m(k) +G2m(k − 1)) = G1(k) +G2(k − 1) for k ∈ Nm0

and

(2.23) lim
m→∞

(g1m(k) + g2m(k − 1)) = g1(k) + g2(k − 1) for k ∈ Nm0
.

Proposition 2.2. Let conditions (2.19), (2.20),

lim
m→∞

Gjm(k) = Gj(k) for k ∈ Ñm0
, j = 1, 2

and

lim
m→∞

gjm(k) = gj(k) for k ∈ Ñm0
, j = 1, 2

hold. Then inclusion (2.21) holds.

Corollary 2.2. Let conditions (2.19) and (2.20) hold and there exist a natu-

ral µ and matrix valued functions Bjl ∈ E(Ñm0
;Rn×n), Bjl(a) = On×n (j = 1, 2;
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l = 0, . . . , µ− 1) such that the conditions

lim sup
m→∞

m0∑

k=0

(‖H2mµ(k)−H1mµ(k) +H1mµ(k)G1mµ(i)‖

+ ‖H1mµ(k)−H2mµ(k − 1) +H1mµ(k)G2mµ(k − 1)‖) < ∞,

lim
m→∞

Hjmµ(k) = In for k ∈ Ñm0
, j = 1, 2,

lim
m→∞

(G1mµ(k) +G2mµ(k − 1)) = G1(k) +G2(k − 1) for k ∈ Nm0

and

lim
m→∞

(g1mµ(k) + g2mµ(k − 1)) = g1(k) + g2(k − 1) for k ∈ Nm0

hold, where

H1m0(k) = H2m0(k) ≡ In,

H1m l+1(k) ≡
(
H1ml(k)G1m(k) +Q1(H1ml, G1m, G2m)(k) +B1 l+1(k)

)
H1ml(k),

H2m l+1(k) ≡
(
Q2(H1ml, G1m, G2m)(k) +B2 l+1(k)

)
H2ml(k),

G1m l+1(k) ≡ H1ml(k)G1m(k), G2m l+1(k) ≡ H1ml(k + 1)G2m(k),

g1ml+1(k) ≡ Hml(k)g1m(k), g2ml+1(k) ≡ Hml(k + 1)g2m(k),

Qj(H1ml, G1m, G2m)(k) ≡ 2In −Hjml(k)−

k∑

i=1

H1ml(i) (G1m(i) +G2m(i− 1))

j = 1, 2; l = 0, . . . , µ− 1; m = 1, 2, . . .

Then inclusion (2.21) holds.

If µ = 1 and Bj0(t) = On×n, j = 1, 2, then Corollary 2.2 coincides with the

necessary conditions of Theorem 2.5.

3. Generalized ordinary differential equations

The proofs of the results given above are based on the following concept. We

rewrite both problems (1.1), (1.2) and (1.1m), (1.2m) (m ∈ N) as a linear boundary

value problem for systems of so called generalized ordinary differential equations in

the sense of Kurzweil ([1]–[5], [10], [12], [15]). So the continuous system (1.1) as

well as discrete systems (1.1m) (m ∈ N) are, really, the same types of equations.

Therefore, the convergence of differential scheme (1.1m), (1.2m) (m ∈ N) to the

solution of problem (1.1), (1.2) is equivalent to the well-possed question for the

boundary value problem for the last systems. So, using the results of papers [1], [2]

we established the present results.
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We rewrite the boundary value problem (1.1), (1.2)) as a boundary value problem

for the linear system of generalized ordinary differential equations (in the sense of

Kurzweil), i.e. in the form

dx = dA(t) · x+ df(t),(3.1)

l(x) = c0,(3.2)

where A ∈ BV([a, b];Rn×n), f ∈ BV([a, b];Rn), l : BV([a, b];Rn) → R
n is a linear

bounded operator and c0 ∈ R
n is a constant vector.

Under a solution of system (3.1) we understand a vector valued function x ∈

BV([a, b];Rn) such that

x(t) = x(s) +

∫ t

s

dA(τ) · x(τ) + f(t)− f(s) for a 6 s 6 t 6 b.

Along with problem (1.1), (1.2) we consider the sequence of the problems

dx = dAm(t) · x+ dfm(t),(3.1m)

lm(x) = cm, m = 1, 2, . . . ,(3.2m)

where Am ∈ BV([a, b];Rn×n), fm ∈ BV([a, b];Rn), lm : BV([a, b];Rn) → R
n is a

linear bounded operator, and cm ∈ R
n is a constant vector for every natural m.

We use the following.

Definition 3.1. We say that a sequence (Am, fm; lm), m = 1, 2, . . . belongs to

the set S(A, f ; l) if for every c0 ∈ R
n and the sequence cm ∈ R

n, m = 1, 2, . . .

satisfying the condition

(3.3) lim
m→∞

cm = c0,

the boundary value problem (3.1m), (3.2m) has a unique solution xm ∈ BV([a, b];Rn)

for any sufficiently large m and

(3.4) lim
m→∞

‖xm − x0‖∞ = 0.

Along with systems (3.1) and (3.1m) (m ∈ N) we consider, respectively, the cor-

responding homogeneous systems

dx(t) = dA(t) · x(t)(3.10)

and

dx(t) = dAm(t) · x(t).(3.1m0)
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We give some results from [2] concerning inclusion

(3.5) ((Am, fm; lm))∞m=1 ∈ S(A, f ; l)

to be used to prove the main results.

Theorem 3.1. Let the conditions

lim
m→∞

lm(x) = l(x) for x ∈ BV([a, b];Rn),(3.6)

lim sup
m→∞

|||lm||| < ∞(3.7)

and

det(In + (−1)jdjA(t)) 6= 0 for t ∈ [a, b], j = 1, 2(3.8)

hold. Then inclusion (3.5) holds if and only if there exists a sequence of matrix

valued functions H,Hm ∈ BV([a, b];Rn×n) (m = 1, 2, . . .) such that conditions (2.5)

and

(3.9) lim sup
m→∞

b∨

a

(Hm + B(Hm, Am)) < ∞

hold, and the conditions

lim
m→∞

Hm(t) = H(t),(3.10)

lim
m→∞

B(Hm, Am)(t) = B(H,A)(t),(3.11)

lim
m→∞

B(Hm, fm)(t) = B(H, f)(t)(3.12)

are fulfilled uniformly on [a, b].

Theorem 3.2. Let conditions (3.6), (3.7) and

det(In + (−1)jdjAm(t)) 6= 0 for t ∈ [a, b], m ∈ Ñ, j = 1, 2(3.13)

hold. Then inclusion (3.5) holds if and only if the conditions

lim
m→∞

X−1
m (t) = X−1

0 (t)(3.14)

and

lim
m→∞

B(X−1
m , fm)(t) = B(X−1

0 , f)(t)

are fulfilled uniformly on [a, b], where Xm is the fundamental matrix of the homoge-

neous system (3.1m0) for every m ∈ Ñ.
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Theorem 3.3. Let conditions (3.6), (3.7), (3.8) and

lim sup
m→∞

b∨

a

(Am) < ∞(3.15)

hold and let the conditions

lim
m→∞

(Am(t)−Am(a)) = A(t) −A(a)(3.16)

and

lim
m→∞

(fm(t)− fm(a)) = f(t)− f(a)(3.17)

be fulfilled uniformly on I. Then inclusion (3.5) holds.

Corollary 3.1. Let conditions (2.5), (3.6), (3.7), (3.8) hold and let condi-

tions (3.10),

lim
m→∞

∫ t

a

Hm(s)dAm(s) =

∫ t

a

H(s)dA(s),(3.18)

lim
m→∞

∫ t

a

Hm(s)dfm(s) =

∫ t

a

H(s)df(s),(3.19)

lim
m→∞

djAm(t) = djA(t) and lim
m→∞

djfm(t) = djf(t), j = 1, 2(3.20)

be fulfilled uniformly on [a, b], where H,Hm ∈ BV([a, b];Rn×n) (m ∈ N). Let more-

over either

lim sup
m→∞

∑

a6t6b

(‖djAm(t)‖ + ‖djfm(t)‖) < ∞, j = 1, 2(3.21)

or

lim sup
m→∞

∑

a6t6b

‖djHm(t)‖ < ∞, j = 1, 2.(3.22)

Then inclusion (3.5) holds.

Theorem 3.4. Let conditions (2.5), (3.6), (3.7), (3.8) hold and let condi-

tions (3.10), (3.16), (3.17),

lim
m→∞

∫ t

a

d(H−1(s)Hm(s)) · Am(s) = A∗(t)

and

lim
m→∞

∫ t

a

d(H−1(s)Hm(s)) · fm(s) = f∗(t)
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be fulfilled uniformly on [a, b], where A∗, H,Hm ∈ BV([a, b];Rn×n), m ∈ N, f∗, fm ∈

BV([a, b];Rn), m ∈ N. Let moreover the system

dx = d(A(t) −A∗(t)) · x+ d(f(t)− f∗(t))

have a unique solution under condition (1.2). Then

((Am, fm; lm))∞m=1 ∈ S(A −A∗, f − f∗; l).

Corollary 3.2. Let conditions (3.6)–(3.8) hold and there exist a natural µ and

matrix valued and vector valued functions Bl ∈ BV([a, b];Rn×n), Bl(a) = On×n

(l = 0, . . . , µ− 1) such that

lim sup
m→∞

b∨

a

(Amµ) < ∞,

and let the conditions

lim
m→∞

Hmµ−1(t) = In,

lim
m→∞

(Amµ(t)−Amµ(a)) = A(t)−A(a),

lim
m→∞

(fmµ(t)− fmµ(a)) = f(t)− f(a)

be fulfilled uniformly on [a, b], where

Hm0(t) ≡ In,

Hml+1(t) ≡ (In − Aml+1(t) +Am l(a) +Bl+1(t))Hml(t),

Aml+1(t) ≡ Hml(t) + B(Hml, Am)(t),

fml+1(t) ≡ B(Hml, fm)(t), l = 0, . . . , µ− 1; m = 1, 2, . . .

Then inclusion (3.5) holds.

If µ = 1 and B0(t) ≡ On×n, then Corollary 3.2 has the form of Theorem 3.3. For

completeness, we give the proofs of the results presented and used in the section in

brief (the full version one can be found in [1], [2]).

Below, in the proofs, we will assume that A0(t) ≡ A(t), f0(t) ≡ f(t), l0(x) ≡ l(x)

and H0(t) ≡ H(t).
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P r o o f of Theorem 3.3. Let us show that

(3.23) det(In + (−1)j djAm(t)) 6= 0 for t ∈ [a, b], j = 1, 2

for any sufficiently large m. By (3.16)

(3.24) lim
m→∞

djAm(t) = djA(t), j = 1, 2

uniformly on [a, b]. Since
b∨
a

(A) < ∞, the series
∑

t∈[a,b]

‖djA(t)‖ (j = 1, 2) converge.

Thus, for any j ∈ {1, 2} the inequality ‖djA(t)‖ > 1
2 may hold only for some finite

number of points tj1, . . . , tj mj
in [a, b]. Therefore

(3.25) ‖djA(t)‖ <
1

2
for t ∈ [a, b], t 6= tji, i = 1, . . . ,mj .

It follows from (3.8), (3.24) and (3.25) that for any sufficiently largem and j ∈ {1, 2}

(3.26) det(In + (−1)j djAm(tji)) 6= 0, i = 1, . . . ,mj

and

(3.27) ‖djAk(t)‖ <
1

2
for t ∈ [a, b], t 6= tji, i = 1, . . . ,mj .

The latter inequality implies that the matrices In + (−1)jdjAm(t), j = 1, 2, are

invertible for t ∈ [a, b], t 6= tji (i = 1, . . . ,mj) too. Therefore (3.23) is proved.

Besides, by (3.26) and (3.27) there exists a positive number r0 such that for any

sufficiently large m

(3.28) ‖(In + (−1)j djAm(t))−1‖ 6 r0 for t ∈ [a, b], j = 1, 2.

Letm be a sufficiently large natural number. In view of (3.8) and (3.23) there exist

(see [15], Theorem III.2.10) fundamental matrices X and Xm of the homogeneous

systems (3.10) and (3.1m0), respectively, satisfying X(a) = Xm(a) = In. Moreover,

X,X−1
m ∈ BV([a, b];Rn×n), m ∈ N.

Let us show that

lim
m→∞

‖Xm −X‖∞ = 0.(3.29)

We set Zm(t) = Xm(t) − X(t) and Bm(t) = Am(t−) for t ∈ [a, b], m ∈ N. Due

to (1.4), for every t ∈ [a, b], we have d1(Bm(t) − Am(t)) = −d2(Bm(t) − Am(t)) =

−d1Am(t) and

∫ t

a

d(Bm(τ)−Am(τ)) · Zm(τ) = −d1Am(t) · Zm(t).
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Consequently,

Zm(t) ≡ (In − d. 1Am(t))−1

(∫ t

a

d(Am(τ) −A(τ)) ·X(τ) +

∫ t

a

dBm(τ) · Zm(τ)

)
.

From this and (3.28) we get

‖Zm(t)‖ 6 r0

(
εm +

∫ t

a

d‖V (Bm)(τ)‖ · ‖Zm(τ)‖

)
for t ∈ [a, b],

where

εm = sup

{∥∥∥∥
∫ t

a

d(Am(τ) −A(τ)) ·X(τ)

∥∥∥∥ : t ∈ [a, b]

}
.

Hence, according to the Gronwall inequality (see [15], Theorem I.4.30),

‖Zm(t)‖ 6 r0εm exp

(
r0

b∨

a

(Bm)

)
6 r0εm exp

(
r0

b∨

a

(Am)

)
for t ∈ [a, b].

By (3.15), (3.16) and Lemma 2 from [1], this inequality implies (3.29).

It is known (see [15], Theorem III.2.13) that if xm is the solution of (3.1m), then

xm(t) ≡ Xm(t)xm(a) + fm(t)− fm(a)−Xm(t)

∫ t

a

dX−1
m (τ) · (fm(τ) − fm(a)).

Thus, problem (3.1m), (3.2m) has a unique solution if and only if

(3.30) det(lm(Xm)) 6= 0.

Since problem (3.1), (3.2) has the unique solution x0, we have

(3.31) det(l(X)) 6= 0.

Besides, by (3.6), (3.7) and (3.29) we find

lim
m→∞

lm(Xm) = l(X).

Therefore, in view of (3.31), there exists a natural number m0 such that condi-

tion (3.30) holds for every m > m0. Thus, problem (3.1m), (3.2m) has the unique

solution xm for m > m0 and

(3.32) xm(t) ≡ Xm(t)(lm(Xm))−1(cm − lm(Fm(fm))) + Fm(fm)(t),
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where

Fm(fm)(t) = fm(t)− fm(a)−Xm(t)

∫ t

a

dX−1
m (τ) · (fm(τ)− fm(a)).

According to Lemma 2 from [1] we conclude that

lim
m→∞

‖X−1
m −X−1‖∞ = 0(3.33)

and

(3.34) ̺ = sup{‖X−1
m (t)‖ + ‖Xm(t)‖ : t ∈ [a, b], m > m0} < ∞.

The equality

X−1
m (t)−X−1

m (s) = X−1
m (s)

∫ s

t

dAm(τ) ·Xm(τ)X−1
m (t)

implies

‖X−1
m (t)−X−1

m (s)‖ 6 ̺3
t∨

s

(Am) for a 6 s 6 t 6 b, m > m0.

This inequality, together with (3.15) and (3.34), yields

lim sup
m→∞

b∨

a

(X−1
m ) < ∞.

By this, (3.17) and (3.29), it follows from [1], Lemma 1 that

lim
m→∞

∫ t

a

dX−1
m (τ) · (fm(τ) − fm(a)) =

∫ t

a

dX−1(τ) · (f(τ) − f(a))(3.35)

uniformly on [a, b].

Using (3.3), (3.6), (3.7), (3.17), (3.29), (3.30), (3.31) and (3.35), from (3.32) we get

lim
m→∞

‖xk − z‖∞ = 0,

where

z(t) = X(t)(l(X))−1(c0 − l(F (f))) + F (f)(t),

F (f)(t) = f(t)− f(a)−X(t)

∫ t

a

dX−1(τ) · (f(τ)− f(a)).

It is easy to verify that the vector valued function z : [a, b] → R is the solution of

problem (3.1), (3.2). Therefore x0(t) = z(t) for t ∈ [a, b]. �
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P r o o f of Theorem 3.1. First we prove the sufficiency. Due to (2.5) and (3.10)

we can assume without loss of generality that

lim
m→∞

‖H−1
m −H−1‖∞ = 0.(3.36)

By this and Lemma 2.2 from [2], we conclude for every m ∈ Ñ that the function

x ∈ BV([a, b];Rn) is a solution of problem (3.1m), (3.2m) if and only if the function

y(t) ≡ Hm(t)x(t) is a solution of the problem

dy = dA∗

m(t) · y + df∗

m(t), l∗m(y) = cm,

where

A∗

m(t) ≡ I(Hm, Am)(t), f∗

m(t) ≡ B(Hm, fm)(t), l∗m(y) ≡ lm(H−1
m y), m ∈ Ñ.

In addition, inclusion (3.5) holds if and only if

((A∗

m, f∗

m; l∗m))∞m=1 ∈ S(A∗

0, f
∗

0 ; l
∗

0).

Moreover, the conditions of the theorem concerning the sufficient case, coincide with

the ones of Theorem 3.3 for the introduced problems. Thus, the sufficiency follows

from Theorem 3.3.

Let us show the necessity. Let inclusion (3.5) hold. Let cm ∈ R
n (m = 0, 1, . . .)

be an arbitrary sequence of constant vectors satisfying condition (3.3) and let ej =

(δij)
n
i=1, where δii = 1 and δij = 0 if i 6= j, i, j = 1, . . . , n (Kronecker symbol).

In view of (3.5) we may assume that problem (3.1m), (3.2m) has a unique solu-

tion xm for every natural m without loss of generality.

For anym ∈ Ñ and j ∈ {1, . . . , n} let us denote zmj(t) ≡ xm(t)−xmj(t), where xmj

is the unique solution of system (3.1m) under the boundary value condition lm(x) =

cm − ej . Moreover, let Xm(t) be the matrix valued function whose columns are

zm1(t), . . . , zmn(t). It is evident that

lm(zmj) = ej , j = 1, . . . , n; m = 0, 1, . . .(3.37)

So, if
n∑

j=1

αjzmj(t) ≡ 0 for some m ∈ Ñ and α1, . . . , αn ∈ R, then using (3.37) we

have
n∑

j=1

αjej = 0 and therefore α1 = . . . = αn = 0, i.e. Xm (X0(t) ≡ X(t)) is the

fundamental matrix of the homogeneous system (3.1m0).

We may assume without loss of generality that Xm(a) = In, m ∈ Ñ. Due to (3.5),

condition (3.29) holds and therefore using Lemma 2 from [1] we get that (3.33) holds.
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Let us assume that Hm(t) ≡ X−1
m (t) (m ∈ Ñ) and verify conditions (3.9)–(3.12) of

the theorem. Condition (2.5) is evident because H(t) = H0(t) ≡ X−1
0 (t), and X0 is

the fundamental matrix of system (3.10). By (3.33), condition (3.10) holds uniformly

on [a, b]. According to Proposition III.2.15, from [15] we have

X−1
m (t) ≡ In − B(X−1

m , Am)(t), m ∈ Ñ.(3.38)

Therefore,

Hm(t) + B(Hm, Am)(t) ≡ In, m ∈ Ñ.(3.39)

So condition (3.9) holds.

Due to (3.33), condition (3.38) implies that (3.11) is fulfilled uniformly on [a, b].

On the other hand, by (1.3), (3.38) and the definition of the solution of system (3.1m)

we find

B(Hm, fm)(t) = B

(
Hm, xm −

∫
·

a

dAm(s) · xm(s)

)
(t)

= B(Hm, xk)(t)− B

(
Hm,

∫
·

a

dAm(s) · xm(s)

)
(t)

= B(X−1
m , xk)(t)−

∫ t

a

dB(X−1
m , Am)(s) · xm(s)

= X−1
m (t)xm(t)− xm(a)−

∫ t

a

dY −1
m (s) · xk(s)

−

∫ t

a

d(In −X−1
m (s)) · xk(s)

= X−1
m (t)xm(t)− xm(a) for t ∈ [a, b], m ∈ Ñ.

Hence

B(Hm, fm)(t) ≡ Hm(t)xm(t)− xm(a), m ∈ Ñ.

By this and (3.33), if we take into account that due to the necessity of the theorem,

condition (3.4) holds, we conclude that condition (3.12) holds uniformly on I, as

well. The theorem is proved. �

P r o o f of Theorem 3.2. The theorem immediately follows from the proof of the

necessity of Theorem 3.1. �
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P r o o f of Corollary 3.1. By (3.26) and (3.27) (or (3.28)) we have

lim
m→∞

∑

a<s6t

(d1Hm(s) · d1Am(s)− d1H(s) · d1A(s)) = On×n,

lim
m→∞

∑

a<s6t

(d1Hm(s) · d1fm(s)− d1H(s) · d1f(s)) = 0n,

lim
m→∞

∑

a6s<t

(d2Hm(s) · d2Am(s)− d2H(s) · d2A(s)) = On×n

and

lim
m→∞

∑

a6s<t

(d2Hm(s) · d2fm(s)− d2H(s) · d2f(s)) = 0n

uniformly on [a, b]. From these, integration-by-parts formula (1.5), (3.24) and (3.25),

we get that conditions (3.11) and (3.12) are fulfilled uniformly on [a, b]. So, the

corollary follows from Theorem 3.1. �

The proofs of Theorem 3.4 and Corollary 3.2 can be found in paper [2]—they

coincide, respectively, with Corollary 1.4 and Corollary 1.5 from this paper.

R em a r k 3.1. In Theorem 3.2, equality (3.11) from Theorem 3.1 has the form

lim
m→∞

B(X−1
m , Am)(t) = B(X−1

0 , A)(t),

which evidently holds due to equalities (3.14) and (3.38) for every m ∈ Ñ. Moreover,

by (3.38) condition (3.9) is valid.

R em a r k 3.2. Using equality (1.7), from (3.1m0) by the definition of the solution

of the homogeneous system, we conclude

djXm(t) ≡ djA(t) ·Xm(t), j = 1, 2; m = 0, 1, . . .

and therefore by (3.13)

djX
−1
m (t) ≡ −X−1

m (t)(In + (−1)jdjA(t))
−1djA(t), j = 1, 2; m = 0, 1, . . .

If we take into account these equalities, due to integration-by-parts formula (1.5)

and (1.6) we obtain

B(X−1
m , Am)(t) ≡

∫ t

a

X−1
m (τ)dDm(Am)(τ), m ∈ Ñ

and

B(X−1
m , fm)(t) ≡

∫ t

a

X−1
m (τ)dDm(fm)(τ), m ∈ Ñ,
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where Dm(X) : BV([a, b] : Rn×l) → R
n×l, m ∈ Ñ, are the operators defined by

Dm(X)(t) = X(t) +
∑

a<τ6t

(In − d1Am(τ))−1d1Am(τ)X(τ)

−
∑

a6τ<t

(In + d2Am(τ))−1d2Am(τ)X(τ) for t ∈ [a, b], m ∈ Ñ.

R em a r k 3.3. In all theorems and corollaries, we can assume without loss of

generality that H(t) ≡ In.

R em a r k 3.4. In Theorems 3.1, 3.3 and 3.4 and Corollaries 3.1, 3.2, if condi-

tion (3.13) holds, we can assume that Hm(t) ≡ Y −1
m (t), where Ym is the fundamental

matrix of the homogeneous system (3.1m0) for every m ∈ Ñ. In addition, con-

dition (3.9) automatically holds, because by (3.39) its left-hand side equals to 1.

Analogous condition, i.e. the condition concerning the upper limits, is automatically

held everywhere, as well.

4. Proofs of the main results

4.1. Proofs of Theorems 2.1–2.4. Due to the definition of the solutions

of the generalized system (3.1) we conclude that the vector valued function x ∈

AC([a, b];Rn) is a solution of system (1.1) if and only if it is a solution of sys-

tem (3.1), where

A(t) ≡

∫ t

a

P (τ) dτ, f(t) ≡

∫ t

a

q(τ) dτ.

Moreover, by the Hahn-Banach theorem there exists a bounded vector valued

functional l∗ : BV([a, b];Rn) → R
n such that

l∗(x) = l(x) for x ∈ C([a, b];Rn)

and the norm of the operator l∗ on BV([a, b];Rn) equals to the norm of the operator l

on C([a, b];Rn), i.e. |||l∗||| = |||l|||.

So we can assume that l∗(x) ≡ l(x) without loss of generality. Therefore prob-

lem (1.1), (1.2) is equivalent to problem (3.1), (3.2).

Consider now the difference boundary value problem (1.1m), (1.2m), wherem ∈ N.

For every natural m we define the matrix valued and vector valued functions Am ∈

BV([a, b];Rn×n) and fm ∈ BV([a, b];Rn) and the bounded vector valued functional
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lm : BV([a, b];Rn) → R
n, respectively, by the equalities

Am(a) = Am(τ0m) = On×n, Am(τkm) =
1

m

( k∑

i=0

G1m(i) +
k∑

i=1

G2m(i − 1)

)
,(4.1)

Am(t) =
1

m

( k−1∑

i=0

G1m(i) +

k∑

i=1

G2m(i− 1)

)
for t ∈ ]τk−1m, τkm[, k ∈ Nm;

fm(a) = f(τ0m) = 0n, fm(τkm) =
1

m

( k∑

i=0

g1m(i) +

k∑

i=1

g2m(i− 1)

)
,(4.2)

fm(t) =
1

m

( k−1∑

i=0

g1m(i) +

k∑

i=1

g2m(i− 1)

)
for t ∈ ]τk−1m, τkm[, k ∈ Nm;

lm(x) = Lm(pm(x)) for x ∈ BV([a, b];Rn), cm = γm.(4.3)

It is not difficult to verify that the defined matrix valued and vector valued func-

tions have the following properties:

d1Am(τkm) =
1

m
G1m(k), d2Am(τkm) =

1

m
G2m(k), k = 1, . . . ,m,(4.4)

djAm(t) = On×n for t ∈ [a, b] \ {τ1m, . . . , τkm}, j = 1, 2;

d1fm(τkm) =
1

m
g1m(k), d2fm(τkm) =

1

m
g2m(k), k = 1, . . . ,m,(4.5)

djfm(t) = 0n for t ∈ [a, b] \ {τ1m, . . . , τkm}, j = 1, 2

for every m ∈ N.

Lemma 4.1. Let m be an arbitrary natural number. Then the vector valued

function y ∈ E(Ñm;Rn) is a solution of the difference problem (1.1m), (1.2m) if

and only if the vector valued function x = qm(y) ∈ BV([a, b];Rn) is a solution of

the generalized problem (3.1m), (3.2m), where the matrix valued and vector valued

functions Am ∈ BV([a, b];Rn×n) and fm ∈ BV([a, b];Rn) and the bounded vector

valued functional lm are defined by (4.1)–(4.3), respectively.

P r o o f of Lemma 4.1. Let y ∈ E(Ñm;Rn) be a solution of system (1.1m), m ∈ N.

Then by (1.6), (1.7) and the equality x(τkm) = qm(y)(τkm) = y(k), k ∈ Ñm, we get

∫ τkm

τk−1 m

dAm(τ)xm(τ) + f(τkm)− f(τk−1m)

=
1

m
G1m(k)xm(τkm) +

1

m
G2m(k − 1)xm(τk−1m) +

1

m
g1m(k) +

1

m
g2m(k − 1)

=
1

m
G1m(k)y(k) +

1

m
G2m(k − 1)y(k − 1) +

1

m
g1m(k) +

1

m
g2m(k − 1)

= ∆y(k − 1) = xm(τkm)− xm(τk−1m)
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and

d1xm(τkm) = xm(τkm)− xm(τkm−) =
1

m
G1m(k)y(k) +

1

m
g1m(k)

= d1Am(τkm) + d1fm(τkm), k ∈ Nm;

d2xm(τk−1m) = xm(τk−1m+)− xm(τk−1m)

= y(k)− y(k − 1)−
1

m
G1m(k)y(k)−

1

m
g1m(k)

=
1

m
G2m(k − 1)y(k − 1) +

1

m
g2m(k − 1)

= d2Am(τk−1m) + d2fm(τk−1m)

for every m ∈ N and k ∈ Nm.

Analogously, we show that if the vector valued function x ∈ BV([a, b];Rn) is a

solution of the generalized problem (3.1m), (3.2m) defined above, than the vector

valued function y(k) = pm(x)(k) (k = 1, . . . ,m) will be a solution of the difference

problem (1.1m), (1.2m) for every natural m. �

So, we show that the convergence of the difference schemes (3.1m), (3.2m), m ∈ N,

is equivalent to the well-possed question for the corresponding linear generalized

boundary value problem (3.1), (3.2).

In view of Definitions 2.1 and 3.1, the following lemma is true.

Lemma 4.2. Inclusion (2.3) holds if and only if inclusion (3.5) holds, where the

n× n-matrix valued functions A, Am, n-vector valued functions f , fm and n-vector

valued functionals l, lm, m = 1, 2, . . ., are defined as above, by (4.1)–(4.3), respec-

tively.

In order to use Theorems (3.1)–(3.4) and Corollaries 3.1, 3.2, we need to establish

the forms of the operators applying in those results for particular case which corre-

spond to the matrix valued and vector valued functions and vector valued functional

defined by (4.1)–(4.3).

Let H , Hm, m ∈ N, be the matrix valued functions appearing in Theorem 3.1. It

follows from the proof of this theorem that the matrix valued functions Hm (m ∈ N)

appearing in the proof have the property analogous to matrix valued functions Am,

m ∈ N. In particular, we can assume that Hm(t) = In for t ∈ ]τk−1m, τkm[, k ∈ Ñm,

m ∈ N. So we have

Hm(τk−1m+) = Hm(τkm−), k ∈ Ñm, m ∈ N.(4.6)

Due to the definition of the operator B, integration-by-parts formula (1.5) and
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equalities (1.6) we have

B(Hm, Am)(t) =

∫ t

a

Hm(τ) dAm(τ) −
∑

a<τ6t

d1Hm(τ) · d1Am(τ)

+
∑

a6τ<t

d2Hm(τ) · d2Am(τ)

=
∑

a<τ6t

Hm(τ)d1Am(τ) +
∑

a6τ<t

Hm(τ)d2Am(τ)

−
∑

a<τ6t

d1Hm(τ) · d1Am(τ) +
∑

a6τ<t

d2Hm(τ) · d2Am(τ)

for t ∈ [a, b], m ∈ N and therefore

(4.7) B(Hm, Am)(t) =

νm(t)∑

k=1

Hm(τkm−)d1Am(τkm)

+

νm(t)−1∑

k=0

Hm(τkm+)d2Am(τkm) for t ∈ [a, b], m ∈ N.

Analogously, we show that

(4.8) B(Hm, fm)(t) =

νm(t)∑

k=1

Hm(τkm−)d1fm(τkm)

+

νm(t)−1∑

k=0

Hm(τkm+)d2fm(τkm) for t ∈ [a, b], m ∈ N.

Let

H1m(k) = Hm(τkm−) and H2m(k) = Hm(τkm), k ∈ Ñm, m ∈ N.

Then due to (4.6) we get

Hm(τk−1m+) = H1m(k), k ∈ Ñm, m ∈ N.

From this and equalities (4.7) and (4.8), using equalities (4.4) and (4.5), for every

natural m we obtain

(4.9) B(Hm, Am)(t) =
1

m

νm(t)∑

k=1

H1m(k)(G1m(k) +G2m(k − 1))

and

(4.10) B(Hm, fm)(t) =
1

m

νm(t)∑

k=1

H1m(k)(g1m(k) + g2m(k − 1)) for t ∈ [a, b].
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Moreover, for every natural m we have the equalities

djHm(t) = djB(Hm, Am)(t) = On×n,(4.11)

djB(Hm, fm)(t) = 0n for t ∈ [a, b] \ {τ0, . . . , τm}, j = 1, 2,

djHm(τkm) = (−1)j(H1m(k + j − 1)−H2m(k)),(4.12)

djB(Hm, Am)(τkm) =
1

m
H1m(k + j − 1)Gjm(k) for k ∈ Ñm, j = 1, 2.

Hence, by (4.9)–(4.12) we conclude

(4.13)

b∨

a

(Hm + B(Hm, Am)) =

m∑

k=1

(∥∥∥H2m(k)−H1m(k) +
1

m
H1m(k)G1m(k)

∥∥∥

+
∥∥∥H1m(k)−H2m(k − 1) +

1

m
H1m(k)G2m(k − 1)

∥∥∥
)
, m ∈ N.

Thanks to Lemmas 4.1, 4.2 and equalities (4.9)–(4.13), we conclude that Theo-

rems 3.1–3.4 have the forms of Theorems 2.1–2.4, respectively, and Corollaries 3.1, 3.2

have the forms of Proposition 2.1 and Corollary 2.1, respectively, in the considered

case.

4.2. Proof of Theorem 2.5. As above we show that problems (2.17), (2.18)

and (2.17m), (2.18m), m ∈ N, are equivalent to the generalized boundary value

problems (3.1), (3.2) and (3.1m), (3.2m), m ∈ N, respectively, where x = qm0
(y),

Am(a) = Am(τ0m0
) = On×n, Am(τkm0

) =

k∑

i=0

G1m(i) +

k∑

i=1

G2m(i− 1)

and

Am(t) =

k−1∑

i=0

G1m(i) +

k∑

i=1

G2m(i − 1) for t ∈ ]τk−1m, τkm[, k ∈ Nm0
;

fm(a) = fm(τ0m0
) = 0n, fm(τkm0

) =

k∑

i=0

g1m(i) +

k∑

i=1

g2m(i − 1)

and

fm(t) =

k−1∑

i=0

g1m(i) +

k∑

i=1

g2m(i− 1) for t ∈ ]τk−1m, τkm[, k ∈ Nm0
;

lm(x) = Lm(pm0
(x)) for x ∈ BV([a, b];Rn), cm = γm

for every m ∈ Ñ. Here we assume that A0(t) ≡ A(t), f0(t) ≡ f(t), l0(x) ≡ l(x);

Gj0(k) ≡ Gj(k), gj0(k) ≡ gj(k), j = 1, 2; L0(y) ≡ Lm(y).

In addition, Definition 2.2 is equivalent to Definition 3.1. So, in this case, Theo-

rem 3.1 has the form of Theorem 2.5, Corollary 3.2 has the form of Corollary 2.2.
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