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Abstract. We study the existence and uniqueness of integrable solutions to fractional
Langevin equations involving two fractional orders with initial value problems. Our results
are based on Schauder’s fixed point theorem and the Banach contraction principle fixed
point theorem. Examples are provided to illustrate the main results.
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1. Introduction

Fractional differential equations have been of increasing importance in the past

decades due to their diverse applications in science and engineering, such as the

memory of a variety of materials, signal identification and image processing, optical

systems, thermal system materials and mechanical systems, control systems, etc.,

see [11], [13], [14], [15].

By the use of techniques of nonlinear analysis, many authors have studied the

existence and uniqueness of solutions of nonlinear fractional differential equations

involving different kinds of fractional derivatives under various boundary conditions,

see [3], [5], [6], [12], [16], [20] and references therein.

In recent years, the nonlinear Langevin equation with two fractional orders has

attracted a great deal of interest and attention from several researchers. For some

developments on the existence results of the nonlinear Langevin equation with two

fractional orders, we can refer to [1], [2], [4], [19], [21] and the references therein.
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However, as far as we know, few papers deal with the existence of integrable solutions

for nonlinear fractional differential equations. We refer the readers to the papers [7],

[9], [10], [17], [18] and references therein.

Motivated by the papers above, in this paper, we deal with the existence and

uniqueness of integrable solutions for the following initial value problem (IVP for

short) of the Langevin equation involving two fractional orders:

(1.1)











cDβ
0+(

cDα
0+ + γ)x(t) = f(t, x(t)), t ∈ J := [0, 1],

x(k)(0) = µk, 0 6 k < l,

x(α+k)(0) = νk, 0 6 k < n,

where cDα
0+ ,

cDβ
0+ are the Caputo fractional derivatives m − 1 < α 6 m, n − 1 <

β 6 n, l = max{m,n}, m,n ∈ N
∗, γ ∈ R and f : J × R → R is a given function

satisfying some assumptions that will be specified later.

This paper is organized as follows. The second section provides the definitions

and preliminary results to be used in this paper. In Section 3, we give the proof

of our main results by applying fixed point theorems such as Banach’s contraction

principle and Schauder’s fixed point theorem. Finally, in Section 4, some illustrative

examples are introduced to explain the applicability of the theory.

2. Preliminaries

Before proceeding to the statement of our main results, we set forth definitions,

preliminaries, and hypotheses that will be used in our subsequent discussion. For

more details, see [11], [14], [15].

Denote by L1(J,R) the class of Lebesgue integrable functions on the interval

J := [0, 1] with the norm

‖u‖L1 =

∫ 1

0

|u(t)| dt.

Definition 2.1 ([14]). The Gamma function, or second order Euler integral,

denoted Γ(·) is defined as:

(2.1) Γ(α) =

∫

∞

0

e−ttα−1 dt, α > 0.

The Euler Gamma function is an extension of the factorial function to real numbers

and is considered the most important Eulerian function used in fractional calculus

because it appears in almost every fractional integral and derivative definitions. For

positive integer values n, the Gamma function becomes Γ(n) = (n − 1)! and thus
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can be seen as an extension of the factorial function to real values. An important

property of the Gamma function Γ(α) is that it satisfies:

Γ(α+ 1) = αΓ(α), α > 0.

Definition 2.2 ([14]). The Beta function, or the first order Euler function, can

be defined as

B(p, q) =

∫ 1

0

tp−1(1− t)q−1 dt, p, q > 0.

The following formula expresses the Beta function in terms of the Gamma function:

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
, p, q > 0.

We recall the well-known Cauchy formula for n-fold integrals:

(2.2)

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 . . .

∫ tn−1

0

f(tn) dtn =
1

(n− 1)!

∫ t

0

(t− s)α−1f(s) ds.

Focusing on the formula (2.2) we see it as an inspiration to define the Riemann-

Liouville fractional integral; we generalize this formula by letting n take values other

than the non-negative integers and note at the same time that the factorial function

is a special case of the Gamma function Γ(·).

Definition 2.3 ([11]). The Riemann-Liouville fractional integral of order α > 0

of a function f ∈ L1(J,R) is defined by

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds, t > 0, α > 0.

Moreover, for α = 0, we set Iα0+f := f . It is obvious that the Riemann-Liouville

fractional integral coincides with the classical definition of In0+ in the case n ∈ N.

Lemma 2.4 ([11]). The following basic properties of the Riemann-Liouville inte-

grals hold:

(1) The integral operator Iα0+ is linear;

(2) The semigroup property of the fractional integration operator Iα0+ is given by

the following result

Iα0+(I
β
0+f(t)) = Iα+β

0+ f(t), α, β > 0,

holds at every point if f ∈ C([0, 1]) and holds almost everywhere if f ∈ L1(J,R);
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(3) Commutativity

Iα0+(I
β
0+f(t)) = Iβ0+(I

α
0+f(t)), α, β > 0;

(4) The fractional integration operator Iα0+ is bounded in Lp(J,R), 1 6 p 6 ∞,

‖Iα0+f‖Lp 6
1

Γ(α+ 1)
‖f‖Lp.

E x am p l e 2.5 ([11]). Let α > 0 and β > −1. Then the Riemann-Liouville

fractional integral of the power function is given by

Iα0+ t
β =

Γ(β + 1)

Γ(α+ β + 1)
tα+β .

From the definition of the Riemann-Liouville fractional integral, the fractional

derivative is obtained not by replacing α with −α because the integral
∫ t

0
(t−s)−α−1×

f(s) ds is, in general, divergent. Instead, differentiation of arbitrary order is defined

as the composition of ordinary differentiation and fractional integration.

Definition 2.6 ([11], [14]). The Caputo fractional derivative cDα
0+ of order α of

a function f ∈ ACn(J,R) is represented by

cDα
0+f(t) =







1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s) ds if α /∈ N,

f (n)(t) if α ∈ N,

where f (n)(t) = dnf(t)/ dtn, α > 0, n = [α] + 1 and [α] denotes the integer part of

the real number α.

E x am p l e 2.7 ([11]). The Caputo fractional derivative of order n− 1 < α < n

for tβ is given by

(2.3) cDα
0+t

β =







Γ(β + 1)

Γ(β − α+ 1)
tβ−α, β ∈ N ∧ β > n or β /∈ N ∧ β > n− 1,

0, β ∈ {0, . . . , n− 1}.

Lemma 2.8 ([11], [14]). Let α > 0 and n = [α]+1. Then the differential equation

cDα
0+f(t) = 0,

has solutions

f(t) =

n−1
∑

j=0

cjt
j , cj ∈ R, j = 0, . . . , n− 1.
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Lemma 2.9 ([11], [14]). Let α > β > 0, and f ∈ L1(J,R). Then we have:

(1) The Caputo fractional derivative is linear;

(2) The Caputo fractional derivative obeys the following property:

Iα0+
cDα

0+f(t) = f(t) +

n−1
∑

j=0

cjt
j

for some cj ∈ R, j = 0, 1, 2, . . . , n− 1, where n = [α] + 1;

(3) cDα
0+I

α
0+f(t) = f(t);

(4) cDβ
0+I

α
0+f(t) = Iα−β

0+ f(t).

Theorem 2.10 (Schauder’s fixed point theorem, [8]). Let (E, d) be a complete

metric space, let U be a closed convex subset of E, and let T : U → U be a mapping

such that the set {T u : u ∈ U} is relatively compact in E. Then T has at least one
fixed point.

Theorem 2.11 (Kolmogorov compactness criterion, [8]). Let Ω ⊂ Lp(J,R),

1 6 p < ∞. If
(a) Ω is bounded in Lp(J,R),

(b) xh → x as h → 0 uniformly with respect to x ∈ Ω, where

xh(t) =
1

h

∫ t+h

t

x(s) ds,

then Ω is relatively compact in Lp(J,R).

3. Main results

Before starting and proving our main results we introduce the following auxiliary

lemma:

Lemma 3.1 ([19]). x(t) is a solution of the initial problem (1.1) if and only if

x(t) is a solution of the integral equation:

(3.1) x(t) = Iα+β
0+ f(t, x(t))− γIα0+x(t) +Q(t),

where

Q(t) =
n−1
∑

i=0

νi + γµi

Γ(α+ i+ 1)
tα+i +

m−1
∑

j=0

µi

Γ(j + 1)
tj .
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In view of Lemma 3.1 we define the integral operator T : L1(J,R) → L1(J,R) by

(3.2) T x(t) = Iα+β
0+ f(t, x(t))− γIα0+x(t) +Q(t)

=
1

Γ(α+ β)

∫ t

0

(t− s)α+β−1f(s, x(s)) ds

+
1

Γ(α)

∫ t

0

(t− s)α−1x(s) ds+Q(t).

In this section we shall present and prove our main results. First, consider the

following hypotheses:

(H1) f : J × R → R is measurable with respect to t on J and is continuous with

respect to x on R.

(H2) There exist constant L > 0 such that

|f(t, x)− f(t, y)| 6 L|x− y|, t ∈ J, x, y ∈ R.

(H3) There exists a positive function a ∈ L1([0, 1],R+) and a constant b > 0 such

that:

|f(t, x)| 6 a(t) + b|x| ∀ (t, x) ∈ [0, 1]× R.

Now we are able to establish the main results.

Our first result is based on the Banach contraction principle.

Theorem 3.2. Assume that (H1) and (H2) hold. If

(3.3)
L

Γ(α + β + 1)
+

|γ|
Γ(α+ 1)

< 1,

then the IVP (1.1) has a unique solution x ∈ L1(J,R).

P r o o f. Transform the problem (1.1) into a fixed point problem. Clearly, the

fixed points of the operator T defined by (3.2) are solutions of the problem (1.1).
Let x, y ∈ L1(J,R) and t ∈ J . Then we have

‖T x− T y‖L1 =

∫ 1

0

|T x(t) − T y(t)| dt

=

∫ 1

0

|Iα+β
0+ (f(t, x(t)) − f(t, y(t)))− γIα0+(x(t) − y(t))| dt.

6

∫ 1

0

|Iα+β
0+ (f(t, x(t)) − f(t, y(t)))| dt

+ |γ|
∫ 1

0

|Iα0+(x(t)− y(t))| dt.
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Using hypothese (H2) we get

‖T x− T y‖L1 6 L

∫ 1

0

(Iα+β
0+ |x(t) − y(t)|) dt+ |γ|

∫ 1

0

(Iα0+ |x(t)− y(t)|) dt.

According to the Lemma 2.4, we have

‖T x− T y‖L1 6
L

Γ(α+ β + 1)

∫ 1

0

|x(t) − y(t)| dt+ |γ|
Γ(α+ 1)

∫ 1

0

|x(t) − y(t)| dt

6

( L

Γ(α+ β + 1)
+

|γ|
Γ(α+ 1)

)

‖x− y‖L1 .

In view of the given condition (L/Γ(α+ β + 1))+ (|γ|/Γ(α+ 1)) < 1, it follows that

the mapping T is a contraction. Hence, by the Banach fixed point theorem, T has
a unique fixed point which is a unique solution of problem (1.1). This completes the

proof. �

Our next result is upon the Schauder’s fixed point theorem.

Theorem 3.3. Assume that the assumptions (H1) and (H3) are satisfied. If

(3.4)
b

Γ(α + β + 1)
+

|γ|
Γ(α+ 1)

< 1.

Then the IVP (1.1) has at least one solution x ∈ L1(J,R).

P r o o f. In order to use the Schauder fixed-point theorem to prove our main

result, we define a subset Br of L
1(J,R) defined by

Br = {x ∈ L1(J,R) : ‖x‖L1 6 r},

where r satisfies the inequality

(3.5) r >

( ‖a‖L1

Γ(α+ β + 1)
+ ‖Q‖L1

)/(

1− b

Γ(α+ β + 1)
− |γ|

Γ(α+ 1)

)

.

And

‖Q‖L1 =
n−1
∑

i=0

|νi|+ |γµi|
Γ(α+ i+ 2)

+
m−1
∑

j=0

|µj |
Γ(j + 2)

.

Notice that Br is a closed, convex and bounded subset of the Banach space L
1(J,R).

From the assumption (H1) we can deduce that the operator T is continuous.
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We will show that T (Br) ⊂ Br. Suppose that x is an arbitrary element in Br.

Then we have

‖T x‖L1 =

∫ 1

0

|T x(t)| dt

=

∫ 1

0

|Iα+β
0+ f(t, x(t))− γIα0+x(t) +Q(t)| dt

6

∫ 1

0

|Iα+β
0+ f(t, x(t))| dt+ |γ|

∫ 1

0

|Iα0+x(t)| dt+
∫ 1

0

|Q(t)| dt.

Using hypothese (H3) we get

‖T x‖L1 6

∫ 1

0

|Iα+β
0+ (a(t) + b|x(t)|)| dt

+ |γ|
∫ 1

0

Iα0+ |x(t)| dt+
∫ 1

0

|Q(t)| dt

6 ‖Iα+β
0+ a‖L1 + b

∫ 1

0

|Iα+β
0+ (|x(t)|)| dt

+ |γ|
∫ 1

0

|Iα0+(|x(t)|)| dt+ ‖Q‖L1.

According to the Lemma 2.4 and (H3), we have

‖T x‖L1 6
‖a‖L1

Γ(α+ β + 1)
+

b

Γ(α+ β + 1)

∫ 1

0

|x(t)| dt

+
|γ|

Γ(α+ 1)

∫ 1

0

|x(t)| dt+ ‖Q‖L1

6
‖a‖L1

Γ(α+ β + 1)
+
( b

Γ(α+ β + 1)
+

|γ|
Γ(α+ 1)

)

‖x‖L1 + ‖Q‖L1

6
‖a‖L1

Γ(α+ β + 1)
+
( b

Γ(α+ β + 1)
+

|γ|
Γ(α+ 1)

)

r + ‖Q‖L1.

By the condition (3.5), we deduce that

‖T x‖L1 6 r,

which implies that T (Br) ⊂ Br.

Now, we will show that T is compact, that is, T (Br) is relatively compact.

Clearly T (Br) is bounded in L1(J,R), i.e. condition (a) of the Kolmogorov com-

pactness criterion is satisfied. It remains to show (T x)h → (T x) in L1(J,R), for
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each x ∈ Br. Let x ∈ Br. Then we have

‖(T x)h − (T x)‖L1 =

∫ 1

0

|(T x)h(t)− (T x)(t)| dt

=

∫ 1

0

∣

∣

∣

1

h

∫ t+h

t

(T x)(s) ds− (T x)(t)
∣

∣

∣
dt

6

∫ 1

0

( 1

h

∫ t+h

t

|(T x)(s)− (T x)(t)| ds
)

dt

6

∫ 1

0

1

h

∫ t+h

t

|Iα+β
0+ f(s, x(s)) − Iα+β

0+ f(t, x(t))| ds dt

+ |γ|
∫ 1

0

1

h

∫ t+h

t

|Iα0+x(s)− Iα0+x(t)| ds dt

+

∫ 1

0

1

h

∫ t+h

t

|Q(s)−Q(t)| ds dt.

Since f, x ∈ L1(J,R), we get that Iα+β
0+ f, Iα0+x ∈ L1(J,R). Moreover Q ∈ L1(J,R).

So, we have

1

h

∫ t+h

t

|Iα+β
0+ f(s, x(s))− Iα+β

0+ f(t, x(t))| ds → 0,

|γ| 1
h

∫ t+h

t

|Iα0+f(s, x(s)) − Iα0+x(t)| ds → 0,

1

h

∫ t+h

t

|Q(s)−Q(t)| ds → 0 as h → 0, t ∈ J.

Hence

(T x)h → (T x) uniformly as h → 0.

Then by Kolmogorov compactness criterion, T (Br) is relatively compact. As a con-

sequence of Schauder’s fixed point theorem, the IVP (1.1) has at least one solution

in Br. �

4. Examples

In this section, in order to illustrate our results, we consider two examples.

E x am p l e 4.1. Consider the following fractional Langevin IVP:

(4.1)















cD
1/4
0+

(

cD
1/2
0+ +

1

8

)

x(t) =
e−t

20(9 + et)

(

x(t) +
√

1 + x2(t)
)

, t ∈ J := [0, 1],

x(0) = 1,

x(1/2)(0) = 1.
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In this case we take

α =
1

2
, β =

1

4
, γ =

1

8
, µ0 = 1, ν0 = 1, f(t, x) =

e−t

20(9 + et)

(

x+
√

1 + x2
)

.

It is clear that assumption (H1) of the Theorem 3.2 is satisfied. On the other hand,

for any t ∈ J , x, y ∈ R we have

|f(t, x)− f(t, y)| = e−t

10(9 + et)

∣

∣

∣

1

2

(

x− y +
√

1 + x2 −
√

1 + y2
)

∣

∣

∣

=
e−t

10(9 + et)

∣

∣

∣

1

2
(x− y)

(

1 +
x+ y√

1 + x2 +
√

1 + y2

)
∣

∣

∣

6
e−t

10(9 + et)
|x− y| 6 1

100
|x− y|.

Hence condition (H2) holds with L = 1
100 . We shall check that condition (3.3) is

satisfied. Indeed
L

Γ(α+ β + 1)
+

|γ|
Γ(α+ 1)

= 0.1519 < 1.

Then by Theorem 3.2, the IVP (4.1) has a unique integrable solution on [0, 1].

E x am p l e 4.2. Consider the following fractional Langevin IVP:

(4.2)























cD
3
2

0+

(

cD
5/2
0+ +

1

2

)

x(t) =
1

(t2 + 2)2
sinx(t) +

t3

5
, t ∈ J := [0, 1],

x(k)(0) = µk = k, 0 6 k < 3,

x(α+k)(0) = νk =
k

2
, 0 6 k < 2.

In this case we take

α =
5

2
, β =

3

2
, γ =

1

2
, f(t, x) =

1

(t2 + 2)2
sinx+

t3

5
,

Q(t) =

1
∑

i=0

5i

2Γ(α+ i+ 1)
tα+i +

2
∑

j=0

j

Γ(j + 1)
tj .

Simple calculus gives

‖Q‖L1 = 0.8811.

It is clear that assumption (H1) of the Theorem 3.3 is satisfied. On the other hand,

for any t ∈ J , x ∈ R we have

|f(t, x)| 6 1

4
|x|+ t3

5
.
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Hence condition (H3) holds with a(t) = 1
5 t

3, b = 1
4 . We get easily that ‖a‖L1 = 1

20 .

We shall check that condition (3.3) is satisfied. Indeed

b

Γ(α+ β + 1)
+

|γ|
Γ(α+ 1)

= 0.1609 < 1,

and

( ‖a‖L1

Γ(α+ β + 1)
+ ‖Q‖L1

)/(

1− b

Γ(α+ β + 1)
− |γ|

Γ(α+ 1)

)

= 1.0624.

Then r can be chosen as r = 1.5 > 1.0624. Thus, by Theorem 3.3, the IVP (4.2) has

at least one solution on [0, 1].

5. Conclusions

We have presented the existence and uniqueness of integrable solutions to frac-

tional Langevin equations involving two fractional orders with initial value problems.

The proof of the existence results is based on the Schauder fixed point theorem, while

the uniqueness of the solution is proved by applying the Banach contraction prin-

ciple. Moreover, two examples are presented to illustrate the validity of our main

results. In the future, we will extend the results to other fractional derivatives and

boundary value problems.
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