Commentationes Mathematicae Universitatis Caroline

Arockiajeyaraj P. Ezhilarasi; Appu Muthusamy
 Decomposition of Cartesian product of complete graphs into paths and stars with four edges

Commentationes Mathematicae Universitatis Carolinae, Vol. 62 (2021), No. 3, 273-289

Persistent URL: http://dml.cz/dmlcz/149144

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

Decomposition of Cartesian product of complete graphs into paths and stars with four edges

Arockiajeyaraj P. Ezhilarasi, Appu Muthusamy

Abstract

Let P_{k} and S_{k} denote a path and a star, respectively, on k vertices. We give necessary and sufficient conditions for the existence of a complete $\left\{P_{5}, S_{5}\right\}$ decomposition of Cartesian product of complete graphs.

Keywords: graph decomposition; path; star graph; product graph
Classification: 05C51, 05C70

1. Introduction

Unless stated otherwise, all graphs considered here are finite, simple, and undirected. For the standard graph-theoretic terminology, the readers are referred to J. A. Bondy and U. S. R. Murty, see [5]. Let $P_{k}, S_{k}, C_{k}, K_{k}$ denote a path, star, cycle and complete graph, respectively, on k vertices, and let $K_{m, n}$ denote the complete bipartite graph containing m vertices in one partite set and n vertices in the other partite set. A graph whose vertex set is partitioned into subsets V_{1}, \ldots, V_{t} with edge set $\bigcup_{i \neq j \in[t]} V_{i} \times V_{j}$ is a complete t-partite graph, denoted by $K_{n_{1}, \ldots, n_{t}}$, when $\left|V_{i}\right|=n_{i}$ for all i. For $G=K_{2 n}$ or $K_{n, n}$, the graph $G-I$ denotes G with a 1 -factor I removed. For any integer $\lambda>0, \lambda G$ and $G(\lambda)$ respectively denote the graph consisting of λ edge-disjoint copies of G and a multigraph G with uniform edge multiplicity λ. Moreover $v(G)$ and $\varepsilon(G)$ denote the number of vertices and number, respectively, of edges in G. The complement of the graph G is denoted by \bar{G}. For two graphs G and H, we define their Cartesian product, denoted by $G \square H$, with vertex set $V(G \square H)=V(G) \times V(H)$ and edge set

$$
E(G \square H)=\left\{(g, h)\left(g^{\prime}, h^{\prime}\right): g=g^{\prime}, h h^{\prime} \in E(H), \text { or } g g^{\prime} \in E(G), h=h^{\prime}\right\}
$$

[^0]It is well known that the Cartesian product is commutative and associative. For a graph G, if $E(G)$ can be partitioned into E_{1}, \ldots, E_{k} such that the subgraph of G induced by E_{i} is H_{i} for all $1 \leq i \leq k$, then we say that H_{1}, \ldots, H_{k} decompose G, and we write $G=H_{1} \oplus \cdots \oplus H_{k}$, since H_{1}, \ldots, H_{k} are edge-disjoint subgraphs of G. If for $1 \leq i \leq k, H_{i} \cong H$, we say that G has a H-decomposition. If G has a decomposition into p copies of H_{1} and q copies of H_{2}, then we say that G has a $\left\{p H_{1}, q H_{2}\right\}$-decomposition. If such a decomposition exists for all values of p and q satisfying trivial necessary conditions, then we say that G has a $\left\{H_{1}, H_{2}\right\}_{\{p, q\}}$-decomposition or has a complete $\left\{H_{1}, H_{2}\right\}$-decomposition.

Study on $\left\{H_{1}, H_{2}\right\}_{\{p, q\}}$-decomposition of graphs is not new. A. A. Abueida et al. in [1], [3] completely determined the values of n for which $K_{n}(\lambda)$ admits a $\left\{p H_{1}, q H_{2}\right\}$-decomposition such that $H_{1} \cup H_{2} \cong K_{t}$, when $\lambda \geq 1$ and $\left|V\left(H_{1}\right)\right|=$ $\left|V\left(H_{2}\right)\right|=t$, where $t \in\{4,5\}$. A. A. Abueida and M. Daven in [2] proved that there exists a $\left\{p K_{k}, q S_{k+1}\right\}$-decomposition of K_{n} for $k \geq 3$ and $n \equiv 0,1(\bmod k)$. A. A. Abueida and T. O'Neil in [4] proved that for $k \in\{3,4,5\}$, there exists a $\left\{p C_{k}, q S_{k}\right\}$-decomposition of $K_{n}(\lambda)$, whenever $n \geq k+1$ except for the ordered triples $(k, n, \lambda) \in\{(3,4,1),(4,5,1),(5,6,1),(5,6,2),(5,6,4),(5,7,1),(5,8,1)\}$. T.-W. Shyu in [9], [10] obtained a necessary and sufficient condition on (p, q) for the existence of $\left\{P_{4}, S_{4}\right\}_{\{p, q\}}$-decomposition of K_{n} and $K_{m, n}$. H. M. Priyadharsini and A. Muthusamy in [8] established necessary and sufficient conditions for the existence of the $\left(G_{n}, H_{n}\right)$-multidecomposition of $K_{n}(\lambda)$, where $G_{n}, H_{n} \in$ $\left\{C_{n}, P_{n-1}, S_{n-1}\right\}$. A. P. Ezhilarasi and A. Muthusamy in [6] have obtained necessary and sufficient conditions for the existence of a decomposition of product graphs into paths and stars with three edges. S. Jeevadoss and A. Muthusamy in [7] have obtained necessary and sufficient conditions for $\left\{P_{5}, C_{4}\right\}_{\{p, q\}}$-decomposition of product graphs.

In this paper, we show that the necessary condition $m n(m+n-2) \equiv 0(\bmod 8)$ is sufficient for the existence of a complete $\left\{P_{5}, S_{5}\right\}$-decomposition of $K_{m} \square K_{n}$.

Notations. A star S_{k+1} with center at x_{0} and end vertices x_{1}, \ldots, x_{k} is denoted by $\left(x_{0} ; x_{1}, \ldots, x_{k}\right)$ and a path on $k+1$ vertices $x_{0}, x_{1}, \ldots, x_{k}$ is denoted by $x_{0} x_{1} \cdots x_{k}$. We abbreviate the complete $\left\{P_{k+1}, S_{k+1}\right\}$-decomposition as $(4 ; p, q)$ decomposition. In a $(4 ; p, q)$-decomposition of a graph G, we mean p and q are integers with $0 \leq p, q \leq \varepsilon(G) / 4$ and $p+q=\varepsilon(G) / 4$.

To prove our results we state the following:
Theorem 1.1 ([10]). Let $p, q \geq 0, m \geq k>0$, be integers. There exists a $(k ; p, q)$ decomposition of $K_{k, m}$ if and only if the following conditions are fulfilled:

1. $k(p+q)=\varepsilon\left(K_{k, m}\right)$;
2. $p \leq\left\lceil\frac{k}{2}\right\rceil-1 \Rightarrow(p \equiv 0(\bmod 2) \wedge m \geq k+p)$;
3. $\left(\left\lceil\frac{k}{2}\right\rceil \leq p \leq k-1 \wedge k \equiv 1(\bmod 2) \wedge p \equiv 1(\bmod 2)\right) \Rightarrow m \geq k+1$.

Theorem 1.2 ([10]). Let $p, q \geq 0$, and $m>k>0, n \geq 2$, be integers. There exists a $(k ; p, q)$-decomposition of $K_{m, n k}$ if and only if $k(p+q)=\varepsilon\left(K_{m, n k}\right)$.

Theorem 1.3 ([10]). Let $p, q \geq 0$, and $k>m>0, n>0$, be integers. There exists a $(k ; p, q)$-decomposition of $K_{n k, m}$ if and only if the following conditions are fulfilled:

1. $k(p+q)=\varepsilon\left(K_{n k, m}\right)$;
2. there is a $t \in\{0, \ldots, n\}$ such that $\left\lceil\frac{t k}{2}\right\rceil \leq p \leq t m$;
3. $(k \equiv 1(\bmod 2) \wedge n=1) \Rightarrow p \equiv 0(\bmod 2)$.

Theorem 1.4 ([10]). Let $p, q \geq 0$ and $n \geq 4 k>0$ be integers. There exists a $(k ; p, q)$-decomposition of K_{n} if and only if $k(p+q)=\varepsilon\left(K_{n}\right)$.

Remark 1.1. If G and H each have a $(4 ; p, q)$-decomposition, then $G \cup H$ has such a decomposition. In this paper, we denote $G \cup H$ as $G \oplus H$.

Remark 1.2. If two stars S_{5}^{1} and S_{5}^{2} with distinct centers share at least two pendant vertices, then $S_{5}^{1} \oplus S_{5}^{2}$ can be decomposed into $2 P_{5}$. i.e. if $S_{5}^{1}=\left(x_{0} ; y_{0}, \boldsymbol{y}_{\mathbf{1}}\right.$, $\left.\boldsymbol{y}_{2}, y_{3}\right)$ and $S_{5}^{2}=\left(y_{4} ; y_{0}, \boldsymbol{y}_{1}, \boldsymbol{x}_{1}, x_{2}\right)$ are two stars, then the $2 P_{5}$ are $P_{5}^{1}=$ $\boldsymbol{y}_{\mathbf{2}} \boldsymbol{x}_{\mathbf{0}} \boldsymbol{y}_{\boldsymbol{1}} \boldsymbol{y}_{\mathbf{4}} \boldsymbol{x}_{\mathbf{1}}, P_{5}^{2}=y_{3} x_{0} y_{0} y_{4} x_{2}$ (one can easily understand that the edges of stars with bold vertices and ordinary vertices give a required number of paths from stars $)$. We denote such a pair of star as $\left\{\left(x_{0} ; y_{0}, \boldsymbol{y}_{1}, \boldsymbol{y}_{\mathbf{2}}, y_{3}\right),\left(y_{4} ; y_{0}, \boldsymbol{y}_{\mathbf{1}}, \boldsymbol{x}_{1}, x_{2}\right)\right\}$.

Example 1.1. There exists a $(4 ; p, q)$-decomposition of K_{8}.
Solution: Let $V\left(K_{8}\right)=\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$. First we decompose K_{8} into $\left\{2 P_{5}, 5 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& x_{7} x_{1} x_{8} x_{6} x_{2}, x_{2} x_{7} x_{8} x_{4} x_{3},\left(x_{5} ; x_{2}, x_{1}, x_{7}, x_{8}\right),\left\{\left(x_{3} ; \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\boldsymbol{7}}, x_{5}, x_{8}\right),\right. \\
& \left.\quad\left(x_{4} ; x_{1}, x_{5}, \boldsymbol{x}_{\mathbf{6}}, \boldsymbol{x}_{\boldsymbol{7}}\right)\right\},\left\{\left(x_{2} ; x_{1}, \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\mathbf{4}}, x_{8}\right),\left(x_{6} ; x_{5}, \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\boldsymbol{7}}, x_{1}\right)\right\} .
\end{aligned}
$$

Now, we decompose the first $2 P_{5}$ and a S_{5} into $3 P_{5}$ as follows:

$$
\left\{x_{2} x_{5} x_{7} x_{1} x_{8}, x_{1} x_{5} x_{8} x_{6} x_{2}, x_{2} x_{7} x_{8} x_{4} x_{3}\right\}
$$

Hence from the above decompositions and Remark 1.2 we have a $(4 ; p, q)$ decomposition of K_{8} except for the values $p=0,1$. For $p=0,1$, we have the following sets of paths and stars: $\quad\left\{\left(x_{1} ; x_{5}, x_{6}, x_{7}, x_{8}\right),\left(x_{2} ; x_{1}, x_{3}, x_{4}, x_{8}\right)\right.$, $\left(x_{3} ; x_{1}, x_{4}, x_{5}, x_{8}\right), \quad\left(x_{4} ; x_{1}, x_{5}, x_{6}, x_{8}\right), \quad\left(x_{5} ; x_{2}, x_{6}, x_{7}, x_{8}\right), \quad\left(x_{6} ; x_{2}, x_{3}, x_{7}, x_{8}\right)$, $\left.\left(x_{7} ; x_{2}, x_{3}, x_{4}, x_{8}\right)\right\} \quad$ and $\quad\left\{x_{7} x_{1} x_{8} x_{6} x_{2}, \quad\left(x_{2} ; x_{1}, x_{3}, x_{4}, x_{8}\right), \quad\left(x_{3} ; x_{1}, x_{4}, x_{5}, x_{8}\right)\right.$, $\left.\left(x_{4} ; x_{1}, x_{5}, x_{6}, x_{8}\right),\left(x_{5} ; x_{2}, x_{1}, x_{7}, x_{8}\right),\left(x_{6} ; x_{5}, x_{3}, x_{7}, x_{1}\right),\left(x_{7} ; x_{2}, x_{3}, x_{4}, x_{8}\right)\right\}$.

Example 1.2. There exists a $(4 ; p, q)$-decomposition of K_{9}.

Solution: Let $V\left(K_{9}\right)=\left\{x_{1}, x_{2}, \cdots, x_{9}\right\}$ and $G=K_{9}$. Then $G=K_{8} \oplus$ $\left(x_{9} ; x_{1}, x_{2}, x_{3}, x_{4}\right) \oplus\left(x_{9} ; x_{5}, x_{6}, x_{7}, x_{8}\right)$ and by Example 1.1, K_{9} has a $(4 ; p, q)$ decomposition except for the values $p=8$ and 9 . For $p=8,9$, we have the following sets of paths and stars: $\left\{x_{7} x_{1} x_{8} x_{6} x_{2}, x_{2} x_{7} x_{8} x_{4} x_{3}, x_{4} x_{2} x_{1} x_{6} x_{5}, x_{3} x_{2} x_{8} x_{5} x_{1}\right.$, $\left.x_{2} x_{5} x_{7} x_{6} x_{3}, x_{1} x_{3} x_{5} x_{4} x_{6}, x_{1} x_{4} x_{7} x_{9} x_{6}, x_{5} x_{9} x_{8} x_{3} x_{7},\left(x_{9} ; x_{1}, x_{2}, x_{3}, x_{4}\right)\right\} \quad$ and $\left\{x_{7} x_{1} x_{8} x_{6} x_{2}, x_{2} x_{7} x_{8} x_{4} x_{3}, x_{4} x_{2} x_{1} x_{6} x_{5}, x_{2} x_{5} x_{7} x_{6} x_{3}, x_{1} x_{3} x_{5} x_{4} x_{6}, x_{1} x_{4} x_{7} x_{9} x_{6}\right.$, $\left.x_{5} x_{9} x_{8} x_{3} x_{7}, x_{2} x_{9} x_{1} x_{5} x_{8}, x_{8} x_{2} x_{3} x_{9} x_{4}\right\}$.

Example 1.3. There exists a $(4 ; p, q)$-decomposition of $K_{6,6}$.
Solution: Let $V\left(K_{6,6}\right)=\left\{x_{1}, x_{2}, \ldots, x_{6}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{6}\right\}$. First we decompose $K_{6,6}$ into $\left\{0 P_{5}, 9 S_{5}\right\}$ and $\left\{P_{5}, 9 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{1} ; y_{1}, y_{2}, y_{3}, y_{4}\right),\left\{\left(x_{2} ; y_{1}, \boldsymbol{y}_{\mathbf{2}}, \boldsymbol{y}_{\mathbf{5}}, y_{6}\right),\left(x_{3} ; \boldsymbol{y}_{\mathbf{5}}, \boldsymbol{y}_{\mathbf{4}}, y_{3}, y_{6}\right)\right\},\right. \\
& \left\{\left(y_{1} ; \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right),\left(y_{3} ; x_{2}, \boldsymbol{x}_{\boldsymbol{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\}, \\
& \left\{\left(y_{2} ; \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right),\left(y_{5} ; x_{1}, \boldsymbol{x}_{\mathbf{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\}, \\
& \left.\left\{\left(y_{4} ; \boldsymbol{x}_{\mathbf{2}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right),\left(y_{6} ; x_{1}, \boldsymbol{x}_{\mathbf{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\}\right\} \\
& \text { and } \\
& \left\{y_{1} x_{1} y_{2} x_{2} y_{5},\left\{\left(x_{2} ; \boldsymbol{y}_{\mathbf{1}}, \boldsymbol{y}_{\mathbf{3}}, y_{4}, y_{6}\right),\left(x_{3} ; \boldsymbol{y}_{\mathbf{3}}, \boldsymbol{y}_{4}, y_{5}, y_{6}\right)\right\},\right. \\
& \left\{\left(y_{1} ; \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right),\left(y_{3} ; x_{1}, \boldsymbol{x}_{\mathbf{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\}, \\
& \left\{\left(y_{4} ; \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right),\left(y_{2} ; x_{3}, \boldsymbol{x}_{\mathbf{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\}, \\
& \left.\left\{\left(y_{5} ; \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right),\left(y_{6} ; x_{1}, \boldsymbol{x}_{\mathbf{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\}\right\} .
\end{aligned}
$$

By Remark 1.2, we obtain a required even number of paths from $\left\{0 P_{5}, 9 S_{5}\right\}$ and a required odd number of paths from $\left\{P_{5}, 8 S_{5}\right\}$.

2. $(4 ; p, q)$-decomposition of $K_{m} \square K_{n}$

In this section we investigate the existence of $(4 ; p, q)$-decomposition of Cartesian product of complete graphs. To prove our results we need the following lemmas.

Lemma 2.1. There exists a $(4 ; p, q)$-decomposition of $K_{4} \square K_{2}$ with $p \geq 2$.
Proof: Let $V\left(K_{4} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 4,1 \leq j \leq 2\right\}$. First we decompose $K_{4} \square K_{2}$ into $\left\{2 P_{5}, 2 S_{5}\right\}$ as follows:

$$
\begin{gathered}
x_{2,1} x_{4,1} x_{3,1} x_{3,2} x_{2,2}, x_{3,1} x_{2,1} x_{2,2} x_{1,2} x_{3,2} \\
\left\{\left(x_{1,1} ; x_{3,1}, x_{4,1}, \boldsymbol{x}_{\mathbf{2 , 1}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{2}}\right),\left(x_{4,2} ; \boldsymbol{x}_{\mathbf{1 , 2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, x_{3,2}, x_{4,1}\right)\right\} .
\end{gathered}
$$

By Remark 1.2, we have a $\left\{4 P_{5}, 0 S_{5}\right\}$-decomposition of $K_{4} \square K_{2}$ from $\left\{2 P_{5}, 2 S_{5}\right\}$. Now, the $\left\{3 P_{5}, S_{5}\right\}$-decomposition of $K_{4} \square K_{2}$ is given by $x_{1,2} x_{2,2} x_{2,1} x_{4,1} x_{3,1}$, $x_{1,2} x_{4,2} x_{3,2} x_{3,1} x_{2,1}, x_{1,2} x_{3,2} x_{2,2} x_{4,2} x_{4,1},\left(x_{1,1} ; x_{1,2}, x_{3,1}, x_{4,1}, x_{2,1}\right)$.

Lemma 2.2. There exists a $(4 ; p, q)$-decomposition of $K_{6} \square K_{2}, p \neq 0$.

Proof: Let $V\left(K_{6} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 6,1 \leq j \leq 2\right\}$. First we decompose $K_{6} \square K_{2}$ into $\left\{P_{5}, 8 S_{5}\right\}$ and $\left\{2 P_{5}, 7 S_{5}\right\}$ as follows:

$$
\begin{gathered}
\left\{x_{5,1} x_{2,1} x_{4,1} x_{4,2} x_{3,2},\left\{\left(x_{1,1} ; x_{2,1}, x_{3,1}, \boldsymbol{x}_{\mathbf{4 , \mathbf { 1 }}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{2}}\right),\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{1}, \mathbf{2}}, \boldsymbol{x}_{\boldsymbol{3}, \mathbf{2}}, x_{4,2}\right)\right\},\right. \\
\left\{\left(x_{3,1} ; x_{3,2}, x_{2,1}, \boldsymbol{x}_{\mathbf{4}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{6}, \mathbf{1}}\right),\left(x_{6,2} ; \boldsymbol{x}_{\mathbf{6}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, x_{3,2}, x_{4,2}\right)\right\} \\
\left(x_{5,1} ; x_{5,2}, x_{1,1}, x_{3,1}, x_{4,1}\right),\left(x_{6,1} ; x_{2,1}, x_{1,1}, x_{4,1}, x_{5,1}\right) \\
\left.\left(x_{1,2} ; x_{3,2}, x_{4,2}, x_{5,2}, x_{6,2}\right),\left(x_{5,2} ; x_{2,2}, x_{3,2}, x_{4,2}, x_{6,2}\right)\right\} \\
\text { and }\left\{x_{5,1} x_{2,1} x_{4,1} x_{4,2} x_{3,2}, x_{1,1} x_{3,1} x_{4,1} x_{5,1} x_{5,2}\right. \\
\left\{\left(x_{1,1} ; x_{2,1}, x_{4,1}, \boldsymbol{x}_{\mathbf{5 , 1}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{2}}\right),\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{1}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{4,2}\right)\right\} \\
\left\{\left(x_{3,1} ; x_{3,2}, x_{2,1}, \boldsymbol{x}_{\mathbf{5 , \mathbf { 1 }}}, \boldsymbol{x}_{\mathbf{6 , 1}}\right),\left(x_{6,2} ; \boldsymbol{x}_{\mathbf{6 , 1}}, \boldsymbol{x}_{\mathbf{2 , 2}}, x_{3,2}, x_{4,2}\right)\right\} \\
\left.\left(x_{6,1} ; x_{2,1}, x_{1,1}, x_{4,1}, x_{5,1}\right),\left(x_{1,2} ; x_{3,2}, x_{4,2}, x_{5,2}, x_{6,2}\right),\left(x_{5,2} ; x_{2,2}, x_{3,2}, x_{4,2}, x_{6,2}\right)\right\} .
\end{gathered}
$$

By Remark 1.2, we obtain a required even number of paths from $\left\{2 P_{5}, 7 S_{5}\right\}$ except $p=8$ and we obtain a required odd number of paths from $\left\{P_{5}, 8 S_{5}\right\}$ except $p=7,9$. Now,

$$
\begin{gathered}
\left\{x_{5,2} x_{4,2} x_{2,2} x_{1,2} x_{3,2}, x_{3,2} x_{6,2} x_{4,2} x_{1,2} x_{5,2}, x_{3,2} x_{2,2} x_{6,2} x_{1,2} x_{1,1},\right. \\
x_{4,1} x_{5,1} x_{3,1} x_{2,1} x_{2,2}, x_{6,1} x_{2,1} x_{5,1} x_{1,1} x_{3,1}, x_{3,1} x_{3,2} x_{4,2} x_{4,1} x_{2,1}, \\
\left.x_{2,1} x_{1,1} x_{4,1} x_{3,1} x_{6,1},\left\{\left(x_{6,1} ; x_{6,2}, x_{1,1}, \boldsymbol{x}_{4, \mathbf{1}}, \boldsymbol{x}_{5, \mathbf{1}}\right),\left(x_{5,2} ; \boldsymbol{x}_{5, \mathbf{1}}, \boldsymbol{x}_{2,2}, x_{3,2}, x_{6,2}\right)\right\}\right\} \\
\text { and } \quad\left\{x_{5,1} x_{2,1} x_{4,1} x_{4,2} x_{3,2}, x_{4,2} x_{2,2} x_{1,2} x_{1,1} x_{3,1}, x_{2,1} x_{1,1} x_{4,1} x_{3,1} x_{6,1},\right. \\
x_{6,1} x_{6,2} x_{2,2} x_{5,2} x_{4,2}, x_{3,2} x_{1,2} x_{4,2} x_{6,2} x_{5,2}, x_{4,1} x_{5,1} x_{5,2} x_{1,2} x_{6,2}, \\
\left.x_{6,2} x_{3,2} x_{3,1} x_{5,1} x_{1,1}, x_{5,2} x_{3,2} x_{2,2} x_{2,1} x_{3,1},\left(x_{6,1} ; x_{2,1}, x_{1,1}, x_{4,1}, x_{5,1}\right)\right\}
\end{gathered}
$$

gives the remaining number of paths and stars of $K_{6} \square K_{2}$.
Lemma 2.3. There exists a (4; p,q)-decomposition of $K_{8} \square K_{2}$.
Proof: Let $V\left(K_{8} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 8,1 \leq j \leq 2\right\}$ and $K_{2}^{i}\left(K_{8}^{j}\right.$, respectively) be K_{2} in the $i^{\text {th }}$ row (K_{8} in the $j^{\text {th }}$ column, respectively) of $K_{8} \square K_{2}$. We can write $K_{8} \square K_{2}=G_{1} \oplus G_{2}$, where $G_{1}=K_{8}^{1} \oplus K_{2}^{1} \oplus K_{2}^{3} \oplus \cdots \oplus K_{2}^{7}$ and $G_{2}=K_{8}^{2} \oplus K_{2}^{2} \oplus K_{2}^{4} \oplus \cdots \oplus K_{2}^{8}$. Since $G_{1} \cong G_{2}$, it is enough to prove without loss of generality that G_{1} has a $(4 ; p, q)$-decomposition. First decompose G_{1} into $\left\{0 P_{5}, 8 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{1,1} ; x_{1,2}, \boldsymbol{x}_{\mathbf{5 , 1}}, \boldsymbol{x}_{\mathbf{7}, \mathbf{1}}, x_{8,1}\right),\left(x_{3,1} ; x_{3,2}, \boldsymbol{x}_{\mathbf{4}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{7}, \mathbf{1}}, x_{8,1}\right)\right\}, \\
& \left\{\left(x_{5,1} ; x_{5,2}, \boldsymbol{x}_{\mathbf{3 , 1}}, \boldsymbol{x}_{\mathbf{6}, \mathbf{1}}, x_{8,1}\right),\left(x_{7,1} ; x_{7,2}, \boldsymbol{x}_{\mathbf{5 , 1}}, \boldsymbol{x}_{\mathbf{6}, \mathbf{1}}, x_{8,1}\right)\right\} \\
& \quad\left(x_{1,1} ; x_{2,1}, x_{3,1}, x_{4,1}, x_{6,1}\right),\left(x_{4,1} ; x_{2,1}, x_{5,1}, x_{7,1}, x_{8,1}\right) \\
& \quad\left(x_{2,1} ; x_{3,1}, x_{5,1}, x_{7,1}, x_{8,1}\right),\left(x_{6,1} ; x_{2,1}, x_{3,1}, x_{4,1}, x_{8,1}\right) .
\end{aligned}
$$

Now, we decompose the last $4 S_{5}$ into either $\left\{1 P_{5}, 3 S_{5}\right\},\left\{2 P_{5}, 2 S_{5}\right\},\left\{3 P_{5}, S_{5}\right\}$ or $\left\{4 P_{5}\right\}$ as follows:

$$
\begin{gathered}
\left\{x_{4,1} x_{5,1} x_{2,1} x_{3,1} x_{1,1},\left(x_{2,1} ; x_{1,1}, x_{6,1}, x_{7,1}, x_{8,1}\right)\right. \\
\left.\left(x_{4,1} ; x_{1,1}, x_{2,1}, x_{7,1}, x_{8,1}\right),\left(x_{6,1} ; x_{1,1}, x_{3,1}, x_{4,1}, x_{8,1}\right)\right\}
\end{gathered}
$$

$$
\begin{gathered}
\left\{x_{3,1} x_{1,1} x_{6,1} x_{8,1} x_{2,1}, x_{7,1} x_{2,1} x_{3,1} x_{6,1} x_{4,1},\right. \\
\left.\left(x_{2,1} ; x_{1,1}, x_{4,1}, x_{5,1}, x_{6,1}\right),\left(x_{4,1} ; x_{1,1}, x_{5,1}, x_{7,1}, x_{8,1}\right)\right\}, \\
\left\{x_{2,1} x_{1,1} x_{6,1} x_{4,1} x_{5,1}, x_{7,1} x_{4,1} x_{8,1} x_{6,1} x_{3,1}\right. \\
\left.x_{3,1} x_{1,1} x_{4,1} x_{2,1} x_{6,1},\left(x_{2,1} ; x_{3,1}, x_{5,1}, x_{7,1}, x_{8,1}\right)\right\} \\
\text { or } \quad\left\{x_{2,1} x_{1,1} x_{6,1} x_{4,1} x_{5,1}, x_{3,1} x_{1,1} x_{4,1} x_{2,1} x_{8,1},\right. \\
\left.x_{6,1} x_{2,1} x_{7,1} x_{4,1} x_{8,1}, x_{8,1} x_{6,1} x_{3,1} x_{2,1} x_{5,1}\right\} .
\end{gathered}
$$

Now, from $\left\{4 P_{5}\right\}$ and the paired stars given above we can obtain an even number of paths and from $\left\{3 P_{5}, S_{5}\right\}$ and the paired stars given above we can obtain an odd number of paths (see Remark 1.2).

Lemma 2.4. There exists a $(4 ; p, q)$-decomposition of $K_{10} \square K_{2}$.
Proof: Let $V\left(K_{10} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 10,1 \leq j \leq 2\right\}$. We can write $K_{10} \square K_{2}=\left(K_{6} \square K_{2}\right) \oplus\left(K_{4} \square K_{2}\right) \oplus 2 K_{6,4}$. By Lemmas 2.1 and 2.2, $K_{4} \square K_{2}$ has a $(4 ; p, q)$-decomposition with $p \geq 2$ and $K_{6} \square K_{2}$ has a ($4 ; p, q$)-decomposition with $p \neq 0$. Also, by Theorem $1.1, K_{6,4}$ has a $(4 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{10} \square K_{2}$ has a $(4 ; p, q)$-decomposition with $p \geq 3$. Now, the following $\left\{25 S_{5}\right\}$ gives us the $\left\{0 P_{5}, 25 S_{5}\right\}$ and $\left\{2 P_{5}, 23 S_{5}\right\}$-decomposition of $K_{10} \square K_{2}$ (use Remark 1.2)

$$
\begin{gathered}
\left(x_{8,1} ; x_{1,1}, x_{7,1}, x_{9,1}, x_{10,1}\right),\left(x_{9,1} ; x_{2,1}, x_{4,1}, x_{7,1}, x_{10,1}\right),\left(x_{10,1} ; x_{2,1}, x_{4,1}, x_{5,1}, x_{7,1}\right) \\
\left\{\left(x_{2,1} ; \boldsymbol{x}_{\mathbf{5 , 1}}, \boldsymbol{x}_{\mathbf{6 , 1}}, x_{4,1}, x_{2,2}\right),\left(x_{3,1} ; x_{4,1}, x_{5,1}, \boldsymbol{x}_{\mathbf{6}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{3}, 2}\right)\right\} \\
\left(x_{1,1} ; x_{5,1}, x_{6,1}, x_{9,1}, x_{1,2}\right),\left(x_{4,2} ; x_{2,2}, x_{3,2}, x_{9,2}, x_{4,1}\right),\left(x_{5,2} ; x_{1,2}, x_{2,2}, x_{3,2}, x_{5,1}\right) \\
\left(x_{6,2} ; x_{1,2}, x_{2,2}, x_{3,2}, x_{6,1}\right),\left(x_{7,2} ; x_{8,2}, x_{9,2}, x_{10,2}, x_{7,1}\right),\left(x_{8,2} ; x_{1,2}, x_{9,2}, x_{10,2}, x_{8,1}\right) \\
\quad\left(x_{9,2} ; x_{1,2}, x_{2,2}, x_{10,2}, x_{9,1}\right),\left(x_{10,2} ; x_{2,2}, x_{4,2}, x_{5,2}, x_{10,1}\right) \\
\left(x_{1, j} ; x_{3, j}, x_{4, j}, x_{7, j}, x_{10, j}\right),\left(x_{3, j} ; x_{7, j}, x_{8, j}, x_{9, j}, x_{10, j}\right),\left(x_{2, j} ; x_{1, j}, x_{3, j}, x_{8, j}, x_{7, j}\right) \\
\left(x_{4, j} ; x_{5, j}, x_{6, j}, x_{7, j}, x_{8, j}\right),\left(x_{5, j} ; x_{6, j}, x_{7, j}, x_{8, j}, x_{9, j}\right),\left(x_{6, j} ; x_{7, j}, x_{8, j}, x_{9, j}, x_{10, j}\right)
\end{gathered}
$$

$j=1,2$. For $p=1$, decompose the first $3 S_{5}$ into $\left\{P_{5}, 2 S_{5}\right\}$ as follows:

$$
\left\{x_{1,1} x_{8,1} x_{7,1} x_{10,1} x_{5,1},\left(x_{9,1} ; x_{2,1}, x_{4,1}, x_{7,1}, x_{8,1}\right),\left(x_{10,1} ; x_{2,1}, x_{4,1}, x_{8,1}, x_{9,1}\right)\right\} .
$$

This $\left\{P_{5}, 2 S_{5}\right\}$ together with the remaining stars in the above $\left\{25 S_{5}\right\}$ will give a required decomposition of $K_{10} \square K_{2}$.

Lemma 2.5. There exists a $(4 ; p, q)$-decomposition of $K_{12} \square K_{2}$.
Proof: Let $V\left(K_{12} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 12,1 \leq j \leq 2\right\}$. We can write $K_{12} \square K_{2}=G \oplus\left(K_{8} \square K_{2}\right)$, where $G=\left(K_{12} \square K_{2}\right) \backslash E\left(K_{8} \square K_{2}\right)$ and $G=\left(K_{4} \square\right.$ $\left.K_{2}\right) \oplus 2 K_{8,4}$. By Theorem 1.1 and Lemma $2.1, K_{8,4}$ has a (4; $\left.p, q\right)$-decomposition and $K_{4} \square K_{2}$ has a $(4 ; p, q)$-decomposition with $p \geq 2$. Hence by Remark 1.1, G has a $(4 ; p, q)$-decomposition with $p \geq 2$. Now, for $p=0$ we have the following $20 S_{5}$ of G

$$
\begin{gathered}
\left(x_{1,1} ; x_{2,1}, x_{11,1}, x_{12,1}, x_{1,2}\right),\left(x_{2,1} ; x_{3,1}, x_{4,1}, x_{11,1}, x_{12,1}\right), \\
\left(x_{3,1} ; x_{1,1}, x_{4,1}, x_{11,1}, x_{12,1}\right),\left(x_{4,1} ; x_{4,2}, x_{1,1}, x_{11,1}, x_{12,1}\right), \\
\left(x_{1,2} ; x_{2,2}, x_{3,2}, x_{11,2}, x_{12,2}\right),\left(x_{2,2} ; x_{2,1}, x_{3,2}, x_{11,2}, x_{12,2}\right), \\
\left(x_{3,2} ; x_{3,1}, x_{4,2}, x_{11,2}, x_{12,2}^{2}\right),\left(x_{4,2} ; x_{1,2}, x_{2,2}, x_{11,2}, x_{12,2}\right), \\
\\
\left(x_{i, j} ; x_{1, j}, x_{2, j}, x_{3, j}, x_{4, j}\right)
\end{gathered}
$$

for $5 \leq i \leq 10$ and $j=1,2$. For $p=1$, decompose the first $4 S_{5}$ into $\left\{P_{5}, 3 S_{5}\right\}$ as follows:

$$
\begin{gathered}
\left\{x_{11,1} x_{2,1} x_{12,1} x_{1,1} x_{1,2},\left(x_{1,1} ; x_{2,1}, x_{3,1}, x_{4,1}, x_{11,1}\right)\right. \\
\left.\left(x_{3,1} ; x_{2,1}, x_{4,1}, x_{11,1}, x_{12,1}\right),\left(x_{4,1} ; x_{4,2}, x_{2,1}, x_{11,1}, x_{12,1}\right)\right\} .
\end{gathered}
$$

This $\left\{P_{5}, 3 S_{5}\right\}$ together with the remaining stars in the above stars will give a required decomposition of G. Now, by Remark 1.1, $K_{12} \square K_{2}$ has a $(4 ; p, q)$ decomposition.

Lemma 2.6. There exists a $(4 ; p, q)$-decomposition of $K_{14} \square K_{2}$.
Proof: Let $V\left(K_{14} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 14,1 \leq j \leq 2\right\}$. We can write $K_{14} \square K_{2}=\left(K_{8} \square K_{2}\right) \oplus\left(K_{6} \square K_{2}\right) \oplus 2 K_{8,6}$. By Theorem 1.2 and Lemmas 2.3 and 2.2, $K_{8,6}$ and $K_{8} \square K_{2}$ each have a $(4 ; p, q)$-decomposition and $K_{6} \square K_{2}$ has a $(4 ; p, q)$-decomposition with $p \neq 0$. Hence by Remark $1.1, K_{14} \square K_{2}$ has a $(4 ; p, q)$ decomposition with $p \neq 0$. Now, consider $K_{14} \square K_{2}$ as $K_{10} \square K_{2} \oplus G$, where $G=\left(K_{14} \square K_{2}\right) \backslash E\left(K_{10} \square K_{2}\right)$. Since $K_{10} \square K_{2}$ has a (4; $\left.p, q\right)$-decomposition (by Lemma 2.4), it is enough to prove that G has a $\left\{24 S_{5}\right\}$-decomposition and the required $\left\{24 S_{5}\right\}$-decomposition is as follows:

$$
\begin{gathered}
\left(x_{1,1} ; x_{2,1}, x_{13,1}, x_{14,1}, x_{1,2}\right),\left(x_{2,1} ; x_{3,1}, x_{4,1}, x_{13,1}, x_{14,1}\right) \\
\left(x_{3,1} ; x_{1,1}, x_{4,1}, x_{13,1}, x_{14,1}\right),\left(x_{4,1} ; x_{4,2}, x_{1,1}, x_{13,1}, x_{14,1}\right) \\
\left(x_{1,2} ; x_{2,2}, x_{3,2}, x_{13,2}, x_{14,2}\right),\left(x_{2,2} ; x_{2,1}, x_{3,2}, x_{13,2}, x_{14,2}\right) \\
\left(x_{3,2} ; x_{3,1}, x_{4,2}, x_{13,2}, x_{14,2}\right),\left(x_{4,2} ; x_{1,2}, x_{2,2}, x_{13,2}, x_{14,2}\right),\left(x_{i, j} ; x_{1, j}, x_{2, j}, x_{3, j}, x_{4, j}\right)
\end{gathered}
$$

for $5 \leq i \leq 12$ and $j=1,2$. Hence $K_{14} \square K_{2}$ has a $(4 ; p, q)$-decomposition.
Lemma 2.7. There exists a $(4 ; p, q)$-decomposition of $K_{4} \square K_{4}$.
Proof: Let $V\left(K_{4} \square K_{4}\right)=\left\{x_{i, j}: 1 \leq i, j \leq 4\right\}$. First we decompose $K_{4} \square K_{4}$ into $\left\{0 P_{5}, 12 S_{5}\right\}$ and $\left\{P_{5}, 11 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{2,3} ; x_{2,1}, x_{2,2}, x_{3,3}, x_{4,3}\right),\left(x_{4,4} ; x_{4,1}, x_{4,3}, x_{3,4}, x_{1,4}\right),\right. \\
& \left\{\left(x_{1,1} ; \boldsymbol{x}_{\mathbf{3}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{1}}, x_{1,2}, x_{1,4}\right),\left(x_{2,4} ; x_{1,4}, \boldsymbol{x}_{\mathbf{2 , \mathbf { 1 }}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, x_{4,4}\right)\right\}, \\
& \left\{\left(x_{1,2} ; x_{3,2}, x_{2,2}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}\right),\left(x_{3,4} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, x_{3,3}, x_{3,2}\right)\right\} \text {, } \\
& \left\{\left(x_{1,3} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, x_{2,3}, x_{4,3}\right),\left(x_{4,1} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{1}}, x_{4,2}, x_{4,3}\right)\right\}, \\
& \left\{\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{4,2}\right),\left(x_{3,1} ; x_{2,1}, x_{4,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}\right)\right\}, \\
& \left.\left\{\left(x_{3,3} ; x_{3,1}, x_{3,2}, \boldsymbol{x}_{\mathbf{1 , 3}}, \boldsymbol{x}_{\mathbf{4 , 3}}\right),\left(x_{4,2} ; x_{1,2}, x_{3,2}, \boldsymbol{x}_{\mathbf{4}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{4 , 4}}\right)\right\}\right\} \\
& \text { and } \quad\left\{x_{2,1} x_{2,3} x_{4,3} x_{4,4} x_{4,2},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left(x_{1,1} ; \boldsymbol{x}_{\mathbf{3}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{1}}, x_{1,2}, x_{1,4}\right),\left(x_{2,4} ; x_{1,4}, \boldsymbol{x}_{\mathbf{2 , 1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, x_{2,2}\right)\right\}, \\
& \left\{\left(x_{1,2} ; x_{3,2}, x_{2,2}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}\right),\left(x_{3,4} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, x_{3,3}, x_{3,2}\right)\right\}, \\
& \left\{\left(x_{1,3} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, x_{2,3}, x_{4,3}\right),\left(x_{4,1} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{1}}, x_{3,1}, x_{4,3}\right)\right\}, \\
& \left\{\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{4,2}\right),\left(x_{3,1} ; x_{2,1}, x_{3,3}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}\right)\right\}, \\
& \left\{\left(x_{3,3} ; x_{2,3}, x_{3,2}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{4 , 3}}\right),\left(x_{4,2} ; x_{1,2}, x_{3,2}, \boldsymbol{x}_{\mathbf{4}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{1}}\right)\right\}, \\
& \left.\left(x_{4,4} ; x_{4,1}, x_{1,4}, x_{2,4}, x_{3,4}\right)\right\} .
\end{aligned}
$$

By Remark 1.2, we obtain a required even number of paths from $\left\{0 P_{5}, 12 S_{5}\right\}$ except $p=12$ and we obtain a required odd number of paths from $\left\{P_{5}, 11 S_{5}\right\}$. For $p=12$, the required paths are
$x_{1,4} x_{4,4} x_{4,1} x_{3,1} x_{3,2}, x_{4,4} x_{4,2} x_{3,2} x_{3,4} x_{2,4}, x_{4,4} x_{2,4} x_{2,1} x_{2,3} x_{2,2}, x_{2,2} x_{2,4} x_{2,3} x_{3,3} x_{1,3}$, $x_{2,4} x_{1,4} x_{1,1} x_{3,1} x_{3,4}, x_{1,4} x_{1,2} x_{3,2} x_{3,3} x_{3,1}, x_{3,1} x_{2,1} x_{1,1} x_{1,2} x_{1,3}, x_{2,1} x_{4,1} x_{1,1} x_{1,3} x_{2,3}$, $x_{2,3} x_{4,3} x_{1,3} x_{1,4} x_{3,4}, x_{2,1} x_{2,2} x_{4,2} x_{4,3} x_{4,4}, x_{3,2} x_{2,2} x_{1,2} x_{4,2} x_{4,1}, x_{4,1} x_{4,3} x_{3,3} x_{3,4} x_{4,4}$.

Lemma 2.8. There exists a $(4 ; p, q)$-decomposition of $K_{4} \square K_{6}$.
Proof: Let $V\left(K_{4} \square K_{6}\right)=\left\{x_{i, j}: 1 \leq i \leq 4,1 \leq j \leq 6\right\}$. First we decompose $K_{4} \square K_{6}$ into $\left\{0 P_{5}, 24 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{3,2} ; \boldsymbol{x}_{\mathbf{1 , 2}}, \boldsymbol{x}_{\mathbf{4 , 2}}, x_{3,1}, x_{3,4}\right),\left(x_{4,1} ; x_{2,1}, x_{3,1}, \boldsymbol{x}_{\mathbf{4}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{4 , 3}}\right)\right\}, \\
& \left\{\left(x_{2,2} ; x_{2,3}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{5}}, x_{4,2}\right),\left(x_{2,6} ; x_{1,6}, \boldsymbol{x}_{\mathbf{2 , 1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, x_{2,3}\right)\right\}, \\
& \left\{\left(x_{3,1} ; x_{2,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}, x_{3,6}\right),\left(x_{3,3} ; x_{3,2}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}, x_{3,6}\right)\right\}, \\
& \left\{\left(x_{4,4} ; x_{4,2}, x_{4,3}, \boldsymbol{x}_{\mathbf{4 , 1}}, \boldsymbol{x}_{\mathbf{2 , 4}}\right),\left(x_{4,5} ; x_{2,5}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{4 , 1}}, x_{4,3}\right)\right\}, \\
& \left\{\left(x_{1,1} ; \boldsymbol{x}_{\mathbf{1 , 3}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, x_{4,1}, x_{1,2}\right),\left(x_{1,5} ; x_{1,2}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}, x_{4,5}\right)\right\}, \\
& \left\{\left(x_{3,3} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, x_{4,3}, x_{3,1}\right),\left(x_{2,3} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, x_{4,3}\right)\right\}, \\
& \left\{\left(x_{2,4} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, x_{3,4}\right),\left(x_{3,5} ; x_{3,2}, x_{3,4}, \boldsymbol{x}_{\mathbf{3}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{5}}\right)\right\} \text {, } \\
& \left\{\left(x_{2,2} ; x_{1,2}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}, x_{2,1}\right),\left(x_{2,5} ; x_{1,5}, x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}\right)\right\}, \\
& \left\{\left(x_{4,4} ; x_{1,4}, \boldsymbol{x}_{\mathbf{4}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{4 , 6}}, x_{3,4}\right),\left(x_{3,6} ; x_{2,6}, \boldsymbol{x}_{\mathbf{3 , 2}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{6}}, x_{3,4}\right)\right\}, \\
& \left\{\left(x_{1,1} ; x_{2,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{5}}, x_{1,6}\right),\left(x_{1,4} ; x_{1,2}, x_{1,6}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{5}}\right)\right\}, \\
& \left\{\left(x_{4,2} ; x_{1,2}, \boldsymbol{x}_{\mathbf{4}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{5}}, x_{4,6}\right),\left(x_{1,3} ; x_{1,2}, x_{1,4}, \boldsymbol{x}_{\mathbf{1}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{3}}\right)\right\} \text {, } \\
& \left(x_{1,6} ; x_{1,2}, x_{1,5}, x_{3,6}, x_{4,6}\right),\left(x_{4,6} ; x_{2,6}, x_{4,1}, x_{4,3}, x_{4,5}\right) \text {. }
\end{aligned}
$$

By Remark 1.2, we obtain a required even number of paths from the paired stars except $p=24$. For $p=24$, the $18 P_{5}$ can be obtained from the first nine paired stars (see Remark 1.2) and the remaining paths can be obtained from the last $6 S_{5}$ as follows:

$$
\begin{aligned}
& \left\{x_{3,1} x_{1,1} x_{1,6} x_{1,4} x_{1,5}, x_{2,1} x_{1,1} x_{1,5} x_{1,6} x_{3,6}, x_{4,3} x_{4,2} x_{4,5} x_{4,6} x_{4,1},\right. \\
& \left.x_{2,6} x_{4,6} x_{1,6} x_{1,3} x_{1,4}, x_{3,4} x_{1,4} x_{1,2} x_{1,3} x_{4,3}, x_{4,3} x_{4,6} x_{4,2} x_{1,2} x_{1,6}\right\} .
\end{aligned}
$$

To get an odd number of paths we decompose the last $6 S_{5}$ into either $\left\{P_{5}, 5 S_{5}\right\}$, $\left\{3 P_{5}, 3 S_{5}\right\}$ or $\left\{5 P_{5}, S_{5}\right\}$ as follows:
$\left\{x_{1,5} x_{1,6} x_{1,2} x_{1,3} x_{4,3},\left(x_{1,6} ; x_{1,4}, x_{1,3}, x_{3,6}, x_{4,6}\right),\left(x_{4,6} ; x_{2,6}, x_{4,1}, x_{4,3}, x_{4,5}\right)\right.$
$\left.\left(x_{4,2} ; x_{1,2}, x_{4,3}, x_{4,5}, x_{4,6}\right),\left(x_{1,4} ; x_{1,2}, x_{1,3}, x_{3,4}, x_{1,5}\right),\left(x_{1,1} ; x_{2,1}, x_{3,1}, x_{1,5}, x_{1,6}\right)\right\}$,
$\quad\left\{x_{2,1} x_{1,1} x_{1,6} x_{1,3} x_{4,3}, x_{4,3} x_{4,2} x_{4,5} x_{4,6} x_{4,1}, x_{3,1} x_{1,1} x_{1,5} x_{1,6} x_{3,6}\right.$
$\left.\left(x_{1,2} ; x_{4,2}, x_{1,3}, x_{1,4}, x_{1,6}\right),\left(x_{1,4} ; x_{1,6}, x_{1,3}, x_{3,4}, x_{1,5}\right),\left(x_{4,6} ; x_{2,6}, x_{4,2}, x_{4,3}, x_{1,6}\right)\right\}$
\quad or $\quad\left\{x_{3,4} x_{1,4} x_{1,2} x_{1,3} x_{4,3}, x_{4,2} x_{1,2} x_{1,6} x_{1,3} x_{1,4}, x_{3,1} x_{1,1} x_{1,6} x_{1,4} x_{1,5}\right.$,
$\left.\quad x_{2,1} x_{1,1} x_{1,5} x_{1,6} x_{3,6}, x_{4,3} x_{4,2} x_{4,5} x_{4,6} x_{4,1},\left(x_{4,6} ; x_{2,6}, x_{4,2}, x_{4,3}, x_{1,6}\right)\right\}$.

Now, the remaining number of paths can be obtained from the first nine paired stars (see Remark 1.2). Hence $K_{4} \square K_{6}$ has a ($4 ; p, q$)-decomposition.

Lemma 2.9. There exists a $(4 ; p, q)$-decomposition of $K_{6} \square K_{6}$.
Proof: Let $V\left(K_{6} \square K_{6}\right)=\left\{x_{i, j}: 1 \leq i, j \leq 6\right\}$. Now, we can write $K_{6} \square K_{6}=$ $\left(K_{4} \square K_{6}\right) \oplus\left(K_{2} \square K_{6}\right) \oplus 6 K_{4,2}$. By Lemma 2.8 and Theorem 1.3, $K_{4} \square K_{6}$ and $K_{4,2}$ each have a $(4 ; p, q)$-decomposition. Also, $K_{2} \square K_{6}\left(\cong K_{6} \square K_{2}\right)$ has a $(4 ; p, q)$ decomposition with $p \neq 0$, by Lemma 2.2. Hence $K_{6} \square K_{6}$ has a ($4 ; p, q$)-decomposition with $p \neq 0$. For $p=0$, we have the following $\left\{45 S_{5}\right\}$.

```
( }\mp@subsup{x}{1,1}{};\mp@subsup{x}{1,2}{,},\mp@subsup{x}{1,3}{,},\mp@subsup{x}{2,1}{,},\mp@subsup{x}{3,1}{}),(\mp@subsup{x}{1,1}{};\mp@subsup{x}{1,4}{,},\mp@subsup{x}{1,5}{,},\mp@subsup{x}{4,1}{},\mp@subsup{x}{6,1}{}),(\mp@subsup{x}{6,1}{};\mp@subsup{x}{5,1}{},\mp@subsup{x}{4,1}{},\mp@subsup{x}{6,2}{},\mp@subsup{x}{6,3}{})
( }\mp@subsup{x}{3,4}{;};\mp@subsup{x}{3,3}{,},\mp@subsup{x}{3,5}{,},\mp@subsup{x}{2,4}{,},\mp@subsup{x}{4,4}{}),(\mp@subsup{x}{6,6}{};\mp@subsup{x}{5,6}{},\mp@subsup{x}{4,6}{},\mp@subsup{x}{6,4}{},\mp@subsup{x}{6,5}{}),(\mp@subsup{x}{2,2}{};\mp@subsup{x}{2,1}{},\mp@subsup{x}{2,3}{},\mp@subsup{x}{1,2}{},\mp@subsup{x}{3,2}{})
( }\mp@subsup{x}{1,6}{};\mp@subsup{x}{1,5}{,},\mp@subsup{x}{1,4}{,},\mp@subsup{x}{2,6}{},\mp@subsup{x}{3,6}{}),(\mp@subsup{x}{4,4}{};\mp@subsup{x}{4,3}{},\mp@subsup{x}{4,5}{,},\mp@subsup{x}{6,4}{},\mp@subsup{x}{1,4}{}),(\mp@subsup{x}{6,2}{};\mp@subsup{x}{5,2}{},\mp@subsup{x}{4,2}{},\mp@subsup{x}{6,3}{},\mp@subsup{x}{6,4}{})
(x,6};\mp@subsup{x}{6,1}{},\mp@subsup{x}{6,2}{},\mp@subsup{x}{1,6}{},\mp@subsup{x}{2,6}{}),(\mp@subsup{x}{2,5}{;};\mp@subsup{x}{2,4}{,},\mp@subsup{x}{2,6}{},\mp@subsup{x}{1,5}{},\mp@subsup{x}{3,5}{}),(\mp@subsup{x}{3,4}{};\mp@subsup{x}{3,2}{},\mp@subsup{x}{3,6}{},\mp@subsup{x}{1,4}{},\mp@subsup{x}{5,4}{})
( }\mp@subsup{x}{1,6}{};\mp@subsup{x}{1,1}{,},\mp@subsup{x}{1,3}{,},\mp@subsup{x}{4,6}{},\mp@subsup{x}{5,6}{}),(\mp@subsup{x}{2,2}{};\mp@subsup{x}{2,4}{,},\mp@subsup{x}{2,6}{},\mp@subsup{x}{4,2}{},\mp@subsup{x}{6,2}{}),(\mp@subsup{x}{5,5}{};\mp@subsup{x}{5,1}{},\mp@subsup{x}{5,4}{},\mp@subsup{x}{4,5}{},\mp@subsup{x}{1,5}{})
( }\mp@subsup{x}{1,3}{};\mp@subsup{x}{1,4}{,},\mp@subsup{x}{1,5}{,},\mp@subsup{x}{3,3}{,},\mp@subsup{x}{4,3}{}),(\mp@subsup{x}{2,5}{};\mp@subsup{x}{2,2}{,},\mp@subsup{x}{2,3}{},\mp@subsup{x}{4,5}{,},\mp@subsup{x}{6,5}{}),(\mp@subsup{x}{6,4}{};\mp@subsup{x}{6,1}{},\mp@subsup{x}{6,3}{},\mp@subsup{x}{3,4}{},\mp@subsup{x}{1,4}{})
( }\mp@subsup{x}{2,1}{};\mp@subsup{x}{2,6}{},\mp@subsup{x}{2,5}{},\mp@subsup{x}{6,1}{},\mp@subsup{x}{5,1}{}),(\mp@subsup{x}{5,5}{;};\mp@subsup{x}{3,5}{},\mp@subsup{x}{2,5}{,},\mp@subsup{x}{5,2}{},\mp@subsup{x}{5,3}{}),(\mp@subsup{x}{1,2}{};\mp@subsup{x}{1,3}{},\mp@subsup{x}{1,6}{},\mp@subsup{x}{5,2}{},\mp@subsup{x}{6,2}{})
```



```
( }\mp@subsup{x}{2,3}{;}\mp@subsup{x}{1,3}{,},\mp@subsup{x}{6,3}{,},\mp@subsup{x}{2,1}{},\mp@subsup{x}{2,4}{}),(\mp@subsup{x}{3,6}{};\mp@subsup{x}{3,2}{2},\mp@subsup{x}{4,6}{},\mp@subsup{x}{5,6}{},\mp@subsup{x}{6,6}{}),(\mp@subsup{x}{5,4}{};\mp@subsup{x}{5,1}{},\mp@subsup{x}{5,2}{},\mp@subsup{x}{5,6}{},\mp@subsup{x}{6,4}{})
( }\mp@subsup{x}{5,2}{};\mp@subsup{x}{4,2}{,},\mp@subsup{x}{3,2}{,},\mp@subsup{x}{2,2}{,},\mp@subsup{x}{5,3}{)}),(\mp@subsup{x}{4,3}{};\mp@subsup{x}{4,1}{},\mp@subsup{x}{4,5}{,},\mp@subsup{x}{2,3}{},\mp@subsup{x}{6,3}{}),(\mp@subsup{x}{6,5}{};\mp@subsup{x}{6,1}{},\mp@subsup{x}{6,2}{},\mp@subsup{x}{6,4}{},\mp@subsup{x}{5,5}{})
```



```
( }\mp@subsup{x}{4,6}{};\mp@subsup{x}{4,1}{,},\mp@subsup{x}{4,2}{,},\mp@subsup{x}{4,3}{},\mp@subsup{x}{5,6}{}),(\mp@subsup{x}{3,2}{};\mp@subsup{x}{3,1}{,},\mp@subsup{x}{3,5}{,},\mp@subsup{x}{1,2}{},\mp@subsup{x}{6,2}{}),(\mp@subsup{x}{5,6}{};\mp@subsup{x}{5,1}{},\mp@subsup{x}{5,2}{},\mp@subsup{x}{5,3}{},\mp@subsup{x}{5,5}{})
( }\mp@subsup{x}{2,6}{};\mp@subsup{x}{2,3}{,},\mp@subsup{x}{3,6}{},\mp@subsup{x}{4,6}{},\mp@subsup{x}{5,6}{}),(\mp@subsup{x}{4,1}{};\mp@subsup{x}{2,1}{},\mp@subsup{x}{3,1}{},\mp@subsup{x}{5,1}{},\mp@subsup{x}{4,2}{}),(\mp@subsup{x}{5,1}{};\mp@subsup{x}{3,1}{},\mp@subsup{x}{1,1}{},\mp@subsup{x}{5,2}{},\mp@subsup{x}{5,3}{})
```

Lemma 2.10. There exists a (4; p, q)-decomposition of $K_{5} \square K_{5}$.
Proof: Let $V\left(K_{5} \square K_{5}\right)=\left\{x_{i, j}: 1 \leq i, j \leq 5\right\}$. First we decompose $K_{5} \square K_{5}$ into $\left\{0 P_{5}, 25 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{1,1} ; \boldsymbol{x}_{\mathbf{2 , 1}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, x_{3,1}, x_{1,5}\right),\left(x_{1,4} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, x_{1,5}, x_{5,4}\right)\right\}, \\
& \left\{\left(x_{1,1} ; x_{1,2}, \boldsymbol{x}_{\mathbf{1 , 4}}, \boldsymbol{x}_{\mathbf{4 , 1}}, x_{5,1}\right),\left(x_{2,1} ; \boldsymbol{x}_{\mathbf{3 , 1}}, \boldsymbol{x}_{\mathbf{4 , 1}}, x_{5,1}, x_{2,5}\right)\right\}, \\
& \left\{\left(x_{5,5} ; x_{1,5}, x_{2,5}, \boldsymbol{x}_{\mathbf{5 , 4}}, \boldsymbol{x}_{\mathbf{4 , 5}}\right),\left(x_{3,5} ; x_{2,5}, \boldsymbol{x}_{\mathbf{4 , 5}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, x_{3,1}\right)\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left(x_{3,3} ; \boldsymbol{x}_{\mathbf{5 , 3}}, \boldsymbol{x}_{\mathbf{3 , 2}}, x_{3,4}, x_{3,5}\right),\left(x_{3,1} ; x_{4,1}, \boldsymbol{x}_{\mathbf{5}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{3,4}\right)\right\}, \\
& \left\{\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2 , 3}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{2}}, x_{5,2}\right),\left(x_{1,2} ; x_{1,3}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{2}}, x_{5,2}\right)\right\}, \\
& \left\{\left(x_{3,3} ; x_{1,3}, \boldsymbol{x}_{\mathbf{2 , 3}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{3}}, x_{3,1}\right),\left(x_{5,3} ; x_{5,1}, \boldsymbol{x}_{\mathbf{5}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, x_{1,3}\right)\right\}, \\
& \left\{\left(x_{2,2} ; x_{1,2}, \boldsymbol{x}_{\mathbf{3 , 2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, x_{2,5}\right),\left(x_{2,3} ; x_{2,1}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, x_{2,5}\right)\right\}, \\
& \left\{\left(x_{4,4} ; x_{1,4}, \boldsymbol{x}_{\mathbf{4 , 2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, x_{5,4}\right),\left(x_{2,4} ; \boldsymbol{x}_{\mathbf{2}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, x_{1,4}, x_{2,1}\right)\right\}, \\
& \left\{\left(x_{5,5} ; x_{5,1}, \boldsymbol{x}_{\mathbf{5 , 2}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{3}}, x_{3,5}\right),\left(x_{5,4} ; x_{2,4}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{2}}, x_{5,1}\right)\right\}, \\
& \left\{\left(x_{3,2} ; x_{1,2}, x_{4,2}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}\right),\left(x_{1,5} ; x_{1,3}, x_{1,2}, \boldsymbol{x}_{\mathbf{2}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}\right)\right\}, \\
& \left\{\left(x_{5,2} ; x_{4,2}, x_{3,2}, \boldsymbol{x}_{\mathbf{5}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{3}}\right),\left(x_{4,3} ; x_{4,2}, x_{2,3}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{3}}\right)\right\}, \\
& \left(x_{4,4} ; x_{4,1}, x_{2,4}, x_{4,3}, x_{4,5}\right),\left(x_{4,5} ; x_{4,2}, x_{4,3}, x_{1,5}, x_{2,5}\right),\left(x_{4,1} ; x_{4,2}, x_{4,3}, x_{4,5}, x_{5,1}\right) \text {. }
\end{aligned}
$$

Now, we decompose the last $3 S_{5}$ into either $\left\{1 P_{5}, 2 S_{5}\right\},\left\{2 P_{5}, 1 S_{5}\right\}$ or $\left\{3 P_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{x_{2,4} x_{4,4} x_{4,3} x_{4,5} x_{4,1},\left(x_{4,5} ; x_{4,2}, x_{4,4}, x_{1,5}, x_{2,5}\right),\left(x_{4,1} ; x_{4,2}, x_{4,3}, x_{4,4}, x_{5,1}\right)\right\}, \\
& \quad\left\{x_{2,4} x_{4,4} x_{4,3} x_{4,1} x_{4,2}, x_{4,2} x_{4,5} x_{4,4} x_{4,1} x_{5,1},\left(x_{4,5} ; x_{4,1}, x_{4,3}, x_{1,5}, x_{2,5}\right)\right\} \\
& \quad \text { or } \quad\left\{x_{2,4} x_{4,4} x_{4,1} x_{4,5} x_{4,3}, x_{2,5} x_{4,5} x_{4,4} x_{4,3} x_{4,1}, x_{1,5} x_{4,5} x_{4,2} x_{4,1} x_{5,1}\right\} .
\end{aligned}
$$

Now, from $\left\{2 P_{5}, 1 S_{5}\right\}$ and the paired stars given above we can obtain an even number of paths and from $\left\{3 P_{5}\right\}$ and the paired stars given above we can obtain an odd number of paths (see Remark 1.2).

Lemma 2.11. There exists a $(4 ; p, q)$-decomposition of $K_{3} \square K_{7}$.
Proof: Let $V\left(K_{3} \square K_{7}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 7\right\}$ and $K_{7}^{i}\left(K_{3}^{j}\right.$, respectively) be a K_{7} in the $i^{\text {th }}$ row (K_{3} in the $j^{\text {th }}$ column, respectively) of $K_{3} \square K_{7}$. For $i=1,2,3$, let $F_{i}=\left\{x_{i, 1} x_{i+1,1}, \ldots, x_{i, 7} x_{i+1,7}\right\}$, where the first coordinate of the subscripts of x are taken modulo 3 with residues $1,2,3$. We can write $K_{3} \square K_{7}=G_{1} \oplus G_{2} \oplus G_{3}$, where $G_{i}=F_{i} \oplus K_{7}^{i}$. Since $G_{1} \cong G_{2} \cong G_{3}$, it is enough to prove without loss of generality that G_{1} has a $(4 ; p, q)$-decomposition. Now, G_{1} has a $(4 ; p, q)$-decomposition as follows:

1. For $p=0, q=7$, the required stars are $\left(x_{1,1} ; x_{2,1}, x_{1,2}, x_{1,3}, x_{1,4}\right)$, $\left(x_{1,2} ; x_{2,2}, x_{1,5}, x_{1,3}, x_{1,4}\right), \quad\left(x_{1,3} ; x_{2,3}, x_{1,4}, x_{1,5}, x_{1,6}\right), \quad\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right)$, $\left(x_{1,5} ; x_{2,5}, x_{1,1}, x_{1,6}, x_{1,7}\right), \quad\left(x_{1,6} ; x_{2,6}, x_{1,1}, x_{1,2}, x_{1,7}\right), \quad\left(x_{1,7} ; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2}\right)$.
2. For $p=1, q=6$, the required path and stars are $x_{2,1} x_{1,1} x_{1,4} x_{1,3} x_{1,2}$, $\left(x_{1,2} ; x_{2,2}, x_{1,5}, x_{1,1}, x_{1,4}\right), \quad\left(x_{1,3} ; x_{2,3}, x_{1,1}, x_{1,5}, x_{1,6}\right), \quad\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right)$, $\left(x_{1,5} ; x_{2,5}, x_{1,1}, x_{1,6}, x_{1,7}\right), \quad\left(x_{1,6} ; x_{2,6}, x_{1,1}, x_{1,2}, x_{1,7}\right), \quad\left(x_{1,7} ; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2}\right)$.
3. For $p=2, q=5$, the required paths and stars are $x_{2,1} x_{1,1} x_{1,4} x_{1,3} x_{1,2}$, $x_{2,3} x_{1,3} x_{1,1} x_{1,6} x_{1,5}, \quad\left(x_{1,2} ; x_{2,2}, x_{1,5}, x_{1,1}, x_{1,4}\right), \quad\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right)$, $\left(x_{1,5} ; x_{2,5}, x_{1,1}, x_{1,3}, x_{1,7}\right), \quad\left(x_{1,6} ; x_{2,6}, x_{1,3}, x_{1,2}, x_{1,7}\right), \quad\left(x_{1,7} ; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2}\right)$.
4. For $p=3, q=4$, the required paths and stars are $x_{2,1} x_{1,1} x_{1,4} x_{1,3} x_{1,2}$, $x_{2,3} x_{1,3} x_{1,1} x_{1,2} x_{1,4}, \quad \quad x_{1,1} x_{1,6} x_{1,5} x_{1,2} x_{2,2}, \quad\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right)$, $\left(x_{1,5} ; x_{2,5}, x_{1,1}, x_{1,3}, x_{1,7}\right), \quad\left(x_{1,6} ; x_{2,6}, x_{1,3}, x_{1,2}, x_{1,7}\right), \quad\left(x_{1,7} ; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2}\right)$.
5. For $p=4, q=3$, the required paths and stars are $x_{2,7} x_{1,7} x_{1,1} x_{1,4} x_{1,3}$, $x_{2,3} x_{1,3} x_{1,7} x_{1,2} x_{1,5}, \quad x_{2,2} x_{1,2} x_{1,1} x_{1,6} x_{1,5}, \quad x_{2,1} x_{1,1} x_{1,3} x_{1,2} x_{1,4}$, $\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right), \quad\left(x_{1,5} ; x_{2,5}, x_{1,1}, x_{1,3}, x_{1,7}\right), \quad\left(x_{1,6} ; x_{2,6}, x_{1,3}, x_{1,2}, x_{1,7}\right)$.
6. For $p=5, q=2$, the required paths and stars are $x_{2,1} x_{1,1} x_{1,4} x_{1,3} x_{1,2}$, $x_{2,3} x_{1,3} x_{1,1} x_{1,2} x_{1,4}, x_{1,1} x_{1,6} x_{1,5} x_{1,2} x_{2,2}, x_{2,5} x_{1,5} x_{1,7} x_{1,6} x_{1,2}, x_{2,6} x_{1,6} x_{1,3} x_{1,5} x_{1,1}$, $\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right),\left(x_{1,7} ; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2}\right)$.
7. For $p=6, q=1$, the require paths and stars are $x_{2,7} x_{1,7} x_{1,1} x_{1,4} x_{1,3}$, $x_{2,3} x_{1,3} x_{1,7} x_{1,2} x_{1,5}, x_{2,2} x_{1,2} x_{1,1} x_{1,6} x_{1,5}, x_{2,1} x_{1,1} x_{1,3} x_{1,2} x_{1,4}, x_{2,5} x_{1,5} x_{1,7} x_{1,6} x_{1,2}$, $x_{2,6} x_{1,6} x_{1,3} x_{1,5} x_{1,1},\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right)$.
8. For $p=7, q=0$, the required paths are $x_{2,1} x_{1,1} x_{1,2} x_{1,3} x_{1,4}$, $x_{2,2} x_{1,2} x_{1,4} x_{1,6} x_{1,7}, x_{2,3} x_{1,3} x_{1,1} x_{1,7} x_{1,5}, x_{2,4} x_{1,4} x_{1,1} x_{1,5} x_{1,3}, x_{2,5} x_{1,5} x_{1,2} x_{1,6} x_{1,1}$, $x_{2,6} x_{1,6} x_{1,3} x_{1,7} x_{1,2}, x_{2,7} x_{1,7} x_{1,4} x_{1,5} x_{1,6}$.

Hence by Remark 1.1, $K_{3} \square K_{7}$ has a $(4 ; p, q)$-decomposition.
Lemma 2.12. There exists a $(4 ; p, q)$-decomposition of $K_{3} \square K_{8}$.
Proof: Let $V\left(K_{3} \square K_{8}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 8\right\}$ and $K_{8}^{i}\left(K_{3}^{j}\right.$, respectively) be a K_{8} in the $i^{\text {th }}$ row (K_{3} in the $j^{\text {th }}$ column, respectively) of $K_{3} \square K_{8}$. For $i=1,2,3$, let $F_{i}=\left\{x_{i, 1} x_{i+1,1}, \ldots, x_{i, 8} x_{i+1,8}\right\}$, where the first subscripts of x are taken modulo 3 with residues $1,2,3$. We can write $K_{3} \square K_{8}=G_{1} \oplus G_{2} \oplus G_{3}$, where $G_{i}=F_{i} \oplus K_{8}^{i}$. Since $G_{1} \cong G_{2} \cong G_{3}$, it is enough to prove without loss of generality that G_{1} has a $(4 ; p, q)$-decomposition. Now,

$$
G_{1}=F_{1}^{\prime} \oplus K_{7}^{1} \oplus\left(x_{1,8} ; x_{2,8}, x_{1,1}, x_{1,3}, x_{1,2}\right) \oplus\left(x_{1,8} ; x_{1,4}, x_{1,5}, x_{1,6}, x_{1,7}\right)
$$

where $F_{1}^{\prime}=\left\{x_{i, 1} x_{i+1,1}, \ldots, x_{i, 7} x_{i+1,7}\right\}$ and it has a (4; p, q)-decomposition except for the values $p=8$ and 9 (see Lemma 2.11). For $p=8,9$, we have the following sets of paths and stars:

$$
\begin{gathered}
\left\{x_{2,1} x_{1,1} x_{1,2} x_{1,3} x_{1,4}, x_{2,2} x_{1,2} x_{1,4} x_{1,6} x_{1,7}, x_{2,3} x_{1,3} x_{1,1} x_{1,7} x_{1,5},\right. \\
x_{2,4} x_{1,4} x_{1,1} x_{1,5} x_{1,3}, x_{1,2} x_{1,6} x_{1,1} x_{1,8} x_{2,8}, x_{2,5} x_{1,5} x_{1,2} x_{1,8} x_{1,3}, \\
\left.x_{2,6} x_{1,6} x_{1,3} x_{1,7} x_{1,2}, x_{2,7} x_{1,7} x_{1,4} x_{1,5} x_{1,6},\left(x_{1,8} ; x_{1,4}, x_{1,5}, x_{1,6}, x_{1,7}\right)\right\} \\
\text { and } \quad\left\{x_{2,1} x_{1,1} x_{1,2} x_{1,3} x_{1,4}, x_{2,3} x_{1,3} x_{1,1} x_{1,7} x_{1,5}, x_{2,4} x_{1,4} x_{1,1} x_{1,5} x_{1,3},\right. \\
x_{1,2} x_{1,6} x_{1,1} x_{1,8} x_{2,8}, x_{2,5} x_{1,5} x_{1,2} x_{1,8} x_{1,3}, x_{2,6} x_{1,6} x_{1,3} x_{1,7} x_{1,2}, \\
\left.x_{1,5} x_{1,8} x_{1,6} x_{1,7} x_{2,7}, x_{1,4} x_{1,8} x_{1,7} x_{1,4} x_{1,5}, x_{2,2} x_{1,2} x_{1,4} x_{1,6} x_{1,5}\right\} .
\end{gathered}
$$

Hence by Remark 1.1, $K_{3} \square K_{8}$ has a $(4 ; p, q)$-decomposition.
Lemma 2.13. There exists a $(4 ; p, q)$-decomposition of $K_{5} \square K_{8}$.
Proof: Let $V\left(K_{5} \square K_{8}\right)=\left\{x_{i, j}: 1 \leq i \leq 5,1 \leq j \leq 8\right\}$. We can write $K_{5} \square K_{8}=$ $\left(K_{5} \square K_{8} \backslash E\left(K_{3} \square K_{8}\right)\right) \oplus\left(K_{3} \square K_{8}\right)$. First we decompose $\left(K_{5} \square K_{8}\right) \backslash E\left(K_{3} \square K_{8}\right)$ into $\left\{0 P_{5}, 28 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{1,1} ; x_{3,1}, \boldsymbol{x}_{\mathbf{4}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{1}}, x_{1,2}\right),\left(x_{2,1} ; x_{3,1}, x_{4,1}, \boldsymbol{x}_{\mathbf{5}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{8}}\right)\right\}, \\
& \left\{\left(x_{1,2} ; x_{3,2}, \boldsymbol{x}_{\mathbf{4 , 2}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{2}}, x_{1,3}\right),\left(x_{2,2} ; x_{3,2}, x_{4,2}, \boldsymbol{x}_{\mathbf{5}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,3} ; x_{3,3}, \boldsymbol{x}_{\mathbf{4}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{3}}, x_{1,4}\right),\left(x_{2,3} ; x_{3,3}, x_{4,3}, \boldsymbol{x}_{\mathbf{5}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,4} ; x_{3,4}, \boldsymbol{x}_{\mathbf{4}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{4}}, x_{1,5}\right),\left(x_{2,4} ; x_{3,4}, x_{4,4}, \boldsymbol{x}_{\mathbf{5}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{2 , 5}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,5} ; x_{3,5}, \boldsymbol{x}_{\mathbf{4}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{5}}, x_{1,6}\right),\left(x_{2,5} ; x_{3,5}, x_{4,5}, \boldsymbol{x}_{\mathbf{5}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{2}, \boldsymbol{7}}\right)\right\}, \\
& \left\{\left(x_{1,6} ; x_{3,6}, \boldsymbol{x}_{\mathbf{4}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{6}}, x_{1,7}\right),\left(x_{2,6} ; x_{3,6}, x_{4,6}, \boldsymbol{x}_{\mathbf{5}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{1}}\right)\right\}, \\
& \left\{\left(x_{1,7} ; x_{3,7}, \boldsymbol{x}_{\mathbf{4}, \boldsymbol{7}}, \boldsymbol{x}_{\mathbf{5}, \boldsymbol{7}}, x_{1,8}\right),\left(x_{2,7} ; x_{3,7}, x_{4,7}, \boldsymbol{x}_{\mathbf{5}, \boldsymbol{7}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,8} ; x_{3,8}, \boldsymbol{x}_{\mathbf{4}, \mathbf{8}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{8}}, x_{1,1}\right),\left(x_{2,8} ; x_{3,8}, x_{4,8}, \boldsymbol{x}_{\mathbf{5}, \mathbf{8}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,7} ; x_{1,2}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, x_{1,5}\right),\left(x_{1,8} ; x_{1,2}, x_{1,3}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{5}}\right)\right\}, \\
& \left\{\left(x_{1,2} ; x_{1,5}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{6}}, x_{2,2}\right),\left(x_{1,3} ; x_{1,1}, x_{1,5}, \boldsymbol{x}_{\mathbf{1}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}\right)\right\}, \\
& \left\{\left(x_{1,1} ; x_{1,4}, \boldsymbol{x}_{\mathbf{1}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{1}, \boldsymbol{7}}, x_{2,1}\right),\left(x_{2,7} ; x_{2,1}, x_{2,4}, \boldsymbol{x}_{\mathbf{1}, \boldsymbol{7}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{8}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,6} ; x_{1,1}, \boldsymbol{x}_{1, \mathbf{4}}, \boldsymbol{x}_{1,8}, x_{2,6}\right),\left(x_{2,8} ; x_{2,3}, x_{2,6}, \boldsymbol{x}_{\mathbf{1}, \mathbf{8}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}\right)\right\} \text {, } \\
& \left\{\left(x_{2,4} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}, x_{1,4}\right),\left(x_{2,5} ; x_{2,1}, x_{2,8}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{1 , 5}}\right)\right\} \text {, } \\
& \left\{\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}, x_{2,7}\right),\left(x_{2,3} ; x_{2,1}, x_{2,5}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{2}, \boldsymbol{7}}\right)\right\} \text {. }
\end{aligned}
$$

By Remark 1.2, we obtain a required even number of paths and stars from the paired stars given above. To obtain an odd number of paths consider the last $4 S_{5}$ and decompose it into either $\left\{1 P_{5}, 3 S_{5}\right\}$ or $\left\{3 P_{5}, 1 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{x_{1,4} x_{2,4} x_{2,2} x_{2,7} x_{2,3},\left(x_{2,1} ; x_{2,4}, x_{2,2}, x_{2,3}, x_{2,5}\right)\right. \\
& \left.\left(x_{2,6} ; x_{2,2}, x_{2,3}, x_{2,4}, x_{2,5}\right),\left(x_{2,5} ; x_{2,2}, x_{2,3}, x_{2,8}, x_{1,5}\right)\right\} \\
& \text { or } \quad\left\{x_{1,4} x_{2,4} x_{2,2} x_{2,7} x_{2,3}, x_{2,3} x_{2,6} x_{2,2} x_{2,1} x_{2,4}\right. \\
& \left.x_{2,3} x_{2,1} x_{2,5} x_{2,6} x_{2,4},\left(x_{2,5} ; x_{2,2}, x_{2,3}, x_{2,8}, x_{1,5}\right)\right\} .
\end{aligned}
$$

The remaining choices for odd number of paths can be obtained from the remaining paired stars (see Remark 1.2). Also, by Lemma 2.12, $K_{3} \square K_{8}$ has a $(4 ; p, q)$ decomposition. Hence by Remark 1.1, $K_{5} \square K_{8}$ has a ($4 ; p, q$)-decomposition.

Lemma 2.14. There exists a $(4 ; p, q)$-decomposition of $K_{7} \square K_{8}$.
Proof: Let $V\left(K_{7} \square K_{8}\right)=\left\{x_{i, j}: 1 \leq i \leq 7,1 \leq j \leq 8\right\}$. We can write $K_{7} \square K_{8}=$ $\left(K_{7} \square K_{8} \backslash E\left(K_{2} \square K_{8}\right)\right) \oplus\left(K_{2} \square K_{8}\right)$ and $\left(K_{7} \square K_{8}\right) \backslash E\left(K_{2} \square K_{8}\right)=8\left(K_{7} \backslash E\left(K_{2}\right)\right) \oplus$ $5 K_{8}$. By Lemma 2.3 and Example 1.1, $K_{2} \square K_{8}\left(\cong K_{8} \square K_{2}\right)$ and K_{8} have a $(4 ; p, q)$ decomposition. So, it is enough to prove that $K_{7} \backslash E\left(K_{2}\right)$ has a $(4 ; p, q)$-decomposition Let $V\left(K_{7}\right)=\left\{x_{i}: 1 \leq i \leq 7\right\}$. Now, $K_{7} \backslash E\left(K_{2}\right)$ has a ($4 ; p, q$)-decomposition as follows:

1. For $p=0, q=5$, the required stars are $\left(x_{1} ; x_{4}, x_{5}, x_{6}, x_{7}\right),\left(x_{2} ; x_{1}, x_{5}, x_{6}, x_{7}\right)$, $\left(x_{3} ; x_{1}, x_{2}, x_{6}, x_{7}\right),\left(x_{4} ; x_{2}, x_{3}, x_{6}, x_{7}\right),\left(x_{5} ; x_{3}, x_{4}, x_{6}, x_{7}\right)$.
2. For $p=1, q=4$, the required paths and stars are $x_{6} x_{1} x_{7} x_{5} x_{2}$,
$\left(x_{2} ; x_{1}, x_{4}, x_{6}, x_{7}\right),\left(x_{3} ; x_{1}, x_{2}, x_{6}, x_{7}\right),\left(x_{4} ; x_{1}, x_{3}, x_{6}, x_{7}\right),\left(x_{5} ; x_{3}, x_{4}, x_{6}, x_{1}\right)$.
3. For $p=2, q=3$, the required paths and stars are $x_{1} x_{4} x_{7} x_{5} x_{2}, x_{3} x_{4} x_{6} x_{1} x_{7}$, $\left(x_{2} ; x_{1}, x_{4}, x_{6}, x_{7}\right),\left(x_{3} ; x_{1}, x_{2}, x_{6}, x_{7}\right),\left(x_{5} ; x_{3}, x_{4}, x_{6}, x_{1}\right)$.
4. For $p=3, q=2$, the required paths and stars are $x_{6} x_{1} x_{7} x_{5} x_{2}, x_{3} x_{5} x_{4} x_{2} x_{6}$, $x_{6} x_{5} x_{1} x_{2} x_{7},\left(x_{3} ; x_{1}, x_{2}, x_{6}, x_{7}\right),\left(x_{4} ; x_{1}, x_{3}, x_{6}, x_{7}\right)$.
5. For $p=4, q=1$, the required paths and stars are $x_{1} x_{4} x_{7} x_{5} x_{2}, x_{3} x_{4} x_{6} x_{1} x_{7}$, $x_{3} x_{5} x_{4} x_{2} x_{6}, x_{6} x_{5} x_{1} x_{2} x_{7},\left(x_{3} ; x_{1}, x_{2}, x_{6}, x_{7}\right)$.
6. For $p=5, q=0$, the required paths are $x_{2} x_{3} x_{1} x_{4} x_{7}, x_{6} x_{3} x_{7} x_{5} x_{2}$, $x_{3} x_{4} x_{6} x_{1} x_{7}, x_{3} x_{5} x_{4} x_{2} x_{6}, x_{6} x_{5} x_{1} x_{2} x_{7}$.

Lemma 2.15. There exists a $(4 ; p, q)$-decomposition of $K_{n} \backslash E\left(K_{i}\right)$, when $n \equiv$ $i(\bmod 8), i \in\{3,5,7\}$.

Proof: Let $n \equiv i(\bmod 8)$ and $n=8 k+i$, where k is a positive integer and $i \in\{3,5,7\}$. The graph $K_{n} \backslash E\left(K_{i}\right)$ can be viewed as edge-disjoint union of $K_{8 k}$ and $K_{8 k, i}$. By Theorems 1.2 to 1.4 , both the graphs $K_{8 k}$ and $K_{8 k, i}$ have a $(4 ; p, q)$-decomposition. Hence by Remark 1.1, the graph $K_{n} \backslash E\left(K_{i}\right)$ has a $(4 ; p, q)$-decomposition.

Theorem 2.1. $K_{m} \square K_{n}$ has a $(4 ; p, q)$-decomposition if and only if $m n(m+$ $n-2) \equiv 0(\bmod 8)$.

Proof: Necessity. Since $K_{m} \square K_{n}$ is $(m+n-2)$-regular and has $m n$ vertices, $K_{m} \square K_{n}$ has $m n(m+n-2) / 2$ edges. Now, assume that $K_{m} \square K_{n}$ has a $(4 ; p, q)-$ decomposition. Then the number of edges in the graph must be divisible by 4, i.e., $8 \mid m n(m+n-2)$ and hence $m n(m+n-2) \equiv 0(\bmod 8)$, this condition is satisfied precisely when one of the following holds: (i) $m, n \equiv 0(\bmod 2)$, (ii) $m, n \equiv$ $1(\bmod 8),($ iii $) m, n \equiv 5(\bmod 8),($ iv $) m \equiv 3(\bmod 8), n \equiv 7(\bmod 8),(\mathrm{v}) m \equiv$ $0(\bmod 8), n \equiv 1(\bmod 2)$.
Sufficiency. We construct the required decomposition in five cases.
Case 1. Let $m, n \equiv 0(\bmod 2)$. We construct the required decomposition in three subcases separately.
(a) Let $m, n \equiv 0(\bmod 4)$. Let $m=4 k$ and $n=4 l, k, l \in \mathbb{Z}^{+}$. We can write $K_{m} \square K_{n}=k l\left(K_{4} \square K_{4}\right) \oplus 2 k l(l+k-2) K_{4,4}$. By Lemma 2.7 and Theorem 1.1, $K_{4} \square K_{4}$ and $K_{4,4}$ each have a $(4 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($4 ; p, q$)-decomposition.
(b) Let $m \equiv 0(\bmod 4), n \equiv 2(\bmod 4)$. When $n=2$, by Lemmas 2.1, 2.3 and $2.5, K_{m} \square K_{2}$ has a $(4 ; p, q)$-decomposition for $m=4,8,12$. If $m>12$, and $m \equiv 0(\bmod 8)$, let $m=8 k, k>1$, be an integer. Then $K_{m} \square K_{2}=$ $k\left(K_{8} \square K_{2}\right) \oplus k(k-1) K_{8,8}$. By Lemma 2.3 and Theorem 1.2, $K_{8} \square K_{2}$ and $K_{8,8}$ each have a $(4 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a $(4 ; p, q)$ decomposition. If $m \equiv 4(\bmod 8)$, let $m=8 k+12, k \in \mathbb{Z}^{+}$. Then $K_{m} \square K_{2}=$ $\left(K_{8 k} \square K_{2}\right) \oplus\left(K_{12} \square K_{2}\right) \oplus 2 K_{8 k, 12}$. By Lemma 2.5 and Theorem $1.2, K_{12} \square K_{2}$ and $K_{8 k, 12}$ each have a $(4 ; p, q)$-decomposition. Also, we proved that $K_{8 k} \square K_{2}$

Figure 1. $K_{m} \square K_{n}$.
has a $(4 ; p, q)$-decomposition in this case. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a $(4 ; p, q)$-decomposition.

When $n=6$, let $m=4 k, k \in \mathbb{Z}^{+}$. Then $K_{m} \square K_{n}=k\left(K_{4} \square K_{6}\right) \oplus$ $3 k(k-1) K_{4,4}$. By Lemma 2.8 and Theorem 1.1, $K_{4} \square K_{6}$ and $K_{4,4}$ each have a (4; p,q)-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a (4; p, q)-decomposition.

When $n>6$, let $m=4 k$ and $n=4 l+2, k, l \in \mathbb{Z}^{+}$. Then $K_{m} \square K_{n}=$ $\left(K_{4 k} \square K_{4(l-1)}\right) \oplus\left(K_{4 k} \square K_{6}\right) \oplus 4 k K_{4(l-1), 6}$. By Case 1 (a), $K_{4 k} \square K_{4(l-1)}$ has a $(4 ; p, q)$-decomposition. Also, we proved that $K_{4 k} \square K_{6}$ has a $(4 ; p, q)$-decomposition in this case. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($4 ; p, q$)-decomposition.
(c) Let $m, n \equiv 2(\bmod 4)$. When $n=2$, clearly there is no $(4 ; p, q)$-decomposition for $K_{2} \square K_{2}$ and hence $m>2$. By Lemmas 2.2, 2.4 and 2.6, $K_{6} \square K_{2}$, $K_{10} \square K_{2}$ and $K_{14} \square K_{2}$ each have a ($4 ; p, q$)-decomposition.

Figure 2. $K_{m} \square K_{n}$.

For $m>14$, let $m=4 k+2, k>3$, be an integer. Then $K_{m} \square K_{2}=$ $\left(K_{4(k-2)} \square K_{2}\right) \oplus\left(K_{10} \square K_{2}\right) \oplus K_{4(k-2), 10}$. By Lemma 2.4, Case 1 (b) and Theorem 1.2, $K_{10} \square K_{2}, K_{4(k-2)} \square K_{2}$ and $K_{4(k-2), 10}$ each have a (4;p,q)-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a $(4 ; p, q)$-decomposition.

When $n=6$, since $K_{2} \square K_{6}\left(\cong K_{6} \square K_{2}\right)$ and $K_{6} \square K_{6}$ (by Lemmas 2.2, 2.9) each have a $(4 ; p, q)$-decomposition, $m>6$. Let $m=4 k+2, k>1$, be an integer, then $K_{m} \square K_{6}=\left(K_{4(k-1)} \square K_{6}\right) \oplus\left(K_{6} \square K_{6}\right) \oplus 6 K_{4(k-1), 6}$. By Lemma 2.9, Case 1 (b) and Theorems 1.1 and $1.2, K_{6} \square K_{6}, K_{4(k-1)} \square K_{6}$ and $K_{4(k-1), 6}$ each have a $(4 ; p, q)$ decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($4 ; p, q$)-decomposition.

When $m, n>6$, let $m=4 k+2$ and $n=4 l+2, k, l>1$ are integers. We can write $K_{m} \square K_{n}=\left(K_{4 k+2} \square K_{4(l-1)}\right) \oplus\left(K_{4 k+2} \square K_{6}\right) \oplus(4 k+2) K_{4(l-1), 6}=$ $\left(K_{4 k+2} \square K_{4(l-1)}\right) \oplus(k-1)\left(K_{4} \square K_{6}\right) \oplus\left(K_{6} \square K_{6}\right) \oplus 3(k-1)(k-2) K_{4,4} \oplus 6(k-1) K_{4,6} \oplus$ $(4 k+2) K_{4(l-1), 6}$. By Lemmas 2.8 and 2.9 and Theorems 1.1 and $1.2, K_{4} \square K_{6}$, $K_{6} \square K_{6}, K_{4,6}, K_{4(l-1), 6}$ and $K_{4,4}$ each have a $(4 ; p, q)$-decomposition. Also by Case 1 (b), $K_{4 k+2} \square K_{4(l-1)}$ has a $(4 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a (4; p, q)-decomposition.

Case 2. Let $m, n \equiv 1(\bmod 8)$. We can write $K_{m} \square K_{n}=n K_{m} \oplus m K_{n}$. By Theorem 1.4, K_{m} and K_{n} each have a $(4 ; p, q)$-decomposition whenever $m, n \geq 16$. Hence by Example 1.2 and Remark 1.1, $K_{m} \square K_{n}$ has a $(4 ; p, q)$-decomposition.

Case 3. Let $m, n \equiv 5(\bmod 8)$. Let $m=8 k+5$ and $n=8 l+5, k, l \geq 0$, be integers. We can write $K_{m} \square K_{n}=n K_{m} \oplus m K_{n}=8 l\left(K_{m} \backslash E\left(K_{5}\right)\right) \oplus 8 k\left(K_{n} \backslash E\left(K_{5}\right)\right) \oplus$ $k\left(K_{8} \square K_{5}\right) \oplus l\left(K_{5} \square K_{8}\right) \oplus \frac{5}{2}(k(k-1)+l(l-1)) K_{8,8} \oplus\left(K_{5} \square K_{5}\right) \oplus 5(k+l) K_{8,5}$ (see Figure 1 with $i=j=5$). By Theorem 1.2 and Lemmas 2.10, 2.13 and 2.15, $K_{8,8}, K_{8,5}, K_{m} \backslash E\left(K_{5}\right), K_{n} \backslash E\left(K_{5}\right), K_{5} \square K_{8}$ and $K_{5} \square K_{5}$ each have a $(4 ; p, q)$ decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($4 ; p, q$)-decomposition.

Case 4. Let $m \equiv 3(\bmod 8), n \equiv 7(\bmod 8)$. Let $m=8 k+3, n=8 l+7$, $k, l \geq 0$, are integers. We can write $K_{m} \square K_{n}=n K_{m} \oplus m K_{n}=8 k\left(K_{n} \backslash E\left(K_{7}\right)\right) \oplus$ $8 l\left(K_{m} \backslash E\left(K_{3}\right)\right) \oplus l\left(K_{3} \square K_{8}\right) \oplus k\left(K_{7} \square K_{8}\right) \oplus((3 l(l-1)+7 k(k-1)) / 2) K_{8,8} \oplus$ $\left(K_{3} \square K_{7}\right) \oplus 7 k K_{8,3} \oplus 3 l K_{8,7}$ (refer Figure 1 with $i=3, j=7$). By Lemmas 2.11, 2.12 and 2.14 and Theorems 1.2 and $1.3, K_{3} \square K_{8}, K_{7} \square K_{8}, K_{3} \square K_{7}, K_{8,3}, K_{8,7}$ and $K_{8,8}$ each have a $(4 ; p, q)$-decomposition. Also by Lemma $2.15, K_{m} \backslash E\left(K_{3}\right)$ and $K_{n} \backslash E\left(K_{7}\right)$ each have a $(4 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a $(4 ; p, q)$-decomposition.

Case 5. Let $m \equiv 0(\bmod 8), n \equiv 1(\bmod 2)$. If $n \equiv 1(\bmod 8)$, then K_{m} and K_{n} each have a $(4 ; p, q)$-decomposition, by Theorem 1.4 and Examples 1.1 and 1.2. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($4 ; p, q$)-decomposition.

When $n \equiv i(\bmod 8)$ with $i=3,5,7$, let $m=8 k, k \in \mathbb{Z}^{+}$. We can write $K_{m} \square K_{n}=n K_{m} \oplus m K_{n}=(n-i) K_{m} \oplus k\left(K_{8} \square K_{i}\right) \oplus i(k(k-1) / 2) K_{8,8} \oplus$ $m\left(K_{n} \backslash E\left(K_{i}\right)\right), i \in\{3,5,7\}$ (see Figure 2). By Lemmas 2.12 to 2.15, Theorem 1.2 and Remark 1.1, $K_{m} \square K_{n}$ has a $(4 ; p, q)$-decomposition.

References

[1] Abueida A. A., Daven M., Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003), no. 4, 433-447.
[2] Abueida A. A., Daven M., Multidecompositions of the complete graph, Ars Combin. 72 (2004), 17-22.
[3] Abueida A. A., Daven M., Roblee K. J., Multidesigns of the λ-fold complete graph for graphpairs of orders 4 and 5, Australas. J. Combin. 32 (2005), 125-136.
[4] Abueida A. A., O'Neil T., Multidecomposition of λK_{m} into small cycles and claws, Bull. Inst. Combin. Appl. 49 (2007), 32-40.
[5] Bondy J. A., Murty U. S. R., Graph Theory with Applications, American Elsevier Publishing, New York, 1976.
[6] Ezhilarasi A. P., Muthusamy A., Decomposition of product graphs into paths and stars with three edges, Bull. Inst. Combin. Appl. 87 (2019), 47-74.
[7] Jeevadoss S., Muthusamy A., Decomposition of product graphs into paths and cycles of length four, Graphs Combin. 32 (2016), 199-223.
[8] Priyadharsini H. M., Muthusamy A., $\left(G_{m}, H_{m}\right)$-multidecomposition of $K_{m, m}(\lambda)$, Bull. Inst. Combin. Appl. 66 (2012), 42-48.
[9] Shyu T.-W., Decomposition of complete graphs into paths and stars, Discrete Math. 310 (2010), no. 15-16, 2164-2169.
[10] Shyu T.-W., Decomposition of complete bipartite graphs into paths and stars with same number of edges, Discrete Math. 313 (2013), no. 7, 865-871.

A. P. Ezhilarasi, A. Muthusamy:
Department of Mathematics, Periyar University, Salem-11, Tamil Nadu 636011, India
E-mail: post2pauline@gmail.com
E-mail: appumuthusamy@gmail.com

[^0]: DOI 10.14712/1213-7243.2021.024
 The authors thank the Department of Science and Technology, Government of India, New Delhi for its financial support through the Grant No. DST/ SR/ S4/ MS:828/13. Also, the second author thank the University Grants Commission for its support through the Grant No. F.510/7/DRS-I/2016(SAP-I).

