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Abstract. The goal of this paper is to present a different approach to the homogenization
of the Dirichlet boundary value problem in porous medium. Unlike the standard energy
method or the method of two-scale convergence, this approach is not based on the weak
formulation of the problem but on the very weak formulation. To illustrate the method
and its advantages we treat the stationary, incompressible Navier-Stokes system with the
non-homogeneous Dirichlet boundary condition in periodic porous medium. The nonzero
velocity trace on the boundary of a solid inclusion yields a non-standard addition to the
source term in the Darcy law. In addition, the homogenized model is not incompressible.

Keywords: homogenization; porous medium; Navier-Stokes system; very weak formula-
tion
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1. Introduction

Modeling a flow in porous media is an important subject due to its numerous

applications. A standard and very efficient approach is to use a periodic model of

porous medium and the method of homogenization. The porous medium is modeled

as a periodic array of solid structures with fluid flowing around them. Such geometry

allows to derive a model formally and to prove rigorously the convergence of the

homogenization process as the period of the medium tends to zero.

The formal computation using two-scale asymptotic expansions can be found, for

instance see [3] or [16].
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The rigorous proof of convergence for the homogenization procedure can be done

using the celebrated Tartar approach of oscillating test-functions (also called the

energy method) presented in the appendix of [16] (see also [14] for the case of a non-

homogeneous boundary condition). Another approach involves the two-scale conver-

gence, introduced by Nguetseng (see [15]) and popularized by Allaire (see [2]). Those

methods use the weak formulation as the starting point, making non-homogeneous

Dirichlet boundary conditions difficult to treat, as they do not appear explicitly in

the weak formulation. In fact, the non-homogeneous trace needs to be either lifted

from the boundary or suppressed by the test function with zero trace, before the

methods are applied.

One can also use a method called the unfolding, based on the notion of the local

unfolding operator, see e.g. [6].

We propose here slightly different and more direct approach based on the very weak

formulation of the boundary value problem. One of the advantages of such approach

is that the Dirichlet boundary value is apparent in the formulation making the proofs

simpler and the effects of the homogenization process immediately visible. As in the

energy method, our approach does use the particular choice of the oscillating test

functions but in the framework of the very weak instead of weak formulation of our

boundary-value problem. To simplify the convergence of the pressure we also use

the shortcut via the two-scale convergence.

2. The problem and its very weak formulation

We start by a bounded smooth domain Ω ⊂ Rn, n = 2, 3. Then we construct

a periodic cell

Y ∗ = Y \A.

Here, Y =]0, 1[n is a unit cube and A ⊂⊂ Y is its smooth (∂A is of class C1) simply

connected subset.

A

Y
∗

Let

Kε = {k ∈ Zn : ε(k+A) ⊂ Ω}.
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We take some small parameter ε≪ 1 (the average pore size) and put

Y ε
k =ε(k+ Y ∗), k ∈ Zn, the kth pore,

Aε
k =ε(k+A), k ∈ Zn, the kth obstacle,

Aε =
⋃

k∈Kε

Aε
k, the solid part,

Ωε =Ω \Aε, the fluid part.

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

Ωε

We denote by ∂Ω the exterior boundary of the domain and by Γε = ∂Ωε \ ∂Ω the

boundary of the pores. We know that, due to the choice of Kε, the perforations do

not intersect with the exterior boundary, i.e.

∂Ω ∩ Γε = ∅.

Let (uε, pε) be the solution to the stationary Navier-Stokes problem

−∆uε +Re(uε · ∇)uε +∇pε = f divuε = 0 in Ωε,(2.1)

uε = ε2gε on ∂Ω, uε = ε2G
(
x,

x

ε

)
on Γε,

where the boundary velocities gε(x) andG(x,y) are assumed to be continuous vector

functions, defined on whole Ω̄ and Ω̄×Y ∗, respectively. Furthermore,G ∈ C1(Ω̄×Y ∗)

is Y -periodic in y variable. The necessary condition for the existence of solution has

to be imposed,

(2.2)

∫

∂Ω

gε · n+

∫

Γε

G
(
x,

x

ε

)
· nε = 0.

To clarify this condition we notice that

ε

∫

Γε

G
(
x,

x

ε

)
· nε dSx →

∫

Ω

∫

∂A

G(x,y) · n dSy dx.
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Bearing that in mind, we assume that the function has the form

(2.3) G(x,y) = P(x,y) + εH(x,y),

where

(2.4) P(x,y) · n = 0 for y ∈ ∂A.

Thus, the condition (2.2) becomes

(2.5)

∫

∂Ω

gε · n+ ε

∫

Γε

H
(
x,

x

ε

)
· nε = 0,

meaning that

(2.6)

∫

∂Ω

gε · n = −

∫

Ω

∫

∂A

H(x,y) · n dSy dx+O(ε).

So, the only appropriate thing to do is to assume that

gε = g + εjε

with

(2.7)

∫

∂Ω

g · n = −

∫

Ω

∫

∂A

H(x,y) · n dSy dx

and

(2.8)

∫

∂Ω

jε · n = ε−1

(∫

Ω

∫

∂A

H(x,y) · n dSy dx− ε

∫

Γε

H
(
x,

x

ε

)
· nε

)
= O(1).

We summarize and in what follows we impose the following conditions on the bound-

ary values:

(1) G(x,y) = P(x,y) + εH(x,y) with G,H ∈ C1(Ω̄× Y ∗)n periodic in y,

(2) P(x,y) · n = 0 for y ∈ ∂A and x ∈ Ω̄,

(3) gε = g+ εjε, where g, jε ∈ C(∂Ω)n satisfying (2.7) and (2.8).

The source term f is assumed to be an L2(Ω)n function.

Remark 2.1. The unusual non-homogeneous boundary condition on the solid

part of the porous medium can correspond, for instance, to the flow through an array

of rotating cylinders, like in [9]. The ε2 scaling of the boundary values is chosen in

order to get the source term f and the boundary value terms in the limit problem.

If we leave out ε2, the source term will not be present in the effective law.
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The very weak formulation (see [7], [8] or [12]) for that problem reads:

Find (uε, pε) ∈ L2(Ωε)
n ×H−1(Ωε) such that

(2.9)

∫

Ωε

uε · (−∆w +∇π)−

∫

Ωε

pε divw

=

∫

Ωε

f ·w +Re

∫

Ωε

(uε · ∇)w · uε

+ ε2
∫

∂Ω

gε ·
(
−
∂w

∂n
+ πn

)
+ ε2

∫

Γε

G
(
x,

x

ε

)
·
(
−
∂w

∂nε
+ πnε

)

holds for any (w, π) ∈ H2(Ωε)
n ×H1(Ωε) is such that w = 0 on ∂Ωε.

That problem admits a solution even if f is an H−1(Ωε) function and G and gε

are L2 functions on the boundary. Such solution is unique, if the Reynolds number

is not too large (see [12] for details). In our case, we have a weak solution, which is

then also a very weak solution, so the existence of the solution is not in question. We

do not use the very weak formulation due to the lack of regularity of the data, but

because it is convenient for passing to the limit, since the Dirichlet boundary value

appears in the formulation.

The homogenization of the Navier-Stokes system in porous medium is a well stud-

ied problem and the reader can consult the papers, see [1], [2], [4], [5], [11], [13],

and [14]. However we present here a different approach based on a very weak for-

mulation which is the main novelty of the paper. To stress the advantages we have

imposed the non-homogeneous boundary condition on the pores boundary. Due to

the non-standard boundary condition, surprising additions to the usual source term

appear. Furthermore, the model obtained is not incompressible.

3. A priori estimates

In addition to the previous assumptions (2.2)–(2.8), we suppose that

divyP(x,y) = 0.

We also assume, for simplicity, that P(x,y) and H(x,y) vanish for x in the vicinity

of the exterior boundary ∂Ω. More precisely x 7→ G(x,y) is compactly supported

in Ω. Thus, for ε small enough, it equals zero in all the cells that intersect the

boundary. Modifying gε to a function defined on Ωε is slightly more demanding as

we want the modification to be equal to G(x,x/ε) on the perforations.

Proposition 3.1. There exists a function gε ∈ W 1,r(Ωε)
n such that

div gε = 0,(3.1)

gε = gε on ∂Ω and gε = G
(
x,

x

ε

)
on Γε.(3.2)
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Furthermore, the following a priori estimates hold for 1 < r <∞:

ε|∇gε|Lr(Ωε) 6 C,(3.3)

|gε|Lr(Ωε) 6 C.(3.4)

P r o o f. We first need to modify gε to become equal to zero on the boundaries of

perforations. To do so we use the Tartar restriction operator Rε ∈ L(W 1,r(Ω)n,Wε),

where

Wε = {ϕ ∈W 1,r(Ωε)
n : ϕ = 0 on Γε}.

There exists such an operator enjoying the properties (see Appendix in [16], where

it was introduced, or [13] and [14]):

ε|∇Rεw|Lr(Ωε) 6 C(|w|Lr(Ω) + ε|∇w|Lr(Ω)),(3.5)

| divRεw|Lr(Ωε) 6 C(| divw|Lr(Ω) + |w|Lr(Ω)),(3.6)

|Rεw|Lr(Ωε) 6 C(|w|Lr(Ω) + ε|∇w|Lr(Ω)).(3.7)

Furthermore, since Γε and ∂Ω do not intersect, by construction

Rεgε = gε on ∂Ω.

Now the function G(x,x/ε) +Rεgε satisfies the required boundary condition

G
(
x,

x

ε

)
+Rεgε = G

(
x,

x

ε

)
on Γε, G

(
x,

x

ε

)
+Rεgε = gε on ∂Ω,

but it is not divergence free. Due to (2.2), we can use the result from [10], Theo-

rem 2.3, page 6 to prove that there exists a function zε ∈ W 1,r(Ωε)
n such that

div zε = divG
(
x,

x

ε

)
+ divRεgε(3.8)

= ε−1divyG
(
x,

x

ε

)
+ divxG

(
x,

x

ε

)
+ divRεgε

= (divxP+ divyH+ εdivxH)
(
x,

x

ε

)
+ divRεgε,

zε = 0 on ∂Ωε,(3.9)

and

|zε|Lr(Ωε)+ε|∇zε|Lr(Ωε) 6 C
∣∣∣(divxP+divyH+εdivxH)

(
x,

x

ε

)
+divRεgε

∣∣∣
Lr(Ωε)

6 C.

The above result is well known (see e.g. [14] or a general discussion of the problem

in [10]). Adding up the above, we have constructed the function

gε = −zε +G
(
x,

x

ε

)
+Rεgε

having the required properties. �
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Proposition 3.2. If lim
ε→0

Re ε3−δ = 0 for some δ > 0, then the following a priori

estimates hold

ε−1|∇uε|L2(Ωε) 6 C,(3.10)

ε−2|uε|L2(Ωε) 6 C,(3.11)

|pε|L2(Ωε) 6 C.(3.12)

P r o o f. Let δ, from the above condition on Re, be such that 0 < δ ≪ 1. We test

the equation with

uε − ε2gε.

We get

(3.13)

∫

Ωε

|∇uε|
2 = ε2

∫

Ωε

∇uε · ∇gε +

∫

Ωε

(f − Re(uε · ∇)uε) · {uε − ε2gε}.

To estimate the integrals on the right-hand side we use the Poincaré inequality

|uε − ε2gε|L2(Ωε) 6 Cε|∇(uε − ε2gε)|L2(Ωε),

the embedding H1 ⊂ L6

|uε − ε2gε|L6(Ωε) 6 C|∇(uε − ε2gε)|L2(Ωε)

and the interpolation for s = 6/(3− 2δ) (and thus 2 < s < 6 )

(3.14) |uε − ε2gε|Ls(Ωε) 6 |uε − ε2gε|
3/s−1/2
L2(Ωε)

|uε − ε2gε|
3/2−3/s
L6(Ωε)

6 Cε3/s−1/2|∇(uε − ε2gε)|L2(Ωε)

= Cε1−δ|∇(uε − ε2gε)|L2(Ωε)

with C > 0 independent of ε. Obviously δ = 3/2− 3/s > 0.

The first integral on the right-hand side is easily majorized by

Cε|∇uε|L2(Ωε).

Next, the use of the Poincaré inequality and (3.3) implies

∫

Ωε

f · {uε − ε2gε} 6 C|uε − ε2gε|L2(Ωε) 6 Cε(|∇uε|L2(Ωε) + ε).

Now we need to estimate the inertial term

Re

∫

Ωε

(uε · ∇)uε · ε
2gε.
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We need the interpolation inequality (3.14) and the estimate (3.4) for r large enough.

For s = 6/(3− 2δ) (like before) and r = 3/δ (so that 1/2 + 1/s+ 1/r = 1), we have

Re

∫

Ωε

(uε · ∇)uε · ε
2gε 6 C Re ε2|∇uε|L2(Ωε)|uε|Ls(Ωε)|gε|Lr(Ωε)

6 C Re ε2|∇uε|L2(Ωε)|uε|Ls(Ωε)

6 C Re ε2|∇uε|L2(Ωε)(|uε − ε2gε|Ls(Ωε) + ε2)

6 C Re ε2|∇uε|L2(Ωε)(ε
1−δ|∇(uε − ε2gε)|L2(Ωε) + ε2)

6 C Re ε3−δ|∇uε|L2(Ωε)(|∇uε|L2(Ωε) + ε)

(notice that δ = 3/2− 3/s). Finally

(3.15) Re

∫

Ωε

(uε · ∇)uε · uε = Re ε6
∫

∂Ω

|gε|
2gε · n dSx

+Re ε6
∫

Γε

∣∣∣G
(
x,

x

ε

)∣∣∣
2

G
(
x,

x

ε

)
· nε dSx

6 C Re ε6.

Under the condition lim
ε→0

Re ε3−δ = 0 we have proved (3.10). Then the Poincaré

inequality implies (3.11) and the Nečas inequality implies (3.12) (see e.g. [1], [13]

or [14] for details). �

4. Convergence of the homogenization process

As usual, we extend the velocity to Ω by zero and the pressure by its mean value

in each cell:

(4.1) ũε =

{
uε in Ωε,

0 in Aε,
p̃ε =





pε in Ωε,

1

|Y ε
k |

∫

Y ε

k

pε in Aε.

In the sequel we drop the “˜” sign and denote the extensions simply by the same
symbols (uε, pε). Those extensions satisfy the same a priori estimates. See [11] for

details of the pressure extension. In what follows, the functions (uε, pε) are defined

on the whole Ω and

(4.2) ε−2|uε|L2(Ω) 6 C, |pε|L2(Ω) 6 C.

Theorem 4.1. Let (uε, pε) be the solution to the Navier-Stokes problem (2.1) in

the porous domain Ωε. Then their extensions on whole Ω, given by (4.1), converge as

ε−2uε ⇀ v, pε ⇀ q weakly in L2(Ω),
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where (v, q) is the unique solution of the Darcy problem

v = K(F−∇q), div v = −

∫

∂A

H(x,y) · ny dSy in Ω,(4.3)

v · n = g · n on ∂Ω.(4.4)

The permeability tensorK is defined using the auxiliary problem (4.5). The effective

source term is F = f −K−1h with h = (H1, . . . ,Hn) and

Hk(x) =

∫

∂A

∂wk

∂n
(y) ·P(x,y) dSy.

The auxiliary function wk is the solution of the cell problem (4.5).

P r o o f. As our domain is complex, the main problem is the construction of the

appropriate test function. Since it must have a zero trace on the boundary ∂Ωε,

it is rapidly oscillating. One simple way to construct such test function is to take

(wk(y), πk(y)), the solutions to the auxiliary problem

−∆ywk +∇yπk = ek, divywk = 0 in Y ∗,(4.5)

wk = 0 on ∂A, (wk, πk) is Y -periodic, k = 1, . . . , n.

We pose

wε
k(x) = wk(x/ε), πε

k(x) = πk(x/ε).

The oscillating functions wε
k take into account the zero trace on the grained bound-

ary Γε. To complete the test function choice, we need to take care of the exterior

boundary condition. For that, we take ϕ ∈ C∞

0 (Ω) and pose

(4.6) wε = wε
kϕ, πε = ε−1πε

kϕ.

From the a priori estimates (4.2) we deduce that there exist some limits v ∈ H1(Ω)n

and q ∈ L2(Ω) such that (at least for a subsequence)

ε−2uε ⇀ v, pε ⇀ q weakly in L2(Ω).

Furthermore, there exists Q(x,y) ∈ L2(Ω× Y ∗) such that

(4.7) pε → Q two-scale

and q(x) =
∫
Y ∗
Q(x,y) dy (see e.g. [2] for the two-scale compactness theorem ). We

can prove more for the pressure. Let v ∈ C∞

0 (Ω;C∞

per(Y
∗)n) and vε(x) = v(x,x/ε),

then (4.7) implies

ε

∫

Ωε

pε div v
ε →

∫

Ω

∫

Y ∗

Q(x,y)divyv(x,y) dy dx.
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On the other hand

ε

∫

Ωε

pε div v
ε = ε

∫

Ωε

∇uε · ∇vε + εRe

∫

Ωε

(uε · ∇)uε · v
ε − ε

∫

Ωε

f · vε

6 ε|∇uε|L2(Ωε)(|∇vε|L2(Ωε) +Re |uε|L2(Ωε)|v
ε|L∞(Ωε))

+ ε|vε|L2(Ωε)|f |L2(Ωε)

6 C(ε+Re ε3) → 0.

Thus ∫

Ω

∫

Y ∗

Q(x,y)divyv(x,y) dy dx = 0 ⇒ Q(x,y) = q(x).

Therefore

(4.8) pε → q(x) two-scale.

To derive the effective equations we start from the very weak formulation (2.9) with

the test functions (wε, πε) given by (4.6),

(4.9)

∫

Ωε

uε · (−∆wε +∇πε) + Re

∫

Ωε

(uε · ∇)uε ·wε −

∫

Ωε

pε divwε

=

∫

Ωε

f ·wε + ε2
∫

∂Ω

gε ·
(
−
∂wε

∂n
+ πεn

)
+ε2

∫

Γε

G
(
x,

x

ε

)
·
(
−
∂wε

∂nε
+ πεnε

)
.

We pass to the limit, term-by-term, in the above very weak formulation. Obviously

∫

Ωε

f ·wε
kϕ→

∫

Ω

f · 〈wk〉ϕ(4.10)

Re

∣∣∣∣
∫

Ωε

(uε · ∇)uε ·w
ε
kϕ

∣∣∣∣ 6 Re |∇uε|L2(Ω)|uε|L2(Ω)|w
ε|L∞(Ω)|ϕ|L∞(Ω)(4.11)

6 Cε3 Re → 0.

The two-scale convergence of the pressure (4.8) implies

(4.12)

∫

Ωε

pεw
ε
k · ∇ϕ→

∫

Ω

q〈wk〉 · ∇ϕ.

Next we concentrate on the term

∫

Ωε

uε · (−∆wε +∇πε) = ε−2

∫

Ωε

uε · (−∆yw
ε
k +∇yπ

ε
k)ϕ− 2ε−1

∫

Ωε

uε · ∇yw
ε
k∇ϕ

−

∫

Ωε

uε ·w
ε
k∆ϕ+ ε−1

∫

Ωε

πε
ku

ε · ∇ϕ.
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The first part is the most important,

ε−2

∫

Ωε

uε · (−∆yw
ε
k +∇yπ

ε
k)ϕ = ε−2

∫

Ωε

ek · uεϕ→

∫

Ω

vkϕ.

For the remaining terms

∣∣∣∣−2ε−1

∫

Ωε

uε · ∇yw
ε
k∇ϕ−

∫

Ωε

uε ·w
ε
k∆ϕ+ ε−1

∫

Ωε

πε
ku

ε · ∇ϕ

∣∣∣∣

6 Cε−1|ϕ|H2(Ω)|uε|L2(Ωε) 6 Cε→ 0.

Thus

(4.13)

∫

Ωε

uε · (−∆wε +∇πε) →

∫

Ω

vkϕ.

The first of the two boundary integrals, the one on the exterior boundary, equals

(4.14)

∣∣∣∣ε
2

∫

∂Ω

gε ·
(
−
∂wε

∂n
+ πεn

)∣∣∣∣ 6 Cε|gε|L2(Γ) 6 Cε→ 0.

Finally, the integral on the grained boundary gives an unusual new source term. We

have

ε2
∫

Γε

G
(
x,

x

ε

)
·
(
−
∂wε

∂nε
+ πεnε

)
→ 0.

First of all,

∣∣∣∣ε
3

∫

Γε

H
(
x,

x

ε

)
·
(
−
∂wε

∂nε
+ πεnε

)∣∣∣∣

=

∣∣∣∣ε
2

∫

Γε

(−∇yw
ε
k · nε + πε

knε) ·H(x,x/ε)ϕ+ ε3
∫

Γε

H(x,x/ε) ·wε
k

∂ϕ

∂nε

∣∣∣∣

6 Cε2|Γε| 6 Cε → 0.

Since P · nε = 0, it remains to compute

ε2
∫

Γε

P
(
x,

x

ε

)
·
∂wε

∂nε
.

We proceed as follows:

ε

∫

Γε

∂wk

∂n
·PϕdSx = ε

∑

m∈Kε

∫

ε(m+∂A)

∂wk

∂n
·PϕdSx

with

Kε = {m ∈ Zn : ε(m+ Y ∗) ⊂ Ω}.
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Since P and ϕ are smooth, we have

|P(εm+ εy,y) −P(εm,y)| 6 Cε|y| 6 Cε

and

|ϕ(εm+ εy)− ϕ(εm)| 6 Cε|y| 6 Cε

uniformly. Thus

ε

∫

ε(m+∂A)

∂wk

∂n

(x
ε

)
·P

(
x,

x

ε

)
ϕ(x) dSx

= εnϕ(εm+ εy)

∫

∂A

∂wk

∂n
(y) ·P(εm+ εy,y) dSy

= εnϕ(εm)

∫

∂A

∂wk

∂n
(y) ·P(εm,y) dSy +O(εn+1),

so that

ε

∫

Γε

∂wk

∂n
·PϕdSy =

∑

m∈Kε

εnϕ(εm+ εy)

∫

∂A

∂wk

∂n
(y) ·P(εm+ εy,y) dSy

=
∑

m∈Kε

εnϕ(εm)

∫

∂A

∂wk

∂n
(y) ·P(εm,y) dSy +O(ε)

=
∑

m∈Kε

εnϕ(εm)Hk(εm) +O(ε),

where

Hk(x) =

∫

∂A

∂wk

∂n
(y) ·P(x,y) dSy.

The sum ∑

m∈Kε

εnϕ(εm)Hk(εm)

is the Riemann integral sum (for equidistant partition) of the integral

∫

Ω

ϕ(x)Hk(x) dx =

∫

Ω

ϕ(x)

∫

∂A

∂wk

∂n
(y) ·P(x,y) dSy dx.

Thus, as ε→ 0,

(4.15) ε

∫

Γε

∂wk

∂n

(x
ε

)
·P

(
x,

x

ε

)
ϕ(x) dSx →

∫

Ω

ϕ(x)Hk(x) dx.
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In (4.10)–(4.15) we have found the limits of all the integrals in the very weak formu-

lation. Summing up all those limits leads to

(4.16)

∫

Ω

vkϕ−
n∑

j=1

∫

Ω

q〈wj
k〉
∂ϕ

∂xj
=

∫

Ω

( n∑

j=1

〈wj
k〉f

j −Hk

)
ϕ,

where

〈w〉 =

∫

Y ∗

w(y) dy.

Denoting by

K = [Kij ] with Kij = 〈wj
i 〉 =

∫

Y ∗

wj
i (y) dy =

∫

Y ∗

∇wj · ∇wi dy

the strictly positive and symmetric permeability tensor,

h = (H1, . . . ,Hn)

and

(4.17) F j = f j − (K−1h)j

we get

vk =
n∑

j=1

Kkj

(
F j −

∂q

∂xj

)
or v = K(F−∇q).

Furthermore, for any smooth scalar function ψ

∫

Γ

gε · nψ + ε

∫

Γε

H
(
x,

x

ε

)
· nεψ = ε−2

∫

Ω

uε · ∇ψ →

∫

Ω

v · ∇ψ.

Using (2.3) and the same steps as in (4.15), we get

ε

∫

Γε

H
(
x,

x

ε

)
· nεψ →

∫

Ω

ψ(x)

∫

∂A

H(x,y) · ny dSy dx,

implying that
∫

Γ

g · nψ +

∫

Ω

ψ(x)

∫

∂A

H(x,y) · ny dSy dx =

∫

Ω

v · ∇ψ.

Thus

div v +

∫

∂A

H(x,y) · ny dSy = 0 in Ω, v · n = g · n on ∂Ω.

The problem obtained is well posed due to the condition (2.6).

Since (4.4) has a unique solution, there is only one accumulation point for (uε, pε),

so that the whole sequence converges, not only the subsequence. �
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Remark 4.1. Testing the auxiliary problem (4.5) with P, we get

∫

Y ∗

∇ywk(y) · ∇yP(x,y) dy = −

∫

∂A

∂wk

∂n
(y) ·P(x,y) dSy +

∫

Y ∗

ek ·P(x,y) dy

so that

Hk(x) = −

∫

Y ∗

∇ywk(y) · ∇yP(x,y) dy +

∫

Y ∗

ek ·P(x,y) dy.

It is important to notice that Hk depends only on the boundary values of P, which

are given. It should not depend on the way we have extended P on the whole domain,

as this extension is not unique.

Remark 4.2. It is worth noticing that the only place where we used the peri-

odicity in the convergence proof, is the periodicity lemma, i.e., the fact that

wk(x/ε)⇀ 〈wk〉 weakly in L
2(Ω).

So, assuming that the auxiliary problem

−ε2∆wε
k + ε∇πε

k = ek, divwε
k = 0 in Ωε,(4.18)

wε
k = 0 on Γε, k = 1, . . . , n,

admits a solution such that wε
k ⇀Mk weakly in L

2(Ω), it would be enough to prove

that v = K(F−∇q) with Kij = Mi · ej .
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Author’s address: E d u a r d Ma r u š i ć - P a l o k a, Department of Mathematics, Fac-
ulty of Science and Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: emarusic@math.hr.

989

https://zbmath.org/?q=an:0622.35062
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0884813
http://dx.doi.org/10.1115/1.4032600
https://zbmath.org/?q=an:1375.35026
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3660451
http://dx.doi.org/10.1051/cocv/2016016
https://zbmath.org/?q=an:0850.76778
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1051608
http://dx.doi.org/10.1017/S0308210500024276
https://zbmath.org/?q=an:0952.35090
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1739399
http://dx.doi.org/10.1007/s002459911018
https://zbmath.org/?q=an:0965.35131
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1769255
http://dx.doi.org/10.1016/S0362-546X(98)00346-0
https://zbmath.org/?q=an:0629.76102
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0898276
https://zbmath.org/?q=an:0688.35007
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0990867
http://dx.doi.org/10.1137/0520043
https://zbmath.org/?q=an:0432.70002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0578345
http://dx.doi.org/10.1007/3-540-10000-8

