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On hereditary normality of ω
∗,

Kunen points and character ω1

Sergei Logunov

Abstract. We show that ω∗ \ {p} is not normal, if p is a limit point of some
countable subset of ω∗, consisting of points of character ω1. Moreover, such
a point p is a Kunen point and a super Kunen point.
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1. Introduction

We investigate properties of Čech–Stone compactification βω of the countable

discrete space ω = {0, 1, 2, . . .}. One of the most intriguing problems in this

area was stated probably around 1960 by L. Gillman in [4] or in [3]: Is ω∗ \ {p}

non-normal for any point p of the remainder ω∗ = βω \ ω? If so, then p is called

a non-normality point of ω∗.

Assuming that the continuum hypothesis of CH (axiom of choice) is valid,

a positive answer was obtained independently of N. M. Warren in [8] and M. Ra-

jagopalan in [6] in 1972. A. Bešlagić and E. K. van Douwen in [1] in 1990 weakened

CH to Martin’s axiom (MA).

But so far not much is known within ZFC (Zermelo–Fraenkel set theory with

the axiom of choice). Thus p ∈ ω∗ is called a Kunen point, if there exists a discrete

subset P of ω∗ of cardinality ω1, that is no more than countable outside any open

neighbourhood of p. Any Kunen point is a non-normality point of ω∗ (E. van

Douwen).

A. Szymański in [7] in 2012 proved the same, if p is a non-isolated point of

some closed subset of ω∗ of countable π-weight.

Some other more technical results were obtained in [5].

A. B laszczyk and A. Szymański in [2] stated in 1980, that p is a non-normality

point, if p is a limit point of some countable discrete subset P of ω∗. Now we
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omit the discrete requirement, assuming instead that P consists of points of the

character ω1.

Theorem 1. Let P be a countable subset of ω∗, consisting of points of the

character ω1. Then ω∗ \ {p} is not normal for any point p of ω∗, which is in the

closure of P . Moreover, p is a Kunen point and a super Kunen point.

2. Preliminaries

In our article |N | = ω and |R| = C. Each ordinal number α can be represented

in a unique way in the form α = β + n, where β is a limit ordinal and n ∈ ω.

Then α is even if n is even and odd otherwise.

By [ ] we always denote closure operator in ω∗, by Oa – a clopen neighbourhood

of a, i.e. closed and open in ω∗ set, containing a. A set A is strongly discrete

if there is a cellular family {Oa : a ∈ A}. A family {Oαa}α<τ is called a clopen

local base in a, if each Oa contains some Oαa. The minimal cardinality of the

local base is called the character in a and denoted χ(a).

Definition. A point p of ω∗ is called a super Kunen point, if there is a strongly

discrete subset P of ω∗ of cardinality ω1, that is no more than countable outside

any neighbourhood Op.

Of course, any super Kunen point is a Kunen point.

3. Proofs

Let from now on P = {pi : i < ω} be a countable subset of ω∗, consisting of

points of character ω1 and let p be any point of [P ] \ P . For every i < ω assume

{Oiα : α < ω1} to be a clopen local base of cardinality ω1 in pi. For any clopen

neighbourhood O of p we denote

K(O) = min{λ < ω1 : ∀ i < ω(pi ∈ O → ∃α ≤ λ(Oiα ⊂ O))}.

We define a filter F on ω as follows:

F = {{i ∈ ω : pi ∈ O} : O is a clopen neighbourhood of p}.

Some of the following facts are simple and sometimes well-known.

Lemma 1. Every nonempty Gδ-subset of ω∗ has nonempty interior in ω∗.

Lemma 2. Every point q of ω∗ of character ω1 is a super Kunen point.
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Proof: Let {Oα : α < ω1} be a local base in q. By the previous lemma for every

α < ω1 we can find a nonempty clopen set Uα so that q /∈ Uα and

Uα ⊂
⋂

β<α

Oβ \
⋃

β<α

Uβ.

For any points xα ∈ Uα the set {xα : α < ω1} witnesses that q is a super Kunen

point. �

Lemma 3. The family {
⋂

α<λi
Oiα : i < ω} is cellular for some λi < ω1.

Proof: We can choose every λi so that the set
⋂

α<λi
Oiα is disjoint from both

⋂

β<λj
Ojβ for every j < i and {pj : j > i}. �

Lemma 4. The family {Uiα : i < ω and α < ω1} is cellular for some nonempty

clopen sets Uiα such that Uiα ⊂
⋂

β<α Oiβ .

Proof: By the previous lemma we can choose every Uiα so that

Uiα ⊂
⋂

{Oiβ : β < max{α, λi}},

pi /∈ Uiα and Uiβ ∩ Uiα = ∅ for every β < α. �

Lemma 5. For every α < ω1 there is a point aα ∈ ω∗ such that aα /∈ [P ] and

aα ∈
⋂

F∈F

[

⋃

i∈F

Uiα

]

.

Proof: For U =
⋃

i<ω Uiα assume D ⊂ ω∗ \ [U ] to be σ-compact. Then X =

ω ∪ U ∪ D is σ-compact and, so, normal. Since ω ⊂ X , then [X ]βω = βX

is a Čech–Stone compactification of X . Since U and D are closed in X , then

[U ] ∩ [D] = [U ]βX ∩ [D]βX = ∅. Hence [U ] is a P -set.

In every Uiα we can find a cellular family of C-many nonempty clopen sets

{Viβ : β < C} and put Vβ =
⋃

i<ω Viβ for any β < C. Since [U ] = βU by the

standard arguments, then [Vβ ] are disjoint clopen subsets of [U ].

Thus [Vβ0
] ∩ P = ∅ for some β0 < C, and by the first paragraph of this

proof, this implies [Vβ0
] ∩ [P ] = ∅. So we can choose aα to be any point of

⋂

F∈F

[
⋃

i∈F Viβ0

]

. �

From now on every point aα satisfies the conditions of Lemma 5.

Lemma 6. Let O be any clopen neighbourhood of p. If α > K(O) for some

α < ω1, then aα ∈ O.

Proof: For F = {i ∈ ω : pi ∈ O} we get F ∈ F . For any i ∈ F there is

αi ≤ K(O) such that Oiαi
⊂ O. Then α > αi implies Uiα ⊂ Oiαi

⊂ O by our
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construction and

aα ∈

[

⋃

i∈F

Uiα

]

⊂

[

⋃

i∈F

Oiαi

]

⊂ O.

�

Lemma 7. The set {aα : α < ω1} is discrete. Hence p is a Kunen point.

Proof: For any α < ω1 let O be any clopen neighbourhood of p such that

aα /∈ O. Then aβ ∈ O for every β > K(O) by the previous lemma. Since the sets

C =
⋃

{Uiα : i < ω} and D =
⋃

{Uiβ : i < ω, β 6= α and β ≤ K(O)}

are σ-compact, open and disjoint, [C] ∩ [D] = ∅. Since aα ∈ [C] and aβ ∈ [D] if

β 6= α and β ≤ K(O), then the open set ω∗ \
(

O ∪ [D]
)

contains aα and non of

a′βs for β 6= α. �

It implies that ω∗ \ {p} is not normal by E. van Douwen. We shall give now

another proof. Denote A = {aα : α < ω1 even} and B = {aα : α < ω1 odd}.

Lemma 8. Since p = [A] ∩ [B], p is a butterfly-point.

Proof: By Lemma 6 we get p ∈ [A] ∩ [B]. On the other hand, let O be any

clopen neighbourhood of p. Then

[A] ∩ [B] \O ⊂ [{aα : α ≤ K(O) even}] ∩ [{aα : α ≤ K(O) odd}]

⊂
[

⋃

{Uiα : i < ω and α ≤ K(O) even}
]

∩
[

⋃

{Uiα : i < ω and α ≤ K(O) odd}
]

= ∅,

because ω∗ is an F -space. �

Lemma 9. The space ω∗ \ {p} is not normal.

Proof: For any continuous map f : ω∗ \ {p} → [0, 1] it is enough to show that

f(A) ∩ f(B) 6= ∅.

For every i < ω we choose αi < ω1 so that p /∈ Oiαi
and put W =

⋃

i∈ω Oiαi
.

Since Y = ω ∪W is regular and σ-compact, it is normal. Since W is closed in Y ,

the restriction f/W has a continuous extension g : Y → [0, 1]. Since ω ⊂ Y ⊂ βω,

then g has a continuous extension g̃ : βω → [0, 1]. For its restriction h = g̃/ω∗

onto ω∗ we have h−1h(p) =
⋂

i∈ω Oi for some clopen Oi ⊂ ω∗. If α > supi<ω αi

for some α < ω1, then aα ∈
[
⋃

i<ω Uiα

]

⊂
[
⋃

i<ω Oiαi

]

, i.e. aα ∈ [W ]\{p}. Since

f/W = h/W , then f(aα) = h(aα). If α > supi∈ω K(Oi), then aα ∈
⋂

i∈ω Oi by

Lemma 6 and, so, h(aα) = h(p). But then h(p) ∈ f(A) ∩ f(B). �

Lemma 10. There is a strongly discrete subset of {aα : α < ω1} of cardinali-

ty ω1.
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Proof: We shall construct by induction on λ < ω1 both a countable set Aλ ⊂

{aα : α < ω1} and a cellular family of clopen neighbourhoods of its points Bλ =

{Oa : a ∈ Aλ} so that Aλ ( Aγ if λ < γ < ω1 and Oa ∩ P = ∅ for any Oa ∈ Bλ.

First we put A0 = {a0} and choose B0 = {Oa0} so that Oa0 ∩ P = ∅.

If Aα and Bα have been constructed for every α < λ for some limit ordinal

λ < ω1, then we put Aλ =
⋃

α<λ Aα and Bλ =
⋃

α<λ Bα.

Assume Aλ and Bλ have been constructed for some ordinal λ < ω1. Then

Va = ω∗ \ Oa is a clopen neighbourhood of P for each Oa ∈ Bλ. Let α >

supa∈Aλ
K(Va) for some α < ω1. Then aα ∈

[
⋃

i∈ω Uiα

]

. For any i ∈ ω and

a ∈ Aλ we have Uiα ⊂ Oiβ ⊂ Va for some β ≤ K(Va), i.e. Uiα ∩ Oa = ∅. Hence
[
⋃

i∈ω Uiα

]

∩
[
⋃

a∈Aλ
Oa

]

= ∅, because ω∗ is an F -space, and aα /∈
[
⋃

a∈Aλ
Oa

]

.

There is a clopen neighbourhood Oaα, which does not intersect neither P nor
⋃

a∈Aλ
Oa. We put Aλ+1 = Aλ ∪ {aα} and Bλ+1 = Bλ ∪ {Oaα}.

Finally, the set
⋃

α<ω1
Aα is as required. �
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