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Abstract. Let R be a commutative Noetherian ring, I an ideal of R and M an R-module.
We wish to investigate the relation between vanishing, finiteness, Artinianness, minimax-
ness and C-minimaxness of local cohomology modules. We show that if M is a minimax
R-module, then the local-global principle is valid for minimaxness of local cohomology
modules. This implies that if n is a nonnegative integer such that (Hi

I(M))m is a minimax
Rm-module for all m ∈Max(R) and for all i < n, then the set AssR(H

n
I (M)) is finite. Also,

if Hi
I(M) is minimax for all i > n > 1, then H

i
I(M) is Artinian for i > n. It is shown that

if M is a C-minimax module over a local ring such that Hi
I(M) are C-minimax modules for

all i < n (or i > n), where n > 1, then they must be minimax. Consequently, a vanishing
theorem is proved for local cohomology modules.

Keywords: local cohomology module; minimax module; coatomic module; Artinian mod-
ule; local-global principle

MSC 2020 : 13D45, 13E05, 13C05

1. Introduction

Throughout this paper, R is a commutative Noetherian ring and I is an ideal

of R. For an R-module M , the ith local cohomology module of M with respect to I

is defined as

Hi
I(M) ∼= lim−→

n∈N

ExtiR(R/In,M).

For more details about the local cohomology, we refer the reader to [5].

In [23], Zöschinger introduced the interesting class of minimax modules and in [23]

and [24] he gave equivalent conditions for a module to be minimax. An R-moduleM

is called minimax if there is a finitely generated submodule F of M such that M/F

is Artinian. The class of minimax modules includes all finitely generated and all
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Artinian modules. Based on [3], Lemma 2.1, the class of minimax modules is closed

under taking submodules, quotients and extensions, i.e., it is a Serre subcategory

of the category of R-modules. Using the fact that finitely generated modules and

Artinian modules both have finitely many associated primes and the properties of

associated primes on short exact sequences, one can deduce that minimax modules

have finitely many associated primes.

In [22], Zöschinger defined and investigated coatomic modules over commutative

Noetherian rings. A module M is called coatomic if every proper submodule ofM is

contained in a maximal submodule of M . The class of coatomic modules is a Serre

subcategory of the category of R-modules. Moreover, it is clear that every finitely

generated R-module is coatomic and that every coatomic Artinian module has finite

length. In [19], Rudlof characterized modules which are extensions of coatomic mod-

ules by Artinian modules. In the light of [21], Theorem 2.3, this class of R-modules is

a Serre subcategory of the category of R-modules. Rezaei in [17], called these mod-

ules C-minimax and proved that there exists a close relation between C-minimaxness

and minimaxness of local homology and local cohomology modules. Note that the

class of coatomic (or C-minimax) modules is strictly larger than the class of finitely

generated (or minimax) modules, see Example 2.4.

In this paper we obtain some results for the vanishing, finiteness, Artinianness,

minimaxness and C-minimaxness of local cohomology modules. Here, we extend

several main results of [2] and [17] to the class of minimax and C-minimax R-modules.

In Section 2, we review and prove some of the standard facts on minimax and

C-minimax modules which are needed in our proofs. In Section 3, our main results

are stated and proved.

In [9], Hartshorne introduced the notion of I-cofinite modules. An R-moduleM is

I-cofinite if SuppR(M) ⊆ V (I) and ExtiR(R/I,M) is finitely generated for each i. In

Theorem 3.6 we show that ifM is a minimax R-module, then the local-global princi-

ple is valid for minimaxness of local cohomology modules. This result generalizes [2],

Theorem 2.8. Moreover, if M is minimax such that (0 : MI) is finitely generated

and Hi
I(M) are minimax for all i 6 n, where n > 0, then they are I-cofinite minimax.

An important problem in commutative algebra is determining when the set of

associated primes of the ith local cohomology modules Hi
I(M) is finite, see [10],

Problem 4. As a corollary of Theorem 3.6, we generalize the main result of Brodmann

and Lashgari, see [3], Theorem 2.5, [4] and [11], Corollary 2.3.

Let M be a C-minimax module over a local ring R and n be a positive integer.

We prove in Theorem 3.9 (or 3.13) that the local cohomology modules Hi
I(M) are

C-minimax modules for all i < n (or i > n) if and only if they are minimax for

all i < n (or i > n). These results are the generalizations of the results proved by

Rezaei, see [17]. It is also shown in Theorem 3.16 that under the above assumptions,

178



if the local cohomology modules Hi
I(M) are coatomic for all i > n, then they are

actually zero in this range. This result is a generalization of [2], Theorem 3.9 and [20],

Proposition 3.1.

Let p be a prime ideal of R. A nonzero R-module M is called p-secondary if

its multiplication map by any element r of R is either surjective or nilpotent and

p =
√

(0 : RM). A secondary representation for an R-module M is an expression

for M as a finite sum of secondary modules. If such a representation exists, we will

say thatM is representable. IfM is representable andM = S1+S2+ . . .+Sn, where

Si is pi-secondary for all 1 6 i 6 n, is a minimal secondary representation of M ,

then the n-element set {p1, . . . , pn} is called the set of attached prime ideals of M

and is denoted by AttR(M). Also, we let

cd(I,M) = sup{n > 0: Hn
I (M) 6= 0}

and

q(I,M) = sup{n > 0: Hn
I (M) is not Artinian}.

We prove in Theorem 3.3 that if I is an ideal of a local ring (R,m) and M is

a C-minimax R-module with dimM = d > 1, then

AttR(H
d
I (M)) ⊆ {p ∈ AssR(M) : cd(I, R/p) = d}.

Also, it is shown in Proposition 3.5 that ifM is a C-minimax R-module andN is an

arbitrary R-module such that SuppR(N) ⊆ SuppR(M), then cd(I,N) 6 cd(I,M).

This generalizes [2], Proposition 3.7, [7], Theorem 1.4 and [8], Theorem 2.2.

Throughout this paper, we assume that R is a commutative Noetherian ring with

nonzero identity, I is an ideal ofR, V (I) is the set of all prime ideals ofR containing I,

Spec(R) is the set of all prime ideals andMax(R) is the set of all maximal ideals of R.

For any unexplained notation and terminology we refer the reader to [5] and [12].

2. Preliminaries

In this section, we review some properties of minimax and C-minimax modules

which are crucial in our proofs.

Lemma 2.1. Let I be an ideal of R and M a minimax R-module. Then the

following statements hold:

(i) If p is a non-maximal prime ideal of R, then Mp is a finitely generated

Rp-module.

(ii) If SuppR(M) ⊆ Max(R), then M is Artinian.
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(iii) There exists a long exact sequence

(2.1) 0 → H0
I (F ) → H0

I (M) → H0
I (A)

f
→ H1

I (F ) → H1
I (M) → 0

and the isomorphism

(2.2) Hi
I(F ) ∼= Hi

I(M)

for all i > 2, where F is finitely generated and A is Artinian.

P r o o f. By definition of minimax modules there exists an exact sequence

(2.3) 0 → F → M → A → 0,

where F is finitely generated and A is Artinian. The proof of (i) and (ii) is straight-

forward. The last assertion follows by applying the functor ΓI(−) to the above exact

sequence and Theorem 6.1.2 of [5]. �

Recall that a class of R-modules is a Serre subcategory of the category of

R-modules when it is closed under taking submodules, quotients and extensions, for

example, the classes of Noetherian modules, Artinian modules and minimax modules

are Serre subcategories, see [3], Lemma 2.1. As in standard notation, we let S stand

for a Serre subcategory of the category of R-modules.

Remark 2.2. Based on [6], Theorem 1.2.5 ifM is a finitely generated R-module

and M 6= IM , then min{i : ExtiR(R/I,M) 6= 0} is equal to the common length

of the maximal M -sequences in I, which is called the grade of I on M and de-

noted by gradeI(M). In the case, where S is a Serre subcategory of the category of

R-modules consisting of R-modules with finitely many associated prime ideals andM

an R-module belonging to S, by the same method as in the proof of Theorem 1.2.5

of [6], it is easy to check that this assertion holds. Therefore, if M is a minimax

R-module and M 6= IM , then

gradeI(M) = min{i : ExtiR(R/I,M) 6= 0}.

The following lemma, which is an extension of [5], Theorem 6.2.7, is useful in the

proof of Lemma 3.4.

Lemma 2.3. Let M be a minimax R-module such that IM 6= M . Then

gradeI(M) is the least integer i such that Hi
I(M) 6= 0.

P r o o f. By [1], Lemma 2.5, ΓI(M) = 0 if and only if I contains a nonzero

divisor on M . Hence, the assertion follows by the same method as in the proof of

Theorem 6.2.7 of [5], using Remark 2.2. �
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The modules which are an extension of a coatomic module by an Artinian mod-

ule were studied by Rudlof, see [19]. Rezaei in [17] introduced these modules as

C-minimax modules and proved some results about the C-minimaxness of local ho-

mology and local cohomology modules. An R-module M is said to be C-minimax

if there is a coatomic submodule N of M such that M/N is Artinian. Clearly, this

class of R-modules includes coatomic modules and Artinian modules. Moreover,

since every finitely generated R-module is coatomic, the class of C-minimax mod-

ules contains all minimax R-modules. Also, one can use the fact that the class of

coatomic modules over a local ring has finitely many associated primes (see [22], Fol-

gerung 2) together with the properties of associated primes on short exact sequences

to deduce that the set of associated primes of any C-minimax module over a local

ring is finite. In [18], [19], Rudlof has given many equivalent conditions for a module

to be C-minimax. First, we give an example to show that the class of coatomic (or

C-minimax) modules is strictly larger than the class of finitely generated (or mini-

max) modules.

Example 2.4. We claim thatM := (R/m)(N) is a coatomic (and so a C-minimax)

R-module, which is not minimax. Obviously, every semisimple module is coatomic.

So, M is a coatomic module, which is neither finitely generated nor Artinian. Let K

be an arbitrary R-submodule of M . Then there is a subset I of N such that M =

K ⊕ ((R/m)(I)). If K is finitely generated, then I is an infinite set and so M/K is

not Artinian. This implies that M is not a minimax R-module.

The following lemma states a characterization of coatomic and C-minimax mod-

ules.

Lemma 2.5. Let (R,m) be a local ring and M an R-module. Then

(i) M is a coatomic module if and only if there exists an integer s > 1 such that

msM is a finitely generated module,

(ii) M is a C-minimax module if and only if there exists an integer s > 1 such that

msM is a minimax module.

P r o o f. See [19], Theorem 3.3 and [22], Satz 2.4. �

Lemma 2.6. Let I be an ideal of R and M an R-module. If S is a Serre subcat-

egory of the category of R-modules, then IM belongs to S if and only if M/(0 : MI)

belongs to S.

P r o o f. The assertion follows by the same method as in [2], Lemma 3.1. �
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Lemma 2.7. Let (R,m) be a local ring, I an ideal of R and M a C-minimax

R-module. Then there is an integer s > 1 such that

(i) M/(0 : Mms) is minimax,

(ii) SuppR(M) = SuppR(M/(0 : Mms)),

(iii) Hi
I(M) ∼= Hi

I(M/(0 : Mms)) for all i > 1.

P r o o f. Statement (i) follows by Lemmas 2.5 (ii) and 2.6. For (ii), it is enough

to show that SuppR(M) ⊆ SuppR(M/(0 : Mms)). Let m 6= p ∈ SuppR(M). Then

there is a nonzero element x ∈ M such that (0 : Rx) ⊆ p. It is easy to check that

x 6∈ (0 : Mms). So, x̄ = x + (0 : Mms) is a nonzero element of M/(0 : Mms) such

that (0 : Rx̄) ⊆ p. Therefore, p ∈ SuppR(M/(0 : Mms)).

On the other hand, (0 : Mms) is an m-torsion R-module and so it is a I-torsion.

Hence, Hi
I((0 : Mms)) = 0 for all i > 1. Now, considering the exact sequence

(2.4) 0 → (0 : Mm
s) → M → M/(0 : Mm

s) → 0,

we have

(2.5) Hi
I(M) ∼= Hi

I(M/(0 : Mm
s))

for all i > 1, and (iii) is proved. �

3. Main results

In this section we prove some properties of local cohomology modules Hi
I(M)

whenM is a minimax or C-minimax R-module. In this way we generalize some of the

main results of [2] and [17]. The following lemma is a generalization of [2], Lemma 3.3.

Lemma 3.1. Let I be an ideal of R and M a minimax R-module with dimM =

d < ∞. Then

(i) dimHd−i
I (M) 6 i for all i,

(ii) if R is semi local, then SuppR(H
d−1
I (M)) is a finite set consisting of all prime

ideals p of R such that dimR/p 6 1.

P r o o f. (i) Let p ∈ SuppR(H
d−i
I (M)). Then (Hd−i

I (M))p = Hd−i
IRp

(Mp) 6= 0.

Thus, it follows from [5], Theorem 6.1.2, that dimRp
Mp > d− i and so

dimR/p 6 d− dimRp
Mp 6 i.

(ii) If d = 1, then Hd−1
I (M) = ΓI(M) and dimΓI(M) 6 1. Hence,

SuppR(H
d−1
I (M)) ⊆ AssR(M) ∪MaxR.
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Therefore, SuppR(H
d−1
I (M)) is a finite set by assumption. Now, suppose that d > 1.

Since M is a minimax R-module, by Lemma 2.1 there exists a finitely generated

R-module F with dimF 6 d such that the sequence

H1
I (F ) → H1

I (M) → 0

is exact and

Hi
I(F ) ∼= Hi

I(M)

for all i > 2. Thus, SuppR(H
i
I(M)) ⊆ SuppR(H

i
I(F )) for all i > 1. So, con-

sidering part (i), it is enough to show that SuppR(H
d−1
I (F )) is a finite set. For

this, if dimF < d, then in the light of [5], Theorem 6.1.2, and [5], Exercise 7.1.7,

Hd−1
I (F ) is Artinian and so SuppR(H

d−1
I (F )) is finite. Now, assume that dimF = d

and m ∈ max(R). Then according to [2], Lemma 3.3 (b), and what was men-

tioned in the previous case (dimF < d), SuppRm
(Hd−1

aRm
(Fm)) is finite. Therefore,

SuppR(H
d−1
I (F )) is a finite set by assumption, as desired. �

Lemma 3.2. Let I be an ideal of R and M a minimax R-module with dimM =

d > 1. Then Hd
I (M) is an Artinian and I-cofinite R-module.

P r o o f. In view of Theorem 3.4 of [1], it is enough to show that Hd
I (M) is

I-cofinite. By Lemma 2.1 and [13], Proposition 5.1, it remains to exclude the case

when d = 1. Now, considering the exact sequence (2.1) we obtain the exact sequence

0 → Imf → H1
I (F ) → H1

I (M) → 0.

Since dimF 6 dimM = 1, by [5], Theorem 6.1.2 and [13], Proposition 5.1, H1
I (F )

is I-cofinite. So, from the exact sequence

0 → HomR(R/I, Imf) → HomR(R/I,H1
I (F ))

we deduce that HomR(R/I, Imf) is finitely generated. Thus, Proposition 4.1 of [13]

implies that Imf is I-cofinite, since it is an Artinian I-torsion R-module. Therefore,

H1
I (M) is I-cofinite. �

Theorem 3.3. Let I be an ideal of a local ring (R,m) and M be a C-minimax

R-module with dimM = d > 1. Then

(i) Hd
I (M) is an Artinian and I-cofinite R-module,

(ii) AttR(H
d
I (M)) ⊆ {p ∈ AssR(M) : cd(I, R/p) = d},

(iii) SuppR(H
d−1
I (M)) is a finite set consisting of all prime ideals p of R such that

dimR/p 6 1.
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P r o o f. (i) Since M is C-minimax, by Lemma 2.7 there is an integer s > 1 such

that M/(0 : Mms) is minimax, dimR(M) = dimR(M/(0 : Mms)) and Hi
I(M) ∼=

Hi
I(M/(0 : Mms)) for all i > 1. Therefore, Hd

I (M) is Artinian and I-cofinite by

Lemma 3.2.

(ii) From Lemma 2.7 and [1], Theorem 3.6 we conclude that

AttR(H
d
I (M)) ⊆ {p ∈ SuppR(M) : cd(I, R/p) = d}.

Let p ∈ SuppR(M)\AssR(M) such that cd(I, R/p) = d. Then there is q ∈ AssR(M)

such that q  p. Thus, dimR/p < dimR/q 6 d. Therefore, Hd
I (R/p) = 0 by

Grothendieck’s Vanishing Theorem (see [5], Theorem 6.1.2) a contradiction. This

completes the proof.

(iii) It is an immediate consequence of isomorphism (2.5) and Lemma 3.1 (ii). �

Lemma 3.4. Let M be a nonzero C-minimax R-module. Then M is an I-torsion

if and only if cd(I,M) = 0.

P r o o f. The forward direction is clear. For the other direction, in the light of [22],

Section 1, Folgerung, there is no loss of generality in assuming (R,m) is local. Also,

by Lemma 2.7 we can assume that M is minimax. If SuppR(M) * V (I), then the

module M = M/ΓI(M) is nonzero and ΓI(M) = 0. Therefore, t = gradeI(M) > 0

by [1], Lemma 2.5 and so Ht
I(M) ∼= Ht

I(M) 6= 0 by Lemma 2.3, a contradiction. �

We next generalize [2], Proposition 3.7, [7], Theorem 1.4 and [8], Theorem 2.2.

Proposition 3.5. Let I be an ideal ofR andM a C-minimaxR-module. IfN is an

arbitrary R-module such that SuppR(N) ⊆ SuppR(M), then cd(I,N) 6 cd(I,M).

P r o o f. Without loss of generality we may assume that (R,m) is local andN 6= 0.

If cd(I,M) = 0, then by Lemma 3.4, SuppR(M) ⊆ V (I). Thus, by assumption,

SuppR(N) ⊆ V (I) and therefore, Hi
I(N) = 0 for all i > 0. Hence, cd(I,N) = 0.

Now, suppose that cd(I,M) > 1. From Lemma 2.7 it follows that there is an

integer s > 1 such thatM/(0 : Mms) is minimax, SuppR(M) = SuppR(M/(0 : Mms))

and cd(I,M) = cd(I,M/(0 : Mms)). So, we may assume that M is minimax.

Therefore, there exists a finitely generated submodule F of M such that M/F is

Artinian. Set A := M/F . This implies that

cd(I,M) 6 max{cd(I, F ), cd(I, A)} = cd(I, F )

and SuppR(M) = SuppR(F ). As in Lemma 2.1, we have the exact sequence

. . . → H1
I (F ) → H1

I (M) → 0,

and the isomorphism Hi
I(F ) ∼= Hi

I(M) for all i > 2. Hence, it is easy to see that

cd(I,M) = cd(I, F ). Now the assertion follows by [7], Theorem 1.4. �
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The following theorem, which is one of our main results, states that the local-global

principle is valid for minimax local cohomology modules. This result generalizes [2],

Theorem 2.8.

Theorem 3.6. Let I be an ideal of R and M a minimax R-module. If n is

a nonnegative integer, then the following statements are equivalent:

(i) Hi
I(M) is a minimax R-module for all i 6 n,

(ii) (Hi
I(M))m is a minimax Rm-module for all m ∈ Max(R) and for all i 6 n.

Moreover, if (0 : MI) is finitely generated, then the above assertions are equivalent

to the following:

(iii) Hi
I(M) is an I-cofinite minimax R-module for all i 6 n.

P r o o f. The implications (i)⇒ (ii) and (iii)⇒ (i) are straightforward. It is suffi-

cient to prove (ii)⇒ (i) and (ii)⇒ (iii). In the case when n = 0, the R-module ΓI(M)

is minimax by the assumption. Also, if (0 : MI) is finitely generated, then ΓI(M) is

I-cofinite by [13], Proposition 4.3 and the fact that

HomR(R/I,ΓI(M)) = HomR(R/I,M) = (0 : MI).

So, the assertion holds in this case. Let m ∈ Max(R). Since M is minimax, by

Lemma 2.1 we have the exact sequence

0 → (H0
I (F ))m → (H0

I (M))m → (H0
I (A))m

fm
−→ (H1

I (F ))m → (H1
I (M))m → 0,

and the isomorphism

(Hi
I(F ))m ∼= (Hi

I(M))m

for all i > 2, where F is finitely generated and A is Artinian. Therefore, in the light

of [2], Theorem 2.8, it is enough to show the assertion in the case when n = 1. By

assumption and the above exact sequence, (Hi
I(F ))m is minimax for i = 0, 1. Thus,

Hi
I(F ) is minimax and I-cofinite for i 6 1 by [2], Theorem 2.8. Now, considering the

exact sequence (2.1) we obtain that Hi
I(M) is minimax for i = 0, 1, and (ii) ⇒ (i) is

proved. On the other hand, the exact sequence

0 → Imf → H1
I (F ) → H1

I (M) → 0

induces the exact sequence

0 → HomR(R/I, Imf) → HomR(R/I,H1
I (F )),

which implies that HomR(R/I, Imf) is finitely generated. Therefore, by Artinianness

of Imf and Proposition 4.1 of [13] we conclude that Imf is I-cofinite. Consequently,

H1
I (M) is I-cofinite, as required. �
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The following result provides a generalization of the main result of Brodmann and

Lashgari, see [3], Theorem 2.5, [4] and [11], Corollary 2.3.

Corollary 3.7. Let I be an ideal of R andM a minimax R-module. If n is a non-

negative integer such that (Hi
I(M))m is a minimax Rm-module for all m ∈ Max(R)

and for all i < n, then for any minimax submodule N of Hn
I (M), the R-module

HomR(R/I,Hn
I (M)/N) is minimax. In particular, the set AssR(H

n
I (M)/N) is finite.

P r o o f. The assertion follows from Theorem 3.6 and [11], Corollary 2.3. �

Theorem 3.8. Let I be an ideal of a local ring (R,m) and M a minimax

R-module. If n is a nonnegative integer, then the following statements are equivalent:

(i) Hi
I(M) is a minimax R-module for all i 6 n,

(ii) Hi
I(M) is a C-minimax R-module for all i 6 n.

P r o o f. Since the class of C-minimax modules contains all minimax modules, it

suffices to show (ii) ⇒ (i). As in Lemma 2.1, we have the exact sequence

0 → H0
I (F ) → H0

I (M) → H0
I (A)→H1

I (F ) → H1
I (M) → 0,

and the isomorphism

Hi
I(F ) ∼= Hi

I(M)

for all i > 2, where F is finitely generated and A is Artinian. So by the hypothesis and

the fact that the category of C-minimax R-modules is a Serre subcategory consisting

of all Artinian and all finitely generated R-modules, Hi
I(F ) is C-minimax for all

i 6 n. Therefore, Theorem 2.23 of [17] implies that Hi
I(F ) is minimax for all i 6 n.

This completes the proof. �

Theorem 3.9. Let I be an ideal of a local ring (R,m) and M a C-minimax

R-module. If n is a nonnegative integer, then the following statements are equivalent:

(i) Hi
I(M) is a minimax R-module for all i 6 n,

(ii) Hi
I(M) is a C-minimax R-module for all i 6 n.

P r o o f. This follows by Lemma 2.7 and Theorem 3.8. �

Corollary 3.10. Let I be an ideal of a local ring (R,m) and M a C-minimax

R-module. Then

inf{i ∈ N : Hi
I(M) is not C-minimax} = inf{i ∈ N : Hi

I(M) is not minimax}.
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The following theorem is a generalization of [2], Theorem 2.3 and [14], Theo-

rem 4.9.

Theorem 3.11. Let I be an ideal of R and M a minimax R-module. If n is

a positive integer, then the following statements are equivalent:

(i) Hi
I(M) is an Artinian R-module for all i > n,

(ii) Hi
I(M) is a minimax R-module for all i > n.

P r o o f. We only need to show that (ii) ⇒ (i). Let p ∈ Spec(R) \Max(R). Then

by assumption and Lemma 2.1 we conclude that Mp and (Hi
I(M))p ∼= Hi

IRp
(Mp)

are finitely generated for all i > n. Therefore, Theorem 3.9 of [2] implies that

(Hi
I(M))p = 0 for all i > n. Thus, SuppR(H

i
I(M)) ⊆ Max(R), which yields that

Hi
I(M) is Artinian for all i > n by Lemma 2.1 (ii), as desired. �

The following corollary is an extension of [2], Corollary 2.4.

Corollary 3.12. Let I be an ideal of R and M a minimax R-module. If

q(I,M) > 1, then H
q(I,M)
I (M) is not minimax. In particular, it is not finitely

generated.

Theorem 3.13. Let I be an ideal of a local ring (R,m) and M a C-minimax

R-module. If n is a positive integer, then the following statements are equivalent:

(i) Hi
I(M) is Artinian for all i > n,

(ii) Hi
I(M) is minimax for all i > n,

(iii) Hi
I(M) is C-minimax for all i > n.

P r o o f. Since M is C-minimax, by Lemma 2.5 there is an integer s > 1 such

that M/(0 : Mms) is minimax and Hi
I(M) ∼= Hi

I(M/(0 : Mms)) for all i > 1. We

therefore suppose henceforth in this proof that M is a minimax R-module. Thus, by

Lemma 2.1 there exists a finitely generated R-module F such that the sequence

H1
I (F ) → H1

I (M) → 0

is exact and

Hi
I(F ) ∼= Hi

I(M)

for all i > 2. Now, the assertion follows from [17], Theorem 2.24. Note that a careful

study of the proof of Theorem 2.24 of [17] implies that the assertion of that theorem

holds for all i > n. �
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The following result is a generalization of Corollary 3.12 in the case when R is

a local ring.

Corollary 3.14. Let I be an ideal of a local ring (R,m) and M a C-minimax

R-module. If q(I,M) > 1, then H
q(I,M)
I (M) is not C-minimax. In particular, if M

is a minimax module over the local ring R, then H
q(I,M)
I (M) is not coatomic.

Theorem 3.15. Let I be an ideal of a local ring (R,m) and M a C-minimax

R-module. Assume that n is a positive integer such that SuppR(H
i
I(M)) ⊆ {m} for

all i < n. Then Hi
I(M) is Artinian for all 0 < i < n.

P r o o f. Since M is C-minimax, by Lemma 2.7 there is an integer s > 1 such

that M := M/(0 : Mms) is minimax and Hi
I(M) ∼= Hi

I(M) for all i > 1. So,

SuppR(H
i
I(M)) ⊆ {m} for all 0 < i < n, by the hypothesis. On the other hand,

since (0 : Mms) is I-torsion, we have the exact sequence

0 → H0
I ((0 : Mm

s)) → H0
I (M) → H0

I (M) → 0,

which implies that

SuppR(H
0
I (M)) ⊆ SuppR(H

0
I (M)) ⊆ {m}.

Therefore, Theorem 2.8 of [16] yields that Hi
I(M) is Artinian for all i < n. This

completes the proof. �

The following results are generalizations of [2], Theorem 3.9 and [20], Proposi-

tion 3.1. See also [15], Theorem 2.6 and Corollaries 2.7–2.8.

Theorem 3.16. Let I be an ideal of R and M a C-minimax R-module. If n is

a positive integer, then the following statements are equivalent:

(i) Hi
I(M) = 0 for all i > n,

(ii) Hi
I(M) is finitely generated for all i > n,

(iii) Hi
I(M) is coatomic for all i > n.

P r o o f. Implication (i) ⇒ (ii) ⇒ (iii) is trivial.

(iii) ⇒ (i): By [22], Section 1, Folgerung we may assume that (R,m) is a local

ring. We proceed by induction on d := dimM . If d = 0, then Hi
I(M) = 0 for all

i > 1 by [5], Theorem 6.1.2. Let d > 0. It follows from [5], Corollary 2.1.7 that

Hi
I(M) ∼= Hi

I(M/ΓI(M)) for all i > 1. Since M/ΓI(M) is a torsion free C-minimax

R-module, without loss of generality, we can assume that M is torsion free. Hence,
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there exists an element x ∈ I ⊆ m which is regular on M . Now, the short exact

sequence

0 → M
.x
−→ M → M/xM → 0

induces the long exact sequence

. . . → Hi
I(M)

.x
−→ Hi

I(M) → Hi
I(M/xM) → Hi+1

I (M) → . . . ,

where dimM/xM < dimM . By the assumption, Hi
I(M/xM) is coatomic for all

i > n. Then it follows from induction hypothesis that Hi
I(M/xM) = 0 for all i > n.

Now the above long exact sequence yields that Hi
I(M) = xHi

I(M) for all i > n. Note

that in the light of Lemma 2.5, the coatomic modules satisfy Nakayama’s Lemma.

Thus, Hi
I(M) = 0 for all i > n, as desired. �

Corollary 3.17. Let I be an ideal of R and M a C-minimax R-module. If

cd(I,M) > 1, then H
cd(I,M)
I (M) is not coatomic. In particular, it is not finitely

generated.
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