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vanishing potentials. By using the fibrering maps and the Nehari manifold we obtain the
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1. Introduction

In this paper, we are concerned with the following Schrödinger equations involving

fractional p-Laplacian operators in the whole space:

(1.1) (−∆)spu+ V (x)|u|p−2u = fλ(x, u), x ∈ R
N ,

where s ∈ (0, 1), p > 1, N > sp and (−∆)sp is the fractional p-Laplacian defined by

(−∆)spu(x) := 2 lim
ε→0

∫

RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy, x ∈ R

N ,

which is a generalization of the linear fractional Laplacian (−∆)s when p = 2, and

V : R
N → R is a possibly vanishing potential in the sense that V (x) → 0 as |x| → ∞.
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Some motivations that have led to the study of this kind of operators can be found

in Caffarelli (see [10]). The nonlinearity term in (1.1) fλ(x, u) is of logarithmic

perturbation of p-linear growth

(1.2) fλ(x, u) = λK(x)|u|p−2u+ µQ(x)|u|q−2u log |u|, λ > 0,

where λ, µ > 0 and q satisfies

p < q < p∗s :=
Np

N − ps
as ps < N.

In the particular case of p = 2, equation (1.1) reduces to the so-called fractional

Schrödinger equation

(1.3) (−∆)su+ V (x)u = fλ(x, u), x ∈ R
N ,

which arises in the study of the nonlinear fractional Schrödinger equation

(1.4) i
∂Φ

∂t
= (−∆)sΦ+ V (x)Φ − fλ(x,Φ), (x, t) ∈ R

N × R.

The applications of these equations can be found in [7] for the classical case s = 1

and in the papers of Laskin (see [26], [27]) for the general case.

Literature on logarithmic Schrödinger equations seems not to be very extensive,

we refer the interested readers to [12], [13], [18], [24], [32] and their applications can

be found in [8], [23], [36]. In [32], Squassina and Szulkin studied the logarithmic

Schrödinger equations with periodic potential

(1.5) −∆u+ V (x)u = Q(x)u log u2, x ∈ R
N ,

where the potential Q ∈ C1(RN ) such that inf
RN

Q(x) > 0 and inf
RN

(V (x) +Q(x)) > 0.

The case of Q(x) = 1 was also studied by Ji and Szulkin (see [24]). In the two papers,

Szulkin et al. studied the multiplicity results for solutions to problem (1.5) through

the critical points of the functional J : H1(RN ) → R given by

J(u) =
1

2

∫

RN

(|∇u|2 + (V (x) +Q(x))u2) dx−
1

2

∫

RN

u2 log u2 dx.

This functional is not smooth in H1(RN ), however, it can be decomposed into the

sum of a C1 function and a convex lower semicontinuous functional. By using the

critical point theory developed by Szulkin (see [33]), they obtained the existence

of infinitely many solutions. In the case of constant potentials V and Q, in [18]
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the authors considered the functional J on radial spaces H1
rad(R

N ) and applied the

nonsmooth critical point theory of [11], [17], [19] to obtain a similar result on the

existence of infinitely many weak solutions to problem (1.5). Another approach to

treat this kind of problems comes from the paper [12], in which Cazenave found a

suitable Banach spaceX endowed with a Luxemburg-type norm where the functional

J : X → R is well defined and smooth. Following the ideas of Cazenave, in [5]

the author studied the case of fractional Schrödinger equations with logarithmic

nonlinearity.

Motivated by these results, in this paper we study the logarithmic fractional

Schrödinger equation (1.1) which extends the logarithmic nonlinearities in [12], [18],

[24], [32]. By the standard variational method, we search for the critical points of

the functional

(1.6) J(u) =
1

p

∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy +

1

p

∫

RN

V (x)|u(x)|p dx

−
λ

p

∫

RN

K(x)|u(x)|p dx+
µ

q2

∫

RN

Q(x)|u(x)|q dx

−
µ

q

∫

RN

Q(x)|u(x)|q log |u(x)| dx.

As many problems proposed in the whole space, due to the lack of compactness in

the embedding W p,s(RN ) into Lebesgue spaces or potential Lebesgue spaces, the

functional J is not smooth in W p,s(RN ) neither it satisfies the Palais-Smale condi-

tions. Using similar ideas as in [12], we find a suitable Banach space in which we not

only have the compactness but also the C1 smoothness of the functional J , and it is

convenient to consider the potential spaces

(1.7) X =W s,p
V (RN ) :=

{

u ∈W s,p(RN ) :

∫

RN

V (x)|u(x)|p dx <∞

}

.

There are various types of conditions on V to gain compactness, for example, we refer

the interested readers to [1], [2], [4], [6], [7], [22] for classical Schrödinger equations,

[14], [16], [25], [29], [30], [31], [34] for fractional Schrödinger equations, and [28], [35]

for fractional p-Laplacian equations.

In our setting, we assume that the potentials V , K and Q are positive continuous

functions on R
N and satisfy the following assumptions:

(A1) K is bounded on R
N and

lim
|x|→∞

K(x)

V (x)
= 0,

35



(A2) Q is bounded on R
N and for q ∈ (p, p∗s), we assume that

lim
|x|→∞

Q(x)

V σ(q−β)(x)
= 0 and lim

|x|→∞

Q(x)

V σ(q+β)(x)
= 0,

where 0 < β < min{ 1
2 (q − p), 12 (p

∗
s − q)} and

σ(r) :=
p∗s − r

p∗s − p
=
Np− r(N − sp)

sp2
> 0.

In this paper, by a solution to (1.1), we mean a function u ∈ X such that

Q(x)|u|q log |u| ∈ L1(RN ) and ψr(z) = |z|r−2z,

(1.8)
∫∫

R2N

ψp(u(x) − u(y))(v(x) − v(y))

|x− y|N+sp
dxdy +

∫

RN

V (x)ψp(u)v dx

= λ

∫

RN

K(x)ψp(u)v dx+ µ

∫

RN

Q(x)ψq(u) log |u|v dx

for all v ∈ X .

We are now in the position to state our main result.

Theorem 1.1. Assume that (A1) and (A2) hold. Then, for each µ > 0, prob-

lem (1.1) has at least one nontrivial positive solution provided that λ < λ1.

Here we denote by λ1 the first eigenvalue of the eigenvalue problem

(−∆)spu+ V (x)|u|p−2u = λK(x)|u|p−2u, x ∈ R
N ,

which, due to Proposition 2.2, is characterized by the variational formula (see [28]

for more details)

λ1 = inf
u∈X\{0}

‖u‖p

‖u‖pp,K
> 0,

where ‖·‖ and ‖·‖p,K are defined as in (2.2) and (2.3).

It is worth noting that under the assumptions (A1) and (A2), the functional J

is C1 smooth but not coercive on X . Hence it is natural to search for its critical

points on the Nehari manifold where we apply the fibrering method due to Drábek

and Pohozaev (see [21]). For this reason, the paper is organized as follows. In the

next section we give some preliminary results. In Section 3, we study the Nehari

manifold associated with (1.1) through its fibrering maps and in the last section we

give the proof of Theorem 1.1.
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2. Preliminaries

Let us first recall that the so-called fractional Sobolev spacesW s,p(RN ), s ∈ (0, 1)

and p ∈ (1,∞) are Banach spaces with the usual norm

‖u‖ps,p =

∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy +

∫

RN

|u(x)|p dx.

We also recall the fractional Sobolev theorem.

Theorem 2.1 ([20]). Let s ∈ (0, 1) and p ∈ [1,∞) be such that sp < N . Then

there exists a positive constant C = C(N, p, s) such that

(2.1)

(
∫

RN

|u(x)|p
∗

s dx

)p/p∗

s

6 C

∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy,

where p∗s := Np/(N − sp) is the so-called “fractional critical exponent”. Conse-

quently, the spaceW s,p(RN ) is continuously embedded in Lq(RN ) for any q ∈ [p, p∗s].

Moreover, the embedding W s,p(RN ) →֒ Lq
loc(R

N ) is compact for q ∈ [p, p∗s).

We then consider the reflexive Banach space

X :=

{

u ∈W s,p(RN ) :

∫

RN

V (x)|u(x)|p dx <∞

}

,

endowed with the norm

(2.2) ‖u‖ := ‖u‖X =

(
∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy +

∫

RN

V (x)|u(x)|p dx

)1/p

.

On the other hand, for every r ∈ [p, p∗s), we denote by L
q
w(R

N ) the weighted Lebesgue

spaces

Lr
w(R

N ) :=

{

u : R
N → R such that

∫

RN

w(x)|u(x)|r dx <∞

}

,

normed by

(2.3) ‖u‖r,w =

(
∫

RN

w(x)|u(x)|r dx

)1/r

.

Then we have the following compactness result.

Proposition 2.2. Assume that (A1) and (A2) hold. Then we have:

(i) X is continuously embedded in Lp∗

s (RN ) and compactly embedded into the

spaces Lr
loc(R

N ) for any r ∈ [p, p∗s).

(ii) X is compactly embedded into the spaces Lp
K(RN ) and Lq

Q(R
N ) for q ∈ (p, p∗s).
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P r o o f. The conclusion of (i) follows from Theorem 2.1 and the fact that

W s,p
V (BR) = W s,p(BR) for all R > 0. By following the ideas in the proof of Propo-

sition 1.1 in [28], we merely need to verify that

lim
|x|→∞

Q(x)

V σ(q)(x)
= 0.

Indeed, by assumption (A2), since σ(q) = 1
2σ(q − β) + 1

2σ(q + β), we have

lim
|x|→∞

Q(x)

V σ(q)(x)
= lim

|x|→∞

Q(x)

V σ(q−β)/2(x)V σ(q+β)/2(x)

= lim
|x|→∞

( Q(x)

V σ(q−β)(x)

)1/2( Q(x)

V σ(q+β)(x)

)1/2

= 0.

Thus, the proof is complete. �

We next give a lemma that will be essential to pass the limit in the logarithmic

nonlinearity.

Lemma 2.3. Suppose that V and Q satisfy (A2). Let {un}∞n=1 be a sequence

such that un → u weakly in X . Then we have

(2.4) lim
n→∞

∫

RN

Q(x)|un(x)|
q log |un(x)| dx =

∫

RN

Q(x)|u(x)|q log |u(x)| dx.

P r o o f. By direct calculation, we have

| log t| = | log t|χ[0,1](t) + | log t|χ[1,∞)(t) 6 C(t−β + tβ) ∀ t > 0,

where β is a positive constant given by assumption (A2) and we denote by C a general

constant which can be varied from line to line. So we have

(2.5) Q(x)|tq log t| 6 CQ(x)tq−β + CQ(x)tq+β ∀x ∈ R
N , t > 0.

For x ∈ R
N fixed and r ∈ (p, p∗s), consider the function t 7→ V (x)tp−r + tp

∗

s
−r, t > 0.

We have

C(r)V (p∗

s
−r)/(p∗

s
−p)(x) 6 V (x)tp−r + tp

∗

s
−r ∀ t > 0,

where C(r) is a positive constant given by

C(r) :=
( r − p

p∗s − r

)(p−r)/(p∗

s
−p)

+
( r − p

p∗s − r

)(p∗

s
−r)/(p∗

s
−p)

, p < r < p∗s.
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Assume further that

lim
|x|→∞

Q(x)

V σ(r)(x)
= 0,

then, for given ε > 0, there is R > 0 large enough such that

Q(x) 6 εC(r)V (p∗

s
−r)/(p∗

s
−p)(x) 6 ε(V (x)tp−r + tp

∗

s
−r) ∀ t > 0, |x| > R,

which implies

Q(x)tr 6 ε(V (x)tp + tp
∗

s ) ∀ t > 0, |x| > R.

By assumption (A2), applying the estimate above for r = q − β and r = q + β, we

derive from (2.5) that

Q(x)|tq log t| 6 εC(V (x)tp + tp
∗

s ) ∀ t > 0, |x| > R.

As a consequence, we have

(2.6)
∫

Bc

R
(0)

Q(x)|un(x)|
q | log(|un(x)|)| dx 6 εC

∫

RN

(V (x)|un(x)|
p + |un(x)|

p∗

s ) dx.

On the other hand, since {un}∞n=1 is bounded in X , by Proposition 2.2, there is

M > 0 such that

∫

RN

V (x)|un(x)|
p dx 6M, and

∫

RN

|un(x)|
p∗

s dx 6M.

Thus, from (2.6) we derive

(2.7)
∫

Bc

R

Q(x)|un(x)|
q | log(|un(x)|)| dx 6 2MCε.

Using similar arguments, we see that the estimate (2.7) holds also for u. Hence, it

remains to show that

(2.8) lim
n→∞

∫

BR

Q(x)|un(x)|
q log(|un(x)|) dx =

∫

BR

Q(x)|u(x)|q log(|u(x)|) dx.

Indeed, since Q ∈ L∞(RN ), we have

(2.9)
∫

BR

|Q(x)|un(x)|
q log(|un(x)|) −Q(x)|u(x)|q log(|u(x)|)| dx

6 ‖Q‖L∞(RN )

∫

BR

||un(x)|
q log(|un(x)|) − |u(x)|q log(|u(x)|)| dx.
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On the other hand, since q ∈ (p, p∗s), we have

tq log(|t|)

tp
∗

s

→ 0 as t→ ∞.

By Proposition 2.2, we also know that

sup
n∈N

∫

RN

|un(x)|
p∗

s dx <∞,(2.10)

|un(x)|
q log(|un(x)|) → |u(x)|q log(|u(x)|) a.e. in R

N .(2.11)

Applying the compactness lemma of Strauss (see [7], Theorem A.I, page 338) with

a bounded set BR(0) and Q(s) = sp
∗

s and P (s) = sq log(|s|), we obtain (2.8). �

The next lemma shows that the functional J is differentiable on the potential

space X .

Lemma 2.4. The functional J is smooth, that is, J ∈ C1(X,R).

P r o o f. We first prove J(u) to be well-defined for u ∈ X . By Proposition 2.2 it

suffices to prove that Q|u|q log |u| ∈ L1(RN ) for u ∈ X . Using similar arguments as

in the proof of Lemma 2.3 we have that

(2.12) Q(x)|tq log t| 6 CQ(x)tq−γ + CQ(x)tq+γ ∀x ∈ R
N , t > 0, γ > 0.

Since q ∈ (p, p∗s) we can choose γ small enough so that p < q − γ < q + γ < p∗s. By

virtue of Proposition 2.2 (ii) we imply that Q|u|q log |u| ∈ L1(RN ).

It is not difficult to see that J is Gateaux differentiable and

〈J ′(u), v〉 =

∫∫

R2N

ψp(u(x)− u(y))(v(x) − v(y))

|x− y|N+sp
dxdy +

∫

RN

V (x)ψp(u)v dx(2.13)

− λ

∫

RN

K(x)ψp(u)v dx− µ

∫

RN

Q(x)ψq(u) log |u|v dx

= 〈H1(u), v〉 − 〈H2(u), v〉 ∀u, v ∈ X,

where

〈H1(u), v〉 =

∫∫

R2N

ψp(u(x)− u(y))(v(x) − v(y))

|x− y|N+sp
dxdy +

∫

RN

V (x)ψp(u)v dx,(2.14)

〈H2(u), v〉 = λ

∫

RN

K(x)ψp(u)v dx+ µ

∫

RN

Q(x)ψq(u) log |u|v dx.(2.15)
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So it remains to show that J ′ : X → X ′ is continuous. To this aim, it suffices to

prove that

J(un) converges in X
′ to J(u)

for every sequence {un}∞n=1 ∈ X converging to u strongly in X .

In fact, by using Proposition 2.2 and Lemma 2.3 we can see easily that

(2.16) H2(un) converges in X
′ to H2(u),

and for any v ∈ X \ {0}, we have

(2.17) lim
n→∞

1

‖v‖

∫

RN

V (x)|ψp(un(x)) − ψp(u(x))|v dx = 0.

Next, for n ∈ {1, 2, . . .}, put

wn(x, y) =
ψp(un(x) − un(y))

|x− y|N/p′+s(p−1)
and w(x, y) =

ψp(u(x) − u(y))

|x− y|N/p′+s(p−1)
.

Since un → u in X , the sequence {wn}∞n=1 is bounded in L
p′

(R2N ) and moreover it

converges almost everywhere to the function w. This implies

wn → w weakly in Lp′

(R2N ).

Therefore, if v ∈ X \ {0}, then

lim
n→∞

‖v‖−1

∣

∣

∣

∣

∫∫

R2N

(wn(x, y)− w(x, y))
(v(x) − v(y))

|x − y|N/p+s
dxdy

∣

∣

∣

∣

= 0

thanks to the fact that the function

(x, y) 7→
(v(x) − v(y))

|x− y|N/p+s

belongs to Lp(R2N ). So we can conclude

H1(un) → H1(u) in X ′.

The proof of Lemma 2.4 is completed. �

41



3. Nehari manifold and fibrering maps

The Euler-Lagrange functional J : X → R associated to problem (1.1) is defined

as follows:

J(u) =
1

p
(‖u‖p − λ‖u‖pp,K) +

µ

q2
‖u‖qq,Q −

µ

q

∫

RN

Q(x)|u(x)|q log |u(x)| dx.

It is worth noting that since lim
s→0

|s|q log |s| = 0, the function f(s) = |s|q log |s| can

be extended continuously but still denoted by the same notation such that its value

at 0 equals 0. Using this convention, we have J(0) = 0. Moreover, J ∈ C1(X,R)

and its Gateaux derivative is

〈J ′(u), v〉 =

∫∫

R2N

ψp(u(x)− u(y))(v(x) − v(y))

|x− y|N+sp
dxdy +

∫

RN

V (x)ψp(u)v dx

− λ

∫

RN

K(x)ψp(u)v dx− µ

∫

RN

Q(x)ψq(u) log |u|v dx ∀u, v ∈ X.

Notice that the weak solutions of problem (1.1) correspond to critical points of J . As

many other problems J is not bounded below on X . It is appropriate to consider J

on the Nehari manifold which is defined by

N := {u ∈ X \ {0} : 〈J ′(u), u〉 = 0}.

Clearly, all critical points of J must lie on N and further u ∈ N if and only if

I(u) := ‖u‖p − λ‖u‖pp,K − µ

∫

RN

Q(x)|u(x)|q log |u(x)| dx = 0.

We analyse N in terms of the stationary points of fibrering maps ϕu : R
+ → R

defined by

ϕu(t) = J(tu), t ∈ R
+.

Such maps were introduced by Drábek and Pohozaev in [21]. Then we have

ϕ′
u(t) = tp−1(‖u‖p − λ‖u‖pp,K)

− µtq−1

∫

RN

Q(x)|u(x)|q log |u(x)| dx− µ(tq−1 log t)‖u‖qq,Q,

and

ϕ′′
u(t) = (p− 1)tp−2(‖u‖p − λ‖u‖pp,K)− µ((q − 1)tq−2 log t+ tq−2)‖u‖qq,Q

− µ(q − 1)tq−2

∫

RN

Q(x)|u(x)|q log |u(x)| dx.

Lemma 3.1. Let u ∈ X \ {0} and t > 0. Then tu ∈ N if and only if ϕ′
u(t) = 0.
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P r o o f. The conclusion of the lemma can be directly implied from the definition

of N and ϕu. �

From Lemma 3.1 it follows that u ∈ N if and only if ϕ′
u(1) = 0. We shall split N

into three subsets N+, N−, and N 0 which correspond to local minima, local maxima

and points of inflection of fibrering maps, that is,

N+ = {u ∈ N : ϕ′′
u(1) > 0} = {tu ∈ X : ϕ′

u(t) = 0, ϕ′′
u(t) > 0},

N− = {u ∈ N : ϕ′′
u(1) < 0} = {tu ∈ X : ϕ′

u(t) = 0, ϕ′′
u(t) < 0},

N 0 = {u ∈ N : ϕ′′
u(1) = 0} = {tu ∈ X : ϕ′

u(t) = 0, ϕ′′
u(t) = 0}.

The existence of solutions to problem (1.1) can be studied by considering the exis-

tence of minimizers to the functional J on the manifold N . As in Brown-Zhang [9],

Theorem 2.3 or Chen-Deng [15], Lemma 2.2 we see that such local minimizers are

usually critical points of J . More precisely, we have the following lemma whose proof

is classical and can be followed step by step as in [3], Proposition 6.7, so we omit it.

Lemma 3.2. J ∈ C2(X,R) and if u0 is a local minimizer of J on N and u0 /∈ N 0,

then it is a critical point of J .

We now investigate the functional J on the Nehari manifold N . By the definition

of N , for each u ∈ N , we have

(3.1) J(u) =
(1

p
−

1

q

)

(‖u‖p − λ‖u‖pp,K) +
µ

q2
‖u‖qq,Q.

Moreover, it is easy to show that

N+ = {u ∈ N : (q − p)A(u) + µC(u) < 0},

N− = {u ∈ N : (q − p)A(u) + µC(u) > 0},

N 0 = {u ∈ N : (q − p)A(u) + µC(u) = 0},

where

A(u) := ‖u‖p − λ‖u‖pp,K ,

B(u) :=

∫

RN

Q(x)|u(x)|q log(|u(x)|) dx, and C(u) :=

∫

RN

Q(x)|u(x)|q dx.

The corresponding fibrering maps ϕu can be rewritten as

ϕu(t) =
tp

p
A(u) +

µ

q2
tq(1 − q log t)C(u)−

µ

q
tqB(u),

and

ϕ′
u(t) = tp−1βu(t), where βu(t) := A(u)− µB(u)tq−p − µC(u)tq−p log t.
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In order to find critical points of ϕu(t), we need to search zero points of βu(t). We

have

β′
u(t) = 0 ⇔ t0 := t0(u) = exp

(

−
1

q − p

)

exp
(

−
B(u)

C(u)

)

.

It is easy to see that the behavior of ϕu(t) depends on the signs of A(u) because C(u)

is always positive. Setting

A+ = {u ∈ X : A(u) > 0},

we have the following remark which shows the properties of A+.

R em a r k 3.3. If u ∈ A+, then ϕu(t) > 0 for small t > 0 and ϕu(t) → −∞ as

t→ ∞. Moreover, in this case βu(t) attains its maximum at t0(u), strictly increases

on (0, t0(u)) and strictly decreases on (t0(u),∞), and

0 < A(u) = lim
t→0+

βu(t) = βu(0
+) < βu(t0) and lim

t→∞
βu(t) = −∞.

This implies βu(t) has a unique zero point t1(u) > t0(u) > 0 and therefore ϕu(t) has

a unique (maximum) stationary point at t1(u) > t0(u) such that t1(u)u ∈ N−.

4. The proof of the main result

Throughout this section we assume λ < λ1 and (A1) and (A2) hold. By the

definition of λ1 we have

(4.1) A(u) = ‖u‖p − λ‖u‖pp,K >

(

1−
λ

λ1

)

‖u‖p > 0 ∀u ∈ X \ {0}.

This implies u ∈ A+ for all u ∈ X \ {0}. On the other hand, since q > p and C(u) is

positive, by definition we have N+ = N 0 = ∅. In addition, by Remark 3.3 there is

a unique t1(u) > 0 such that t1(u)u ∈ N− and therefore the Nehari manifold N can

be expressed as follows:

N = N− = {t1(u)u : u ∈ A+}.

Using this fact, we merely need to investigate the behavior of J on N−. It is easy

to see that J is coercive on N− due to 0 < λ < λ1 and

(4.2) J(u) =
(1

p
−

1

q

)

(‖u‖p − λ‖u‖pp,K) +
µ

q2
‖u‖qq,Q

>

(1

p
−

1

q

)(

1−
λ

λ1

)

‖u‖p +
µ

q2
‖u‖qq,Q ∀u ∈ N−.

The next lemma shows that its infimum is positive.

Proposition 4.1. We have inf
u∈N−

J(u) > 0.
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P r o o f. Assume by contradiction that inf
u∈N−

J(u) = 0 and let {um}∞m=1 ∈ N−

be a minimizing sequence, that is, we have

lim
m→∞

J(um) = 0.

Since J is coercive on N−, it follows that {um}∞m=1 is bounded on X . By virtue

of Proposition 2.2, this sequence has a subsequence still denoted by {um}∞m=1 such

that

um → u∞ weakly in X and strongly in L
p
K(RN ) ∩ Lq

Q(R
N ), and a.e. in R

N .

As a consequence, we have

∫

RN

K(x)|um(x)|p dx→

∫

RN

K(x)|u∞(x)|p dx,(4.3)
∫

RN

Q(x)|um(x)|q dx→

∫

RN

Q(x)|u∞(x)|q dx.(4.4)

We next show that u∞ must be zero. Indeed, if this is not the case, then it follows

from (4.2) and (4.4) that

0 <
µ

q2
‖u∞‖qq,Q = lim

m→∞

µ

q2
‖um‖qq,Q 6 lim

m→∞
J(um) = 0,

which is a contradiction. Moreover, um → 0 strongly in X . If not, then we have

0 = ‖u∞‖ < lim inf
n→∞

‖um‖ and therefore we get another contradiction

0 = J(u∞)< lim inf
m→∞

((1

p
−

1

q

)

(‖um‖p−λ‖um‖pp,K)+
µ

q2
‖um‖qq,Q

)

= lim
m→∞

J(um) = 0.

Hence, we get um → 0 strongly in X . By setting vm = um/‖um‖, we may assume

that

(4.5) vm → v∞ weakly in X and strongly in L
p
K(RN ) ∩ Lq

Q(R
N ), and a.e. in R

N .

In other words, we have

∫

RN

K(x)|vm(x)|p dx→

∫

RN

K(x)|v∞(x)|p dx,(4.6)
∫

RN

Q(x)|vm(x)|q dx→

∫

RN

Q(x)|v∞(x)|q dx.(4.7)
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By virtue of Lemma 2.3, we get

(4.8) lim
m→∞

∫

RN

Q(x)|vm(x)|q log |vm(x)| dx =

∫

RN

Q(x)|v∞(x)|q log |v∞(x)| dx.

On the other hand, since um ∈ N , we get

‖um‖p − λ‖um‖pp,K − µ

∫

RN

Q(x)|um(x)|q log |um(x)| dx = 0.

Dividing both sides by ‖um‖p, we obtain

‖vm‖p − λ‖vm‖pp,K = µ‖um‖q−p

∫

RN

Q(x)|vm(x)|q log |vm(x)| dx

+ µ‖um‖q−p log(‖um‖)

∫

RN

Q(x)|vm(x)|q dx.

Let m → ∞. Since q ∈ (p, p∗s), it follows from (4.7), (4.8) and the fact that um → 0

strongly in X , that

(4.9) lim
m→∞

(‖vm‖p − λ‖vm‖pp,K) = 0.

We next show that vm → v∞ strongly in X . Otherwise, we have ‖v∞‖ < lim inf
m→∞

‖vm‖

and by using (4.6), we get a contradiction

‖v∞‖p − λ‖v∞‖pp,K < lim inf
m→∞

(‖vm‖p − λ‖vm‖pp,K) = 0.

Hence, vm → v∞ strongly in X which implies that

(

1−
λ

λ1

)

‖v∞‖p 6 ‖v∞‖p − λ‖v∞‖pp,K = lim
m→∞

(‖vm‖p − λ‖vm‖pp,K) = 0.

Hence, v∞ = 0 which contradicts ‖v∞‖ = 1. The proof is complete. �

We are now in the position to give the proof of the main theorem.

P r o o f of Theorem 1.1. Let {um}∞m=1 be a minimizing sequence of J on N−

such that

(4.10) J(um) → inf
u∈N−

J(u) > 0 as m→ ∞.

By coerciveness of J(u) on N− and Proposition 2.2, we may assume that um → u0
weakly in X and strongly in Lp

K(RN ) ∩ Lq
Q(R

N ), and a.e. in R
N , which implies

∫

RN

K(x)|um(x)|p dx→

∫

RN

K(x)|u0(x)|
p dx,(4.11)

∫

RN

Q(x)|um(x)|q dx→

∫

RN

Q(x)|u0(x)|
q dx.(4.12)
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By virtue of Lemma 2.3, we have

(4.13) lim
m→∞

∫

RN

Q(x)|um(x)|q log |um(x)| dx =

∫

RN

Q(x)|u0(x)|
q log |u0(x)| dx.

We next show that um → u0 strongly in X . Suppose otherwise, we have ‖u0‖ <

lim inf
m→∞

‖um‖. Since um ∈ N− = N , we have

A(u0)− µB(u0)=‖u0‖
p − λ‖u0‖

p
p,K − µ

∫

RN

Q(x)|u0(x)|
q log(|u0(x)|) dx

< lim inf
m→∞

(

‖um‖p − λ‖um‖pp,K − µ

∫

RN

Q(x)|um(x)|q log(|um(x)|) dx

)

=0,

that is, βu0
(1) = A(u0)− µB(u0) < 0 which immediately implies that u0 6= 0, while

βu0
(t0) > 0. The analysis of the fibrering maps ϕu(t) shows that there exists a unique

t1(u0) ∈ (t0(u0), 1) such that t1(u0)u0 ∈ N−. Hence we have

(4.14) inf
u∈N−

J(u) 6 J(t1(u0)u0).

On the other hand, since um → u0 weakly in X , one has

t1(u0)um → t1(u0)u0 weakly in X,

which leads to a contradiction to (4.14):

(4.15) J(t1(u0)u0) < lim inf
m→∞

J(t1(u0)um) 6 lim inf
m→∞

J(um) = inf
u∈N−

J(u).

Here we use the fact that um ∈ N− and therefore J(tum) attains its unique maximum

at t = 1.

Hence um → u0 strongly in X . Finally, we prove that u0 ∈ N−. Indeed, notice

that u0 6= 0 and um ∈ N− = N , we have

‖um‖p − λ‖um‖pp,K − µ

∫

RN

Q(x)|um(x)|q log |um(x)| dx = 0.

Let m→ ∞, we get u0 ∈ N = N−. The proof is complete. �
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