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K Y B E R N E T I K A — V O L U M E 5 8 ( 2 0 2 2 ) , N U M B E R 1 , P A G E S 1 0 1 – 1 2 2

RISK-SENSITIVE MARKOV STOPPING GAMES
WITH AN ABSORBING STATE

Jaicer López-Rivero, Rolando Cavazos-Cadena and Hugo Cruz-Suárez

This work is concerned with discrete-time Markov stopping games with two players. At
each decision time player II can stop the game paying a terminal reward to player I, or can
let the system to continue its evolution. In this latter case player I applies an action affecting
the transitions and entitling him to receive a running reward from player II. It is supposed
that player I has a no-null and constant risk-sensitivity coefficient, and that player II tries to
minimize the utility of player I. The performance of a pair of decision strategies is measured by
the risk-sensitive (expected) total reward of player I and, besides mild continuity-compactness
conditions, the main structural assumption on the model is the existence of an absorbing state
which is accessible from any starting point. In this context, it is shown that the value function
of the game is characterized by an equilibrium equation, and the existence of a Nash equilibrium
is established.

Keywords: monotone operator, fixed point, equilibrium equation, hitting time, bounded
rewards, certainty equivalent

Classification: 93E20, 93C55, 60J05

1. INTRODUCTION

In this paper our attention is focused on a class of zero-sum games in discrete time,
countable state space, and Markovian transitions. The game is driven by two players,
and at each decision time player II always has two options, namely, to stop the game
paying a terminal reward to player I, or else, to let the system to continue its evolution,
and in this case player I applies an action affecting the system transition and entitling
him to receive a running reward from player II. A random reward is evaluated by player
I via an exponential utility function with non-null and constant risk-sensitivity, and the
performance of a pair of strategies is measured by the risk-sensitive total reward received
by player I. Whereas player I chooses his decision strategy trying to maximize his utility,
it is supposed that the objective of player II is to minimize the utility of player I. The
main structural condition on the game is the existence of an absorbing state which,
regardless of the strategies of the players, will be eventually reached from any initial
state, see Assumption 2.3 below. Within this framework, the main problems studied
below can be stated as follows:

DOI: 10.14736/kyb-2022-1-0101

http://doi.org/10.14736/kyb-2022-1-0101
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• To characterize the value function of the game via en equilibrium equation, and

• To determine a Nash equilibrium.

Game theory has interesting applications in various areas, some of which can be
found in the articles by Altman, Shwartz [2], Atar and Budhiraja [3], and in the books
by Filar and Vrtieze [17] and Kolokoltsov and Malafeyev [21]. While the theory of
Markov games can be traced back to the articles by Shapley [28] and Zachrisson [33]
and recent advances and applications can be found, for instance, in [17] or [21]. On the
other hand, the idea of stopping times is of great relevance in stochastic analysis, and
a complete description of the theory can be found in [29] and [25], in addition to which
applications to mathematical finance can be found in [8], and in [24]. In general, Markov
decision processes can be viewed as single-player stochastic games. A well-established
theory of Markov decision chains is available in [27] and [18], and applications can be
found, for example, in [6] or [32], where risk sensitive criterion is presented.

The analysis of discrete-time Markov models with the risk-sensitive criteria can be
traced back, at least, to [19], where controlled Markov chains on a finite state space
were analyzed and, under appropriate communication conditions, a characterization of
the optimal risk-sensitive average cost was derived in terms of an optimality equation.
More recently, work on risk-sensitive criteria has been stimulated by connections with
the fields of mathematical finance [5, 32, 26], and large deviations [4, 22]. For uncon-
trolled and controlled models, the results by Howard and Matheson (1972) [19] have
been extended to the case of a general transition structure in [10] and [1], respectively.
Controlled Markov models with finite or denumerable state-space endowed with risk-
sensitive criteria have been studied, for instance, in [6, 9, 13, 30, 31], whereas Markov
decision processes on a general state space are analyzed, for instance, in [14, 15, 16]
or [20]. On the other hand, game theory has been intensively studied and applications
can be found, for instance, in [2, 17, 21] or [7]. A comprehensive account of the idea of
stopping time can be found in [29] and [25]. Finally, the theory on controlled Markov
processes used in this note is well established and is presented, for instance, in [27]
and [18].

The approach of this work combines basic ideas about stopping times, Markov chains
and dynamic programming, with the analysis of a monotone operator introduced in
Section 3. It is shown that such an operator has a fixed point which is used to define
strategies for players I and II, and then it is shown that those strategies conform a
Nash equilibrium. The organization of the subsequent material is as follows: In Section
2 the idea of Markov stopping game is formally introduced, the exponential utility
with constant risk-sensitivity coefficient and the corresponding risk-sensitive total reward
criterion are formulated, and the idea of Nash equilibrium is discussed, whereas in Section
3 the fundamental operator considered in this work is introduced, and its main property,
namely, the existence of a fixed point, is stated in Theorem 3.2. Such a result is used
to define strategies for players I and II which, as it is shown in Theorem 3.3, constitute
a Nash equilibrium. Then, Section 4 is dedicated to establish Theorem 3.2 using an
argument that relies on two properties of the basic operator, namely, monotonicity,
and continuity with respect to the topology of pointwise convergence. Next, Section
5 contains two technical results that will be used to verify the existence of a Nash
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equilibrium in Section 6, and the paper concludes with some brief comments in Section 7.

2. THE MODEL

In this section the dynamic model studied in the paper is formally described but, before
going any further, it is convenient to introduce the basic notation used in the forthcoming
analysis. Given a topological space K, the Banach space C(K) consist of all continuous
functions R : K→ R whose supremum norm ‖R‖ is finite, where ‖R‖ := supk∈K |R(k)|,
whereas N stands for the set of nonnegative integers. The indicator function of an
event A is denoted by I[A] and, even without explicit mention, all relations involving
conditional expectations are valid with probability 1 with respect to the underlying
probability measure. On the other hand, a ∧ b and a ∨ b are used as infix notations for
min{a, b} and max{a, b}, respectively, where a, b ∈ R. The minimum of the empty set
is ∞ and, finally, the following convention concerning summations will be used:

m∑
t=n

at := 0, m < n. (1)

A Markov stopping game G = (S,A, {A(x)}x∈S , R,G, P ) is a mathematical model for
a dynamic system whose evolution is influenced by two agents, who are referred to as
players I and II. The components of G have the following meaning: The (nonempty and)
denumerable set S is the state space and is endowed with the discrete topology, the
metric space A is the action set and, for each x ∈ S, A(x) ⊂ A is the nonempty class
of admissible actions at x for player I. On the other hand, R ∈ C(K) is the running
reward function, where the class K of admissible pairs is defined by K := {(x, a) :
a ∈ A(x), x ∈ S}, and G ∈ C(S) is the terminal reward. Finally, P = [px,y(a)] is the
controlled transition law on S given K, so that px,y(a) ≥ 0 and

∑
y∈S px,y(a) = 1 for each

(x, a) ∈ K. Model G is interpreted as follows: At each decision epoch t ∈ N, players I and
II observe the state of the system, say Xt = x ∈ S, and player II must select one of two
actions: To stop the system paying a terminal reward G(x) to player I, or let the system
to continue its evolution. In this latter case, using the record of states up to time t and
actions previous to t, player I applies an action (control) At = a ∈ A(x), an intervention
that has two consequences: player I gets a reward R(x, a) from player II and, regardless
of the previous states and actions, the system moves to Xt+1 = y ∈ S with probability
px,y(a); this is the Markov property of the decision process. The following conditions
will be enforced throughout the remainder.

Assumption 2.1. (i) For each x ∈ S, A(x) is a compact subset of A.

(ii) For every x, y ∈ S, the mappings a 7→ R(x, a) and a 7→ px,y(a) are continuous in
a ∈ A(x).

(iii) For each x ∈ S and a ∈ A(x), G(x) ≥ 0 and R(x, a) ≥ 0.

Decision Strategies. For each t ∈ N the space Ht of possible histories up to time t is
defined by H0 := S and Ht := Kt×S when t > 0, whereas ht = (x0, a0, . . . , xi, ai, . . . , xt)
stands for a generic element of Ht, where ai ∈ A(xi). A policy π = {πt} is a special
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sequence of stochastic kernels: For each t ∈ N and ht ∈ Ht, πt(·|ht) is a probability
measure on A concentrated on A(xt), and for each Borel subset B ⊂ A the mapping
ht 7→ πt(B|ht), ht ∈ Ht, is Borel measurable. The class of all policies constitutes the
family of admissible strategies for player I and is denoted by P. When player I drives
the system using π, the control At applied at time t belongs to B ⊂ A with probability
πt(B|ht), where ht ∈ Ht is the observed history of the process up to time t. Given
π ∈ P and the initial state X0 = x, a unique probability measure Pπx is uniquely
determined on the Borel σ-field of the space H :=

∏∞
t=0 K of all possible realizations of

the state-action process {(Xt, At)} [18, 27], and the corresponding expectation operator
is denoted by Eπx . Next, define F :=

∏
x∈S A(x) and notice that F is a compact metric

space, which consists of all functions f : S → A such that f(x) ∈ A(x) for each x ∈ S.
A policy π is stationary if there exists f ∈ F such that the probability measure πt(·|ht)
is always concentrated at f(xt), and in this case π and f are naturally identified; with
this convention, F ⊂ P. On the other hand, setting

Ft := σ(X0, A0, . . . , Xt−1, At−1, Xt), (2)

the space T of strategies for player II consists of all stopping times τ : H → N ∪ {∞}
with respect to the filtration {Ft}, that is, [τ = t] ∈ Ft for every t ∈ N.

Exponential Utility. Throughout the remainder it is supposed that player I has a
constant risk-sensitivity coefficient λ 6= 0, so that a random reward Y is assessed via the
expectation of Uλ(Y ), where the utility function Uλ : R→ R is given by

Uλ(x) := sign(λ)eλx, x ∈ S; (3)

notice that Uλ(·) is a strictly increasing function and that

Uλ(x+ y) = eλxUλ(y), x, y ∈ R. (4)

When choosing between two random rewards W and Y , player I prefers Y if E[Uλ(W )] <
E[Uλ(Y )], and is indifferent between them when E[Uλ(W )] = E[Uλ(Y )]. The certainty
equivalent of Y (with respect to Uλ) is the constant Eλ(Y ) ∈ R ∪ {−∞,∞} satisfying
Uλ(Eλ(Y )) = E[Uλ(Y )], so that player I is indifferent between receiving a random reward
Y or the corresponding certainty equivalent Eλ(Y ). Observe that

Eλ(Y ) := log(E[eλY ])/λ. (5)

Performance Criterion. Given the initial state X0 = x ∈ S, suppose that players
I and II drive the system using strategies π ∈ P and τ ∈ T , respectively. The total
(random) reward obtained by player I until the system is halted at time τ by player II
is given by

τ−1∑
t=0

R(Xt, At) +G(Xτ )I[τ <∞],

and the corresponding certainty equivalent is the performance index Vλ(x;π, τ) associ-
ated with the pair (π, τ) ∈ P × T at state x ∈ S:

Vλ(x;π, τ) :=
1

λ
log
(
Eπx

[
eλ(

∑τ−1
t=0 R(Xt,At)+G(Xτ )I[τ<∞])

])
; (6)
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see (5) and observe that, since R and G are nonnegative,

Vλ(x;π, τ) ≥ 0. (7)

When player II employs the strategy τ , the largest value of the certainty equivalent that
can be achieved by player I is supπ∈P Vλ(x;π, τ), which is a function of x and τ , say
ϕ(x; τ). It is supposed that the main objective of player II is to minimize the expected
utility of player I, so that player II will try hard to employ a stopping time τ̃ such that
ϕ(x; τ̃) is as close as possible to infτ∈T ϕ(x; τ). This last quantity is the (upper-)value
function of the game and is explicitly determined by

V ∗λ (x) := inf
τ∈T

[
sup
π∈P

Vλ(x;π, τ)

]
, x ∈ S. (8)

Interchanging the order in which the supremum and the infimum are taken, the following
lower-value function of the game is obtained:

V
λ,∗(x) := sup

π∈P

[
inf
τ∈T

Vλ(x;π, τ)

]
, x ∈ S. (9)

Since supπ∈P Vλ(x;π, τ) ≥ Vλ(x;π, τ) ≥ infτ∈T Vλ(x;π, τ), these definitions immedi-
ately lead to

V ∗λ (·) ≥ Vλ,∗(·). (10)

Equilibrium Strategies. The remainder of the paper analyzes the existence of a
Nash equilibrium, an idea that is introduced below.

Definition 2.2. A Nash equilibrium is a pair (π∗, τ∗) ∈ P × T such that, for every
state x ∈ S

Vλ(x;π, τ∗) ≤ Vλ(x;π∗, τ∗) ≤ Vλ(x;π∗, τ), π ∈ P, τ ∈ T . (11)

When the strategies π∗ and τ∗ actually used by players I and II form a Nash equilib-
rium, it follows from the first inequality in the above display that, if player II keeps on
using strategy τ∗, then player I does not have any incentive to switch to other policy.
Similarly, the second inequality in (11) implies that, if player I keeps on using π∗, then
player II does not have any motivation to change the strategy τ∗ in use. Also, note that
if (π∗, τ∗) is a Nash equilibrium, then (11) implies that

V ∗λ (·) ≤ sup
π
Vλ(·;π, τ∗) ≤ Vλ(·;π∗, τ∗) ≤ inf

τ
Vλ(x;π∗, τ) ≤ Vλ,∗(·),

where the left- and right-most inequalities are due to (8) and (9), respectively, so that
via (10), it follows that the upper and lower value functions are equal and coincide with
Vλ(·;π, τ∗).

In [11] the existence of a Nash equilibrium was established for Markov stopping
games with the risk-neutral discounted criterion. As it was pointed out in [23] the
discounted index is a particular case of the total reward criterion applied to models
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with an absorbing state z satisfying the following two properties: (i) The running and
terminal reward are null at z, and (ii) Under any stationary policy, state z is accessible
from any initial state. These conditions will be assumed throughout the sequel, and
there formally stated as follows.

Assumption 2.3. There exists a state z ∈ S satisfying conditions (i) and (ii) below.

(i) For every x ∈ S and f ∈ F,
P fx [τz <∞] = 1, (12)

where
τz := min{n ∈ N : Xn = z}. (13)

(ii) G(z) = 0 = R(z, a) and pz,z(a) = 1, a ∈ A(z).

Notice that τz is a stopping time with respect to the filtration {Fn} given in (2), and
that

Xτz = z on the event [τz <∞]. (14)

Under Assumptions 2.1 and 2.3, Markov stopping games endowed with the risk-neutral
total reward criterion were studied in [23] and [12], where the existence of Nash equilib-
rium was proved assuming that the state space is finite and denumerable, respectively.
Within the framework determined by Assumptions 2.1 and 2.3, the main objective of the
paper is to show that there exists a Nash equilibrium with respect to the risk sensitive
total reward index (6).

3. MAIN THEOREM

In this section the main result of the paper on the existence of a Nash equilibrium is
stated. First, a subset of C(S) and an operator on that set are introduced.

Definition 3.1. (i) The space [[0, G]] ⊂ C(S) is defined by

[[0, G]] := {h ∈ C(S) : 0 ≤ h(x) ≤ G(x)}. (15)

(ii) The operator Tλ : [[0, G]]→ [[0, G]] is implicitly determined as follows: For each
W ∈ [[0, G]] and x ∈ S,

Uλ(Tλ[W ](x)) := min

Uλ(G(x)), sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) +W (y))

 . (16)

Using that Uλ(·) is increasing and that R and G are nonnegative, it is not difficult
to verify that Tλ actually transforms [[0, G]] into itself, as well as the following two
properties:

Tλ[W ](z) = W (z) = 0, W ∈ [[0, G]], (17)

and
W,W1 ∈ [[0, G]] and W ≤W1 =⇒ Tλ[W ] ≤ Tλ[W1]. (18)

The existence of a Nash equilibrium for the criterion (6), stated below as Theorem 3.2,
relies heavily on the following result.
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Theorem 3.2. Under Assumptions 2.1 and 2.3 the operator Tλ has a fixed point, that
is, there exists a function W ∗λ ∈ [[0, G]] satisfying

W ∗λ = Tλ[W ∗λ ]. (19)

Throughout the remainder W ∗λ stands for a given fixed point of Tλ. Via Definition
3.1, (19) can be equivalently written as follows: For every x ∈ S,

Uλ(W ∗λ (x)) = min

Uλ(G(x)), sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) +W ∗λ (y))

 . (20)

Additionally, using the G is bounded, the inclusion W ∗λ ∈ [[0, G]] and Assumption 2.1
together imply that there exists a policy f∗ ∈ F such that, for every x ∈ S,∑

y∈S
px,y(f∗(x))Uλ(R(x, f∗(x)) +W ∗λ (y))

= sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) +W ∗λ (y))

 . (21)

Also, observing thatW ∗λ ≥ 0, Assumption 2.3(ii) and (20) together imply that Uλ(W ∗λ (z)) =
Uλ(G(z)) = Uλ(0), and then

W ∗λ (z) = 0 = G(z). (22)

Next, define the subset S∗ of the state space by

S∗ := {x ∈ S : W ∗λ (x) = G(x)}, (23)

and let τ∗ be the time of the first visit to S∗, that is,

τ∗ := min{n ∈ N : Xn ∈ S∗}, (24)

so that τ∗ is a stopping time with respect to the filtration {Ft} in (2), that is, τ∗ belongs
to the space T of admissible strategies for player II; observe that z ∈ S∗, by (22) and
(23), and then

τ∗ ≤ τz. (25)

With this notation, the main conclusion of this paper can be stated as follows.

Theorem 3.3. Under Assumptions 2.1 and 2.3, the following assertions (i)–(ii) hold.

(i) For every x ∈ S,
Vλ(x; f∗, τ∗) = W ∗λ (x).

(ii) The pair (f∗, τ∗) ∈ F× T is a Nash equilibrium.

Theorem 3.2 will be proved in the following section, and then, after establishing
the necessary technical tools in Section 5, Theorem 3.3 will be verified in Section 6.
Throughout the reminder Assumptions 2.1 and 2.3 are enforced.
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4. EXISTENCE OF A FIXED POINT

In this section Theorems 3.2 will be verified. The backbone of the argument is the fol-
lowing result, establishing that Tλ is a continuous operator with respect to the topology
of pointwise convergence on the space [[0, G]].

Theorem 4.1. Suppose that the sequence {Wn} ⊂ [[0, G]] converges pointwise to a
function V : S → R, that is,

lim
n→∞

Wn(x) = V (x), x ∈ S. (26)

In this case

V ∈ [[0, G]] and lim
n→∞

Tλ[Wn](x) = Tλ[V ](x), x ∈ S.

The proof of this theorem relies on the following lemma.

Lemma 4.2. (i) Consider a family {Sk} of finite subsets of S such that

S =

∞⋃
k=0

Sk, Sk ⊂ Sk+1, k ∈ N, (27)

and for each x ∈ S and k ∈ N define

δk(x) := sup
a∈A(x)

1−
∑
y∈Sk

px,y(a)

 = sup
a∈A(x)

∑
y∈S\Sk

px,y(a). (28)

In this case,

lim
k→∞

δk(x) = 0, x ∈ S.

(ii) Suppose that {W̃n} ⊂ C(S) is such that

c := sup
n∈N
‖W̃n‖ <∞ and lim

n→∞
W̃n(y) = 0, y ∈ S. (29)

In this case, for every x ∈ S

sup
a∈A(x)

eλR(x,a)
∑
y∈S

px,y(a)|W̃n(y)| → 0 as n→∞.

P r o o f . (i) Since the sets Sk are finite, Assumption 2.1 yields that for each k ∈ N the
mapping a 7→

∑
y∈Sk px,y(a) is continuous on the compact space A(x), whereas using

the conditions in (27) it follows that∑
y∈Sk

px,y(a)↗
∑
y∈S

px,y(a) = 1 as k ↗∞,
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so that Dini’s theorem implies that the convergence is uniform on the space A(x), that

is, supa∈A(x)

[
1−

∑
y∈Sk px,y(a)

]
→ 0 as k →∞.

(ii) Let x ∈ S be fixed and observe that for every k ∈ N

sup
a∈A(x)

eλR(x,a)
∑
y∈S

px,y(a)|W̃n(y)|

≤ sup
a∈A(x)

eλR(x,a)
∑
y∈Sk

px,y(a)|W̃n(y)|+ sup
a∈A(x)

eλR(x,a)
∑

y∈S\Sk

px,y(a)|W̃n(y)|

≤ e|λ| ‖R‖
max
y∈Sk

|W̃n(y)|+ c sup
a∈A(x)

∑
y∈S\Sk

px,y(a)


= e|λ| ‖R‖

(
max
y∈Sk

|W̃n(y)|+ cδk(x)

)
where (29) was used to set the second inequality, and the equality is due to (28). Re-
calling that the sets Sk are finite, the convergence in (29) yields

lim sup
n→∞

∣∣∣∣∣∣ sup
a∈A(x)

eλR(x,a)
∑
y∈S

px,y(a)|W̃n(y)|

∣∣∣∣∣∣ ≤ e|λ| ‖R‖c δk(x), x ∈ S,

and then, since k ∈ N is arbitrary, the conclusion follows from part (i). �

P r o o f . (Proof of Theorem 4.1) Note that (15) and (26) together imply that V ∈
[[0, G]]. Next, using (4) observe that

sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) +Wn(y))

= sup
a∈A(x)

eλR(x,a)
∑
y∈S

px,y(a)Uλ(Wn(y))


= sup
a∈A(x)

eλR(x,a)
∑
y∈S

px,y(a)Uλ(V (y))

+ eλR(x,a)
∑
y∈S

px,y(a)[Uλ(Wn(y))− Uλ(V (y))]


≤ sup
a∈A(x)

eλR(x,a)
∑
y∈S

px,y(a)Uλ(V (y))


+ sup
a∈A(x)

eλR(x,a)
∑
y∈S

px,y(a)|Uλ(Wn(y))− Uλ(V (y))|

 ,
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and an additional application of (4) leads to

sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) +Wn(y))

≤ sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + V (y)) + ∆n(x), (30)

where

∆n(x) := sup
a∈A(x)

eλR(x,a)
∑
y∈S

px,y(a)|Uλ(Wn(y))− Uλ(V (y))|

 , (31)

whereas the inequality

sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) + V (y))

≤ sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) +Wn(y)) + ∆n(x),

can be established along similar lines. Combining the definition of Tλ in (16) with (30)
and the previous display, it follows that Uλ(Tλ[Wn](x)) ≤ Uλ(Tλ[V ](x)) + ∆n(x) and
Uλ(Tλ[V ](x)) ≤ Uλ(Tλ[Wn](x)) + ∆n(x), so that

|Uλ(Tλ[Wn](x))− Uλ(Tλ[V ](x))| ≤ ∆n(x). (32)

Observe now that (3) and (26) together imply that

lim
n→∞

[Uλ(Wn(y))− Uλ(V (y))] = 0, y ∈ S.

Additionally, using that ‖W‖ ≤ ‖G‖(<∞) if W ∈ [[0, G]], the inclusions Wn, V ∈ [[0, G]]
and (3) together yield that ‖Uλ(Wn(·))‖, ‖Uλ(V (·))‖ ≤ e|λ| ‖G‖, and then

‖Uλ(Wn(·))− Uλ(V (·))‖ ≤ 2e|λ|‖G‖.

Using Lemma 4.2 (ii) with Uλ(Wn) − Uλ(V ) instead of W̃n, the two last displays and
(31) together imply that limn→∞∆n(·) = 0, a convergence that via (32) leads to
limn→∞ Uλ(Tλ[Wn](x)) = Uλ(Tλ[V ](x)) for each x ∈ S; since Uλ(·) is strictly increasing
and continuous, it follows that Tλ[Wn](x)→ Tλ[V ](x) as n→∞ for every state x. �

Now, Theorem 4.1 will be used to derive the existence of a fixed point of the opera-
tor Tλ.

P r o o f . (Proof of Theorem 3.2) Set W0,λ := 0 and Wn,λ := Tnλ [0] for n ∈ N \ {0}, and
observe that

Wn+1,λ = Tλ[Wn,λ], n ∈ N. (33)
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Since W0,λ = 0 ∈ [[0, G]] and W1,λ = T [0] ∈ [[0, G]] it follows that W1,λ ≥ W0,λ, and
then an induction argument combining the above display and monotonicity property
(18) immediately yields that

0 ≤Wn,λ ≤Wn+1,λ ≤ G, n ∈ N,

where the extreme inequalities are due to the fact that the functions Wk,λ belong to
[[0, G]]. It follows that {Wn,λ(y)}n∈N is always an increasing and bounded sequence, so
that

lim
n→∞

Wn,λ(y) =: W ∗λ (y)

exists for every y ∈ S. From this point, Theorem 4.1 yields that W ∗λ ∈ [[0, G]] and

lim
n→∞

Tλ[Wn,λ](x) = Tλ[W ∗λ ](x), x ∈ S.

Thus, taking the limit as n goes to ∞ in both sides of (33), the two previous displays
together imply that W ∗λ = Tλ[W ∗λ ], showing that W ∗λ is a fixed point of Tλ. �

5. TECHNICAL TOOLS

This section presents auxiliary results that will be used in the proof of Theorem 3.3.
The following lemma extends property (12) to the class of all policies.

Lemma 5.1. For each x ∈ S, and n ∈ N, define

Mn(x) := sup
π∈P

Pπx [τz > n] ∈ [0, 1]. (34)

With this notation,

(i) limn→∞Mn(x) = 0, x ∈ S.

(ii) Pπx [τz <∞] = 1 for every x ∈ S and π ∈ P.

P r o o f . Note that the inclusion [τz > n+ 1] ⊂ [τz > n] and (34) together lead to

Mn+1 ≤Mn, n ∈ N, (35)

and then

M(x) := lim
n→∞

Mn(x) ∈ [0, 1] (36)

exists for every x ∈ S; since Pπz [τz = 0] = 1 for every π ∈ P, by (13), it follows that
Mn(z) = 0 for every positive n, so that

M(z) = 0.

Given (x, ã) ∈ K and a policy π ∈ P, define the new policy πx,ã = {πx,ã,n} as follows:
for every t ∈ N and ht ∈ Ht, πx,ã,t(·|ht) = πt+1(·|x, ã, ht). Next, using (13), notice that
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[τz > n + 1] = [Xk 6= z, 0 ≤ k ≤ n + 1] and note that an application of the Markov
property yields that for every π ∈ P, n ∈ N and (x, ã) ∈ K with x 6= z

Pπx [τz > n+ 1|A0 = ã] =
∑

y∈S\{z}

px,y(ã)Pπx,ãy [τz > n]

≤
∑

y∈S\{z}

px,y(ã)Mn(y) ≤ sup
a∈A(x)

∑
y∈S\{z}

px,y(a)M(y),

where the inequalities are due to (34)–(36). Therefore,

Pπx [τz > n+ 1] ≤ sup
a∈A(x)

∑
y∈S\{z}

px,y(a)M(y), x 6= z.

Since the left hand side of this inequality is null when x = z, via (34) and (36) it follows
that

M(x) ≤ sup
a∈A(x)

∑
y∈S\{z}

px,y(a)M(y), x ∈ S.

Now, using that M(·) is bounded, observe that Assumption 2.1 implies that there exists

a policy f̂ ∈ F such that supa∈A(x)

∑
y∈S\{z} px,y(a)M(y) =

∑
y∈S\{z} px,y(f̂(x))M(y)

for every state x, and then

M(x) ≤
∑

y∈S\{z}

px,y(f̂(x))M(y) =
∑
y∈S

px,y(f̂(x))M(y), x ∈ S;

see (5) for the equality. Combining this relation with the Markov property, it follows
that for every initial state x ∈ S and n ∈ N,

M(Xn) ≤ Ef̂x [M(Xn+1)|Xn] = Ef̂x [M(Xn+1)|Fn], P f̂x -a. s.,

so that {(M(Xn),Fn)} is a submartingale with respect to P f̂x . Since M(·) is bounded,
the optional sampling theorem yields that, for every x ∈ S and n ∈ N,

M(x) ≤ Ef̂x [M(Xτz∧n)] = Ef̂x [M(Xn) I[τz > n]] ≤ P f̂x [τz > n],

where, recalling that M(z) = 0, the equality was obtained form (14), and the inclusion

in (36) was used in the last step. Since limn→∞ P f̂x [τz > n] = P f̂x [τz = ∞] = 0,
by Assumption 2.3(i), the above display yields that M(·) = 0, establishing part (i).
To establish assertion (ii), combine (34) with the part (i) to obtain Pπx [τz = ∞] =
limn→∞ Pπx [τz > n] ≤ limn→∞Mn(x) = M(x) = 0 for every x ∈ S and π ∈ P.

�

The following lemma shows that the space of strategies of player II can be reduced to
the class of finite stopping times, a result that will be used in the proof of Theorem 3.3.

Lemma 5.2. For every (π, τ) ∈ P × T ,

Vλ(·, π, τ) = Vλ(·, π, τ ∧ τz). (37)
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P r o o f . Let x ∈ S and (π, τ) ∈ P × T be arbitrary. Using that Pπx [τz < ∞] = 1, by
Lemma 5.1, Assumptions 2.1(ii) and 2.3 together with (13) yield that

On [τz <∞], Xτz = z and R(Xn, An) = G(Xn) = 0, n ≥ τz. (38)

Next, observe the following facts (a)–(c):

(a) On the event [τ =∞]∩ [τz <∞] the equality τ ∧τz = τz holds, and the above display

yields that R(Xt, At) = 0 for t ≥ τ ∧ τz and G(Xτ∧τz ) = 0, so that
∑τ−1
t=0 R(Xt, At) =∑τ∧τz−1

t=0 R(Xt, At) and G(Xτ )I[τ <∞] = 0 = G(Xτ∧τz )I[τ ∧ τz <∞]. Thus,

τ−1∑
t=0

R(Xt, At) +G(Xτ )I[τ <∞]

=

τ∧τz−1∑
t=0

R(Xt, At) +G(Xτ∧τz )I[τ ∧ τz <∞] on [τ =∞, τz <∞];

since Pπx [τz <∞] = 1, by Lemma 5.1(ii), it follows that

Eπx

[
I[τ =∞]Uλ

(
τ−1∑
t=0

R(Xt, At) +G(Xτ )I[τ <∞]

) ]

= Eπx

[
I[τ =∞]Uλ

(
τ∧τz−1∑
t=0

R(Xt, At) +G(Xτ∧τz )I[τ ∧ τz <∞]

)]
.

(b) On the event [τz ≤ τ < ∞], τz = τ ∧ τz and via (38) it follows that G(Xτ )I[τ <

∞] = G(Xτ ) = 0 = G(Xτz ) = G(Xτ∧τz )I[τ ∧ τz < ∞] as well as
∑τ−1
t=0 R(Xt, At) =∑τz−1

t=0 R(Xt, At) =
∑τ∧τz−1
t=0 R(Xt, At), so that

Eπx

[
I[τz ≤ τ <∞]Uλ

(
τ−1∑
t=0

R(Xt, At) +G(Xτ )I[τ <∞]

)]

= Eπx

[
I[τz ≤ τ <∞]Uλ

(
τ∧τz−1∑
t=0

R(Xt, At) +G(Xτ∧τz )I[τ ∧ τz <∞]

)]
.

(c) On the event [τ < ∞, τ < τz], τ = τ ∧ τz, so that
∑τ−1
t=0 R(Xt, At) + G(Xτ )I[τ <

∞] =
∑τ∧τz−1
t=0 R(Xt, At) +G(Xτ∧τz )I[τ ∧ τz <∞], and then

Eπx

[
I[τ <∞, τ < τz]Uλ

(
τ−1∑
t=0

R(Xt, At) +G(Xτ )I[τ <∞]

)]

= Eπx

[
I[τ <∞, τ < τz]Uλ

(
τ∧τz−1∑
t=0

R(Xt, At) +G(Xτ∧τz )I[τ ∧ τz <∞]

)]
.

Since 1 = I[τ =∞] + I[τz ≤ τ <∞] + I[τ <∞, τ < τz], the three last displays together
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imply that

Eπx

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +G(Xτ )I[τ <∞]

)]

= Eπx

[
Uλ

(
τ∧τz−1∑
t=0

R(Xt, At) +G(Xτ∧τz )I[τ ∧ τz <∞]

)]
.

Via (3) and (6), this relation leads to Uλ(Vλ(x;π, τ)) = Uλ(Vλ(x;π, τ ∧ τz)), and (37)
follows using that Uλ(·) is strictly increasing. �

6. PROOF OF THEOREM 3.3

In this section the existence of a Nash equilibrium will be verified. Since the proof is
rather technical, to ease the presentation the essential steps have stated separately in
Theorems 6.1 and Lemma 6.2 below. At this point it is convenient to have a glance at
(21)–(24).

Theorem 6.1. For each τ ∈ T ,

W ∗λ (·) ≤ Vλ(·; f∗, τ). (39)

The proof of this result relies on the following two lemmas.

Lemma 6.2. For every n ∈ N, x ∈ S and τ ∈ T ,

Uλ(W ∗λ (x))

≤
n∑
k=0

Ef
∗

x

[
Uλ

(
k−1∑
t=0

R(Xt, At) +W ∗λ (Xk)

)
I[τ = k]

]

+ Ef
∗

x

[
Uλ

(
n∑
t=0

R(Xt, At) +W ∗λ (Xn+1)

)
I[τ ≥ n+ 1]

]
. (40)

P r o o f . To begin with, observe that (20) and (21) together yield that, for every state x,

Uλ(W ∗λ (x)) ≤
∑
y∈S

px,y(f∗(x))Uλ(R(x, f∗(x)) +W ∗λ (y)), (41)

a relation that via the Markov property implies that, for every x ∈ S and n ∈ N,

Uλ(W ∗λ (Xn)) ≤ Ef
∗

x [Uλ(R(Xn, An) +W ∗λ (Xn+1))| Fn] . (42)

Next, (40) will be verified by induction. Let x ∈ S and τ ∈ T be arbitrary. Combining
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the convention (1) with the relations τ ≥ 0 and P f
∗

x [X0 = x] = 1, it follows that

Uλ(W ∗λ (x))

= Uλ(W ∗λ (X0))I[τ = 0] + Uλ(W ∗λ (X0))I[τ ≥ 1]

= Uλ

(
0−1∑
t=0

R(Xt, At) +W ∗λ (X0)

)
I[τ = 0] + Uλ(W ∗λ (X0))I[τ ≥ 1]

≤ Uλ

(
0−1∑
t=0

R(Xt, At) +W ∗λ (X0)

)
I[τ = 0]

+ I[τ ≥ 1]Ef
∗

x [Uλ(R(X0, A0) +W ∗λ (X1))| F0]

= Uλ

(
0−1∑
t=0

R(Xt, At) +W ∗λ (X0)

)
I[τ = 0]

+ Ef
∗

x [Uλ(R(X0, A0) +W ∗λ (X1))I[τ ≥ 1]| F0] , P f
∗

x -a. s.

where the inequality is due to (42) with n = 0, and the inclusion [τ ≥ 1] ∈ F0 was used
to set the last equality. After taking the expectation with respect to P f

∗

x , the above
display yields that the case n = 0 of (40) holds. Next, assume that n ∈ N is such that
(40) is valid, and observe that

Uλ

(
n∑
t=0

R(Xt, At) +W ∗λ (Xn+1)

)
I[τ ≥ n+ 1]

= Uλ

(
n∑
t=0

R(Xt, At) +W ∗λ (Xn+1)

)
I[τ = n+ 1]

+ Uλ

(
n∑
t=0

R(Xt, At) +W ∗λ (Xn+1)

)
I[τ ≥ n+ 2]

whereas, using (4),

Uλ

(
n∑
t=0

R(Xt, At) +W ∗λ (Xn+1)

)
I[τ ≥ n+ 2]

= eλ
∑n
t=0 R(Xt,At)I[τ ≥ n+ 2]Uλ (W ∗λ (Xn+1))

≤ eλ
∑n
t=0 R(Xt,At)I[τ ≥ n+ 2]Ef

∗

x [Uλ(R(Xn+1, An+1) +W ∗λ (Xn+2))| Fn+1]

= Ef
∗

x

[
Uλ

(
n+1∑
t=0

R(Xt, At) +W ∗λ (Xn+2)

)
I[τ ≥ n+ 2]

∣∣∣∣∣Fn+1

]

where (42) with n+1 instead of n was used to set the inequality, and the second equality
was obtained combining (4) with the fact that the random variable eλ

∑n
t=0 R(Xt,At)I[τ ≥
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n+ 2] is Fn+1-measurable. These two last displays together imply that

Ef
∗

x

[
Uλ

(
n∑
t=0

R(Xt, At) +W ∗λ (Xn+1)

)
I[τ ≥ n+ 1]

]

≤ Ef
∗

x

[
Uλ

(
n∑
t=0

R(Xt, At) +W ∗λ (Xn+1)

)
I[τ = n+ 1]

]

+ Ef
∗

x

[
Uλ

(
n+1∑
t=0

R(Xt, At) +W ∗λ (Xn+2)

)
I[τ ≥ n+ 2]

]
.

Combining this relation with the induction hypothesis, it follows that (40) holds with
n+ 1 instead of n, completing the induction argument. �

Lemma 6.3. Given x ∈ S, let f ∈ F and τ ∈ T be such that

P fx [τ <∞] = 1 and Vλ(x; f, τ) <∞.

In this case

lim
n→∞

Efx

[∣∣∣∣∣Uλ
(

n∑
k=0

R(Xt, At)

)∣∣∣∣∣ I[τ > n+ 1]

]
= 0. (43)

P r o o f . Since G is bounded, from (6) and (7) it follows that the condition Vλ(x; f, τ) <
∞ is equivalent to

Efx

[
eλ

∑τ−1
k=0 R(Xt,At)

]
∈ (0,∞), (44)

so that P fx [eλ
∑τ−1
k=0 R(Xt,At) < ∞] = 1. Combining this fact with the condition P fx [τ <

∞] = 1 it follows that

(1 ∨ eλ
∑τ−1
k=0 R(Xt,At))I[τ > n+ 1]→ 0 as n→∞ P fx -a. s.,

and then (44) and the dominated convergence theorem together imply that

Efx

[
(1 ∨ eλ

∑τ−1
k=0 R(Xt,At))I[τ > n+ 1]

]
→ 0 as n→∞;

This convergence and the inequality 1 ∨ eλ
∑τ−1
k=0 R(Xt,At) ≥ eλ

∑n
k=0 R(Xt,At) lead to

lim
n→∞

Efx

[
eλ

∑n
k=0 R(Xt,At)I[τ > n+ 1]

]
= 0, and the deisred conclusion (43) follows

via (3). �

Now, Lemmas 6.2 and 6.3 will be used to establish Theorem 6.1.

P r o o f . (Proof of Theorem 6.1) By Lemma 5.2, without loss of generality τ can be
replaced by τ ∧ τz, and then Assumption 2.3 yields that it is sufficient to establish the
conclusion under the condition that τ is a finite stopping time:

P f
∗

x [τ <∞] = 1, x ∈ S. (45)
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Since (39) certainly holds if Vλ(·; f∗, τ) = ∞, in the following argument it will be sup-
posed that

Vλ(·; f∗, τ) <∞. (46)

Observe that (4) and the inclusion W ∗λ ∈ [[0, G]] together yield that∣∣∣∣∣Uλ
(

n∑
t=0

R(Xt, At) +W ∗λ (Xn+1)

)∣∣∣∣∣ =

∣∣∣∣∣eλW∗
λ (Xn+1)Uλ

(
n∑
t=0

R(Xt, At))

)∣∣∣∣∣
≤ e|λ|‖G‖

∣∣∣∣∣Uλ
(

n∑
t=0

R(Xt, At))

)∣∣∣∣∣
Notice that, via Lemma 6.3, (45) and (46) together imply that

lim
n→∞

Ef
∗

x

[
Uλ

(
n∑
t=0

R(Xt, At)

)
I[τ > n+ 1]

]
= 0,

and combining this convergence with the previous display it follows that

Ef
∗

x

[
Uλ

(
n∑
t=0

R(Xt, At) +W ∗λ (Xn+1)

)
I[τ > n+ 1]

]
→ 0 as n→∞.

On the other hand, since Uλ(·) has constant sign, the monotone convergence theorem
immediately yields that

lim
n→∞

n∑
k=0

Ef
∗

x

[
Uλ

(
k−1∑
t=0

R(Xt, At) +W ∗λ (Xk)

)
I[τ = k]

]

=

∞∑
k=0

Ef
∗

x

[
Uλ

(
k−1∑
t=0

R(Xt, At) +W ∗λ (Xk)

)
I[τ = k]

]

= Ef
∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +W ∗λ (Xτ )

)
I[τ <∞]

]

≤ Ef
∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +G(Xτ )

)
I[τ <∞]

]
= Uλ(Vλ(x, f∗, τ)).

where the inequality is due to the inclusion W ∗λ ∈ [[0, G]] and the monotonicity of Uλ(·)
and, using (45), the last equality is due to (3) and (6). Taking the limit as n goes to
∞ in the right-hand side of (40), the two previous displays yield that Uλ(W ∗λ (x)) ≤
Uλ(Vλ(x, f∗, τ)) and then (39) follows using that Uλ(·) is strictly increasing. �

The last major step before the proof of Theorem 3.3 is the following.

Theorem 6.4. For every x ∈ S

Vλ(x;π, τ∗) ≤W ∗λ (x), π ∈ P. (47)
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The proof of this theorem depends on the following lemma.

Lemma 6.5. (i) For each x ∈ S and π ∈ P, and n = 1, 2, . . .

Eπx

[
Uλ

(
n−1∑
t=0

R(Xt, At) +W ∗λ (Xn)

)
I[τ∗ > n]

]

≥ Eπx

[
Uλ

(
n∑
t=0

R(Xt, At) +W ∗λ (Xn+1)

)
I[τ∗ = n+ 1]

]

+ Eπx

[
Uλ

(
n∑
t=0

R(Xt, At) +W ∗λ (Xn+1)

)
I[τ∗ > n+ 1]

]
(ii) For every n ∈ N, x ∈ S \ S∗ and π ∈ P,

Uλ(W ∗λ (x)) ≥
n∑
k=1

Eπx

[
Uλ

(
k−1∑
t=0

R(Xt, At) +W ∗λ (Xk)

)
I[τ∗ = k]

]

+ Eπx

[
Uλ

(
n−1∑
t=0

R(Xt, At) +W ∗λ (Xn)

)
I[τ∗ > n]

]
. (48)

P r o o f . First, observe that Uλ(W ∗λ (x)) < Uλ(G(x)) when x /∈ S∗, by (19) and (23),
and then

Uλ(W ∗λ (x))

= sup
a∈A(x)

∑
y∈S

px,y(a)Uλ (R(x, a) +W ∗λ (y))

≥
∑
y∈S

px,y(a)Uλ (R(x, a) +W ∗λ (y)) , x ∈ S \ S∗, a ∈ A(x). (49)

(i) Let π ∈ P be arbitrary and, using that Xt /∈ S∗ for 0 ≤ t < τ∗, by (24), the above
display and the Markov property together yield that for each n ∈ N the following relation
holds almost surely with respect to Pπx :

Uλ(W ∗λ (Xn)) ≥
∑
y∈S

pXn,y(An)Uλ (R(Xn, An) +W ∗λ (y))

= Eπx [Uλ (R(Xn, An) +W ∗λ (Xn+1))| Fn, An] on [τ∗ > n].

Multiplying both sides of this inequality by eλ
∑n−1
t=0 R(Xt,At)I[τ∗ > n], which is an Fn-

measurable random variable, an application of (4) leads to

Uλ

(
n−1∑
t=0

R(Xt, At) +W ∗λ (Xn)

)
I[τ∗ > n]

≥ Eπx

[
Uλ

(
n∑
t=0

R(Xt, At) +W ∗λ (Xn+1)

)
I[τ∗ > n]

∣∣∣∣∣Fn, An
]
.
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From this point, the conclusion follows taking the expectation with respect to Pπx and
using the equality I[τ∗ > n] = I[τ∗ = n+ 1] + I[τ∗ > n+ 1].

(ii) The argument is by induction. Let x ∈ S \ S∗ and π ∈ P be arbitrary, and note
that (49) leads to Uλ(W ∗λ (x)) ≥ Eπx [Uλ (R(X0, A0) +W ∗λ (X1))]; since Pπx [τ∗ > 0] = 1,
by (24) it follows that

Uλ (W ∗λ (x)) ≥ Eπx [Uλ (R(X0, A0) +W ∗λ (X1)) I[τ∗ = 1]]

+ Eπx [Uλ (R(X0, A0) +W ∗λ (X1)) I[τ∗ > 1]] ,

an expression that is equivalent to (48) with n = 1. Suppose now that n ∈ N is such
that (48) is valid. In this case, direct calculations combining part (i) with the induction
hypothesis show that (48) also holds with n+ 1 instead of n, completing the induction
argument. �

P r o o f . (Proof of Theorem 6.4) First, note that (25) and Lemma 5.1(ii) together imply
that

Pπx [τ∗ <∞] = 1, x ∈ S. (50)

Now, let π ∈ P be arbitrary and suppose that x ∈ S∗, so that (23) and (24) yield that

W ∗λ (x) = G∗(x) and Pπx [τ∗ = 0] = 1,

whereas (1) and (6) together lead to Vλ(x;π, τ∗) = G(x), and then (47) holds with
equality. Next, the desired conclusion will be verified when the initial state x does not
belong to S∗. Consider the following claim:

For every x ∈ S \ S∗, and π ∈ P,

lim inf
n→∞

Eπx

[
Uλ

(
n−1∑
t=0

R(Xt, At) +W ∗λ (Xn)

)
I[τ∗ > n]

]
≥ 0. (51)

Observing that Uλ(·) > 0 when λ is positive, it is clear that the above assertion holds
if λ > 0. To complete the proof of (51), suppose that λ < 0 and note that (3) and the non-

negativity ofR andW ∗λ together yield that
∣∣∣Uλ (∑n−1

t=0 R(Xt, At) +W ∗λ (Xn)
)
I[τ∗ > n]

∣∣∣ ≤
I[τ∗ > n], by (3), and via (50) it follows that, as n→∞,

Eπx

[∣∣∣∣∣Uλ
(
n−1∑
t=0

R(Xt, At) +W ∗λ (Xn)

)
I[τ∗ > n]

∣∣∣∣∣
]
≤ Pπx [τ∗ > n]→ 0,

a convergence that immediately yields that (51) holds with equality when λ is negative.
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Next, using that Uλ(·) has constant sign, the monotone convergence theorem yields that

lim
n→∞

n∑
k=1

Eπx

[
Uλ

(
k−1∑
t=0

R(Xt, At) +W ∗λ (Xk)

)
I[τ∗ = k]

]

=

∞∑
k=1

Eπx

[
Uλ

(
k−1∑
t=0

R(Xt, At) +W ∗λ (Xk)

)
I[τ∗ = k]

]

= Eπx

[
Uλ

(
τ∗−1∑
t=0

R(Xt, At) +W ∗λ (Xτ∗)

)
I[τ∗ <∞]

]
= Uλ(Vλ(x;π, τ∗)),

where the last equality follows combining (6) and (50). To conclude, take the inferior
limit as n goes to ∞ in the right-hand side of (48) to obtain, via the the above display
and (51), that Uλ(W ∗λ (x)) ≥ Uλ(Vλ(x;π, τ∗)), an inequality that using that Uλ is strictly
increasing leads to W ∗λ (x) ≥ Vλ(x;π, τ∗), showing that (47) is also valid for x ∈ S \ S∗.

�

Finally, the two previous theorems will be used to establish the existence of a Nash
equilibrium.

P r o o f . (Proof of Theorem 3.3) By Theorems 6.1 and 6.4

Vλ(·;π, τ∗) ≤W ∗λ (·) ≤ Vλ(·; f∗, τ), (π, τ) ∈ P × T .

Setting (π, τ) = (f∗, τ∗) it follows that W ∗λ (·) = Vλ(·; f∗, τ∗), establishing part (i), and
combining this fact with the above display it follows from Definition 2.2 that (f∗, τ∗) is
a Nash equilibrium, completing the proof. �

7. CONCLUSION

In this note Markov stopping games with bounded rewards and risk-sensitive total re-
ward criterion were studied. Besides mild continuity-compactness requirements, the
framework of the paper was determined by the existence of an absorbing state postu-
lated in Assumption 2.3, and in that context the existence of a Nash equilibrium was
studied. The main conclusion of the paper, stated in Theorem 3.3, establishes that given
a fixed point W ∗λ of the operator Tλ in Definition 3.1, it is possible to define a Nash
equilibrium (f∗, τ∗) ∈ F×T , and that the value function of the game Vλ(·; f∗, τ∗) equals
W ∗λ (·), a fact that immediately yields that Tλ has a unique fixed point. On the other
hand, studying the existence of Nash equilibria for Markov stopping games under more
general conditions than those assumed in this work, for instance, for models that do not
satisfy Assumption 2.3, seems to be an interesting problem.

(Received November 25, 2021)
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