
Zpravodaj Československého sdružení uživatelů TeXu

Hans Hagen
Some NTS thoughts

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 9 (1999), No. 3, 109–115

Persistent URL: http://dml.cz/dmlcz/149841

Terms of use:
© Československé sdružení uživatelů TeXu, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/149841
http://dml.cz


Some NTS thoughts
Hans Hagen

The next stage

When we take a look at Peter Breitenlohner’s ε-TEX, we see extensions in the
spirit of TEX. Based on experiences with macro writing, some limitations are
removed (more registers like \dimen), some optimizations have taken place (like
\aftergroup), protection is introduced (\protected), there are some more con-
ditional, expansion and scanning features, and when we look at the typographic
engine, bidirectional typesetting has been added. In extending TEX a clear dis-
tinction has been made between what should go into ε-TEX and what into NTS.

When we look at Hàn Thé̂ Thành’s pdftex, we see a new backend. This
in itself is rather revolutionary, because there are strong movements to stick to
DVI and use this format as the intermediate to others. It is also revolutionary,
because it removes the postprocessing stage, and thereby forces macro packages
to take care of everything themselves, instead of relying on the post-processor.
Last of all, we see that pdftex introduces an additional paragraph break pass,
using infinitesimal horizontal glyph scaling.

Taco Hoekwater has written an extension to ε-TEX that introduces extensive
list manipulations that can be of help when writing parameter driven macro
packages, as well as provides an alternative input parser, targeted at SGML.
His extension does not concern typography.

When we summarize these developments, we can conclude that ε-TEX has
smoothed the path to NTS by providing a suitable arena for discussions. At the
same time pdftex opened the road to a more drastic deviation from traditional
TEX, if only by boosting TEX into the next century where graphics and inter-
action will dominate. Taco’s TEX makes clear that we cannot neglect the input
side and should closely follow the developments in the SGML field. The lesson
learned is that we should not be too afraid to extend TEX.

In practice only a few people extend TEX in the ways mentioned, and most
users will fall back on macro packages that hide most of the details. This aspect
cannot be neglected when we look into the future of NTS. Extensions like those
provided by pdftex can rather well be supported by macro packages, because
they often have a concept in which different drivers can be used. The level to
which the specific features are supported depend however on the flexibility in
the lower level shell. In TEX object reuse is limited to boxes and not reflected at
the output level, opposite to pdftex. But downward compatibility can be guar-
anteed to a great extent because in most cases duplicates can be used instead.
Moving from TEX to pdftex is therefore rather smooth.

109



When we want to use some ε-TEX features and at the same time want down-
ward compatibility, we are forced to provide (often) poor man’s alternatives or
fall-backs. For extensions like ε-TEX to be accepted, it’s best when all users of
a macro package switch to this extension at once. With extended ε-TEX, down-
ward compatibility can be achieved by providing preprocessors or clever but slow
macros. So here, massive adaption is less important: use it when you need it.

In this respect the lesson learned is that a change should be guided and
guarded, especially when many users depend on the macros other people provide.
Before I will go into more detail into some challenging extensions that NTS can
bring, I want to set the framework in which such extensions can take place.

If we valueNTS as just a re-implementation, the project is nearly finished. In
about a year the monolithic PASCAL code is transformed into highly structured
JAVA, well tested and documented. But right from the start the project team
was more ambitious. Of course, when the first version is available, everyone
can take the source code and start writing his or her own Yet Another New
Typesetting System, but the large body of the current TEX users will quite
certainly benefit from some coordination. Ideally the situation around TUG
2000 conference will be as follows:

• There is a robust NTS environment, that users can easily download and
plug into their JAVA enhanced operating system.

• The NTS project team has set up an infrastructure to host discussions, if
possible centered around topics, identified in earlier stages of for instance
the development of ε-TEX.

• To enable a smooth adaption of NTS without losing existing functionality,
existing extensions to TEX will become available as plug ins into NTS.

• Extensions are discussed, prototyped, validated, developed and docu-
mented in a professional context conforming standards laid down by the
project team.

• The NTS project team will guard consistency and take care of proper
hosting of new functionality.

• Macro packages will adapt new features in such a way that continuity is
guaranteed for the large TEX user base.

Of course, use and reuse of code by whoever wants to do so will be stimulated.
But, one of the strong points of good old TEX is that it is stable. The challenge
will be to provide stability as well as flexibility. Imagine a macro package pro-
viding five different multi-column methods, each demanding different low level
features. Ideally your system will pick up the right (and latest) code needed to
use the particular method.

110



Think of this . . .

When the first official release of NTS becomes available, we can start think-
ing about implementing all those features missing from TEX. How about a more
procedural programming language, name spaces, string manipulations, more ad-
vanced error recovery and loading patterns on demand. Sure, these are all worth
thinking of, but the typographic extensions will be the most challenging. Here
I will discuss some ideas (some of which will be demonstrated in the presenta-
tion). Will you stick to using TEX or will you move on to NTS? Maybe the next
paragraphs will convince you at least to closely follow what is happening.

Columns and grids
In spite of all efforts, nobody has come up with the perfect multi-column output
routines. This is mainly due to the lack of proper support in the kernel of TEX the
program. Before computer typesetting came around, much manual effort went
into typesetting documents in columns, and translating more intuitive behaviour
into an algorithm is not trivial. A few decades of TEX at least have taught us
where the complications lay.

• First of all we want our columns to be perfectly balanced. This is trivial
for pure text, but imagine lots of white space, like display math.

• We want floats to be moved to the best available location. Of course we
want floats to span more than one column, and even spanning one and a
half columns with a text flowing around the figure should be possible.

• In double sided output, we want lines to align on the opposing pages
(spread). When we hold the paper towards a bright source of light, we
want the lines on both sides of the paper to align too.

• We definitely don’t want to end up with a few lines or words on the last
page. Why not apply a small percentage of glyph scaling in such a way
that we get full pages? Of course we will need more than paragraph and
page optimization for this: we are dealing with the document as a whole.

• Columns may differ in width. Think of two columns, spanning one third
and two thirds of a page. In the middle of such two columns we will want
to typeset an illustration, and the text should follow the circular shape of
this illustration.

• Talking of illustrations, instead of being something with fixed dimensions,
the scale may be adapted, of course consistently, to suit the overall docu-
ment appearance (grid, spread, and more).

• Are you still thinking from left to right? Text can go in all directions,
and will be mixed too. The width of columns may change in the mean-
time. Anyone who has seen traditional Jewish religion documents, will see
the challenge in nested columns with (foot)notes flowing around partial
columns.

111



Do you know a macro package that offers this functionality? Some day there
will be packages around, build on top of basic NTS functionality. The main
question is, what and how should NTS provide this functionality. We don’t
want Just Another Desktop Publisher, because those are around already. We
want the building blocks and want to pack them into meaningful, clever, semi-
-intelligent macros. Will we still talk of macros? Some of the things mentioned
are not too difficult to program, but making the combination behave well is the
challenge.

The overall appearance
TEX is famous for its breaking of paragraphs. Actually it is still famous for
that, simply because the main stream word processors think in lines. In spite
of the—in the eyes of some users—perfect line breaks, users and implementers
have been in search for even better ways of dealing with paragraphs.

It is uniform greyness that we want. The more uniform it is, the more comfort-
able it reads. TEX’s paragraph builder can be influenced upto a certain extent,
but even experienced users cannot foresee how a combination of settings will
influence the look and feel. So what will we need?

• Typesetting is more than manipulating metrics. Don’t we need a typeset-
ting system that looks at the glyphs themselves, the small graphics?

• People tend to disagree on what looks best, but experts often agree on
what looks worse. Why not build in expert knowledge, or even better,
build a system that learns from the user’s rating?

• How is greyness calculated? Does NTS act upon the internal lists of glyphs,
or does it first build a bitmap? At least then it knows how the pages come
out. Is the validation a function of an output device? Will the shape of
glyphs depend on the rating? Will TEX and METAFONT become one?

• Is, in validating the appearance, a model of the page needed, in terms of
meaningful areas? If so, how is such a model defined? Do we need pattern
recognition?

There is some experience with manipulating glyphs, using either a large set
of alternatives or manipulating (stretching or shrinking) glyphs. But far more
experimenting is needed in this area. What better tool to use than NTS, where
we can plug in a new mechanism without spoiling the rest of the system? Rivers,
dirty skylines, big emergency stretched holes, they will all disappear with the
years to come. Unless of course the migration from paper to screen has made us
loose the feeling for details. And wasn’t it the details that made Knuth develop
TEX?

112



Embedded graphics
Ah, who does not want graphics these days. One of the strong points of TEX
has always been the separation of isolated graphics from the document source.
But at the same time, TEX’s repertoire of graphic primitives is limited to those
needed for building math glyphs: there are only horizontal and vertical rules.
We want more.

METAPOST has demonstrated that combining TEX with graphics can be very
stimulating. But at the same time, it demonstrates that exchanging information
between a typesetting engine is far from trivial, especially because we are dealing
with different concepts (and states).

• NTS needs a graphics engine, or maybe even several. Models for exchange
of information between processes dealing with pure typesetting and draw-
ing shapes need to be developed. Such mechanisms should cooperate nat-
urally with the paragraph and page breaking as well.

• Typesetting along curves, turning shapes into outlines, and applying arbi-
trary filling and shading, it all makes sense.

• TEX is strong in math, but how about (bio)chemistry? Although satisfacto-
rily results can be reached, more is needed. Haven’t we all seen documents
that made us wonder how to typeset that in TEX? Lots of thinking needs
to go into that area.

• For some languages pasting together glyphs is not enough. Actually draw-
ing glyphs, or even better: words or sentences can be an alternative. Even
emotions can make it into typeset text. Strong handwriting oriented graph-
ics has to meet expressive coding.

Layers in text
It was already showing up in DVI viewers quite early: searching through typeset
text. As long as we are dealing with non-composed characters, searching is not
so much a problem, but TEX is used for more than typesetting English. The
internet has stimulated world wide searching and general mark up languages are
used to enhance this. Formats used for dissemination of typeset text, like PDF,
are already a bit more prepared for searching. How will developments like this
influence future typesetting?

• First of all, the new system needs some more understanding about the
typeset text. Support for unicode, unified glyph names is mandate.

• When searching through a document, some knowledge on what in language
the text we’re dealing with makes sense. Not only the (many) language(s)
of a text, but the direction also plays a role. Complicated ligatures should
be recognized properly.

• In more dynamic documents, like fill-in-forms, interaction with a type-
setting engine is not a luxury, especially not in European and Eastern

113



languages. NTS can be such a plug in, but the document itself should
contain the information needed to let NTS to do its task. A document is
more than a collection of graphics and glyphs, and typesetting more than
organizing those.

• As pdftex already demonstrates, using TEX to embed typeset information
like pop-up-help and tool tips is a breeze. Although heavily dependent of
features of viewers, NTS will benefit from a decent model of layers on
which we typeset as well as concepts of information hidden in the output
but showing up at wish.

Just in case one wonders what gadgets like tool tips have to do with type-
setting, think of a tool tip that has to pop up left or right aligned, depending of
the position on the page. It does not make much sense to let 10 centimeters of
tool tip disappear into the margin.

Conclusion
I did not mention things like colour. Implementing colour is rather trivial al-
though different models are possible. Will we think in colour as an attribute
to a glyph? Or a word, or sentence? Is there something like a background, and
if so, what is the background of a line? As long as models don’t conflict, they
can co-exist peacefully. This is unlike different views on paragraph breaking can
conflict and lead to unwanted compromised or dead-locks. It will be clear that
implementations, NTS the program, macro packages, and distributions, should
all cooperate smoothly to make NTS a reality.

From ε-TEX we have learned that even when ideas are circulating in our mind,
making them explicit and ready for implementation is not trivial. Discussion,
conception and implementation takes time. It is no problem to come up with
some quick and dirty hacks, but we want to go for the best. It will not be a
one year job. ε-TEX has demonstrated that a well documented and structured
PASCAL program can be extended to great length.

From pdftex we have learned that extensive experimenting has its value.
Adding features, but also removing them when not useful or not fitting into
TEX’s way of dealing with things, has its benefits. The nice thing about pdf-
tex is that there are many users who are involved in the testing. Because most
changes only affect the low level interfaces of the the main stream macro pack-
ages, common users are not that aware of the many new primitives that are
needed because specials have become obsolete. pdftex has also demonstrated
that extending TEX in its current incarnation has reached its limits. It’s an in-
teresting breed of PASCAL and C, that incidentally proved that incorporating
ε-TEX functionality was more easy than expected.

From extended ε-TEX we can learn that developments can be driven from
need. Direct interpretation of SGML was needed and therefore written. Minimal

114



discussion sometimes pays off. Being an extension not related to output (DVI,
postscript, PDF) or specific typesetting, it proves that extensions like that can
be hooked into a typesetting system without disturbing and breaking existing
code.

One may wonder if NTS will make those other TEX’s obsolete. Given that it
takes time to come up with real new things, we can be sure that the predecessors
of NTS will be around for a long time, if only because they have virtually no
bugs, are supported by macro packages and most of all do their job well. This
gives the NTS developers the time needed to come up with real good concepts
and implementations.

Given that the TEX community has demonstrated that extending a stable
program is feasible without harming existing, often critical, typographic produc-
tion processes, NTS has a great future, although, in many areas, we haven’t yet
reached the limits of traditional TEX. It takes time and discussion, but talking
of life-long tools, we have some time left. It is up to the NTS team to stimulate
and guard this process, and we hope we will not fail you.

It sounds like I’m believing it myself, doesn’t it?

Hans Hagen
PRAGMA Advanced Document Engineering

Ridderstraat 27
8061GH Hasselt
The Netherlands

E-Mail: pragma@wxs.nl

NTS: nový sázecí systém
Karel Skoupý

Počátky projektu

Diskuse o potřebě dalšího vývoje TEXu či vytvoření jeho nástupce se rozvinula
již počátkem devadesátých let. Vedly k tomu důvody technické i politické. Po-
litické důvody by se daly velice stručně vyjádřit jako potřeba udržení a zvýšení
atraktivity TEXu pro zachování a rozvoj komunity uživatelů. Více informací
o tom lze najít zejména v [8].

Technické důvody spočívají především v požadavcích na ještě vyšší kvalitu
a rozsáhlejší možnosti zpracování dokumentu. Týká se to například sazby ve

115


