
Zpravodaj Československého sdružení uživatelů TeXu

Timothy Eyre
Creating a Kanji Stroke Order Font

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 20 (2010), No. 3, 199–207

Persistent URL: http://dml.cz/dmlcz/150119

Terms of use:
© Československé sdružení uživatelů TeXu, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150119
http://dml.cz

Jak na výrobu písma kandži s pořadím tahů
Timothy Eyre

Abstrakt
Tahy u každého jednotlivého kandži by měly být psány v přesně daném pořadí.
Projekt Aaaa (A亜アあ) Ulricha Apela sestavil sadu svg souborů, které ob-
sahují informace o tazích a jejich pořadí. Díky tomu byl autor článku schopen
sestavit písmo tak, že zobrazuje správné pořadí tahů u 6373 kandži. Vzniklé
písmo usnadňuje přípravu studijních pomůcek, které tuto informaci využívají.
Klíčová slova: japonština, kandži, pořadí tahů, tvorba písma, formát True-
Type, formát svg, program FontForge.
doi: 10.5300/2010-3/199

Introduction

The strokes of each Japanese character (kanji) should be written in a certain or-
der. This correct stroke order is called hitsujun (筆順) in Japanese and helps with
legibility and memorization. Students of kanji are examined on kanji stroke order
in exams such as the Japanese Kanji Aptitude Test (日本漢字能力検定試験).

Although there are some general rules about the order in which the strokes
of a kanji should be written, it is useful to have a reference available. There are
indeed numerous printed and electronic kanji stroke order resources available.
However, the coverage of these resources is not always as comprehensive as
one might like and the presentation is not always as helpful as it might be.
Various means of presenting of kanji stroke order diagrams appear. Step-by-step
diagrams are popular in printed resources, such as [1] and animated diagrams
are popular in electronic resources such as [2].

Dr. Ulrich Apel and Dr. Julien Quint have produced a large set of svg files [3],
[4] that present the stroke order of several thousand kanji in the static form used
in [4]. This impressive data resource certainly excelled as a means of storing the
information but retrieval required the use of the A亜アあ(Aaaa)-project’s web
interface and Adobe’s svg browser plugin.

Dr. Apel was kind enough to send me the set of svg files. A few years earlier
it had crossed my mind that a simple way to present kanji stroke order diagrams
would be to build them into a Unicode font. The svg files from the A亜アあ-
project provided me with the data I needed to create such a font. This paper
describes how I converted the svg data into the Kanji Stroke Order Font and
how I maintain the font now it exists.

199

1. Method of Creation

The following flowchart summarizes the steps involved in creating the Kanji
Stroke Order Font.

.. SVG files
. Modified

SVGs

. PNG
images

.Flattened
PNGs

. Traced
glyphs in
FontForge

.TrueType
font

.Perl.Batik

.IrfanView

.Potrace .FontForge

The subsections below describe each of these steps in detail.

1.1. Modifying the SVG files
The original svg files contained graphical information that was not necessary
for the font. Here is an example of a raw svg image:

字
1

2
3

4

5
6

As you can see, while the pen stroke version of the kanji and numbers are required
for the font, the grid and printed version of the kanji are not. By means of a
Perl script, I processed the contents of each svg file to remove the superfluous
elements and change the colour of the pen strokes from grey to black. The
fact that svg is an xml-based file format and therefore plain text made this
processing simple: I eliminated the large print kanji simply by changing its font
size from 108 to 0, changed the colour of the grid from dark grey to white and
the colour of the pen strokes from mid grey to black. A simplified version of the
Perl script looks like this:

200

while ($line = <STDIN>)
{
$line =~ s/#808080/#000000/;
$line =~ s/#404040/#FFFFFF/;
$line =~ s/font-size:108/font-size:0/;
print $line;

}
The while loop reads the standard input until the last line of the redirected file
is reached. The three $line =~ s/foo/bar/; lines substitute foo for bar. This
means, for example, that $line =~ s/#808080/#000000/; replaces light grey
with black. This script would be executed as follows:
perl preproc.pl < infile.svg > outfile.svg
However, in practice we are handling several thousand files so some extra Perl
globbing code is needed. After this simple processing, the svg image is more
suitable for inclusion in a font, looking as it does like this:

1.2. Conversion to PNG using Batik
The Batik SVG Toolkit [6] is a Java library that can be used to render svg
graphics. Rendering the several thousand svg files created in the previous step
simply required multiple executions of commands like the following:
java -jar batik-rasterizer.jar -d . -m image/png

-h 2000 -dpi 2000 outfile.svg -bg 255.255.255.255
The parameters for this command are explained as follows:

• The parameter -d . simply specifies that the local directory should be
used for the output.

• The parameter -m image/png is a mime specification, indicating that the
output should be png rather than any of the other formats that Batik can
produce.

• The parameter -h 2000 specifies the height of the output in pixels.
• As a result of the previous parameter, the parameter -dpi 2000 ensures

that the resulting png image is exactly one inch tall.

201

• The parameter outfile.svg specifies the svg file to be rendered; it is
called outfile.svg here because it is the output from the step described
in section 1.1.

• The parameter -bg 255.255.255.255 specifies the background fill colour,
including the alpha (transparency) parameter.

Batik renders the svg files relatively slowly, so rendering all of them requires
an overnight run. At the end of this process we will have several thousand png
files, one for each character that is going to go into the font.

1.3. Flattening the PNGs
Batik produces 32-bit png files. This generous image depth has two disad-
vantages for our purpose here. Firstly, it makes the png files needlessly large,
an important consideration when there are literally several thousand of them.
Secondly, Batik uses subpixel rendering (the technique used by CoolType and
ClearType) to improve the appearence of the output. The grey fuzz around each
kanji looks pleasing to the human eye but gives extra work to Potrace. There-
fore, it is desirable to reduce the number of bitplanes in the png files to 1. The
IrfanView [7] image viewing and processing utility has a GUI tool that makes
this bitplane reduction straightforward, albeit difficult to document.

1.4. Tracing the PNGs
At last we are ready to start using FontForge [8], the BSD-licensed outline
font editor that runs on Linux, Mac and even Microsoft Windows with the
help of Cygwin [9]. FontForge includes a trace facility, which calls out to the
Potrace [10] bitmap-to-vector tracing tool under the covers. FontForge can also
use Autotrace [11] to perform the same function.

When doing bulk tracing into a Unicode font, FontForge requires the filename
of the source image file to be of the form uniXXXX.png, where XXXX represents
the 4-digit hexadecimal number corresponding to the Unicode number for the
character. This fits in well with our workflow so far.

Invoking the trace feature only requires two menu option selections in Font-
Forge. The first option is File→Import with the Format option set to ‘Image
Template’. This creates a background image for each of the characters. We
then tell FontForge to trace these background images by selecting the option
Element→Autotrace.

The tracing process takes some hours and uses copious resource on the host
machine. One of the challenges I encountered in this project was finding a PC
that was powerful enough to handle this task.

Once the tracing is complete the font can be exported from FontForge in
whatever format you choose. I distribute the Kanji Stoke Order Font in the
TrueType format.

202

2. Polishing the Font

As with all real-life projects, the font created by the workflow above is imperfect.
The following subsections describe the polishing that I did to produce a usable
font. At no stage in the creation of the font did I check each glyph for the
accuracy of the stroke orders; with several thousand characters this was not
practical.

2.1. Character Sizes
The most obvious glitch was that some of the kanji were too large in comparison
with the other characters in the font. Correcting the rogue characters was simply
a matter of invoking a scaling transformation for the character in FontForge.
Finding the rogue characters was more of a challenge.

I tracked down the oversized characters in two ways, both using X ETEX and
a list of the codepoints covered by the font.

The first chunk of X ETEX code prints the height of each character to screen,
allowing for redirection to file, sorting and subsequent identification of outliers.
\font\cf="KanjiStrokeOrders" at 40pt
\def\boxit#1{\hbox{\vbox{\hrule\hbox%
{\vrule\vbox{#1}\vrule}\hrule}}}

\def\charfont#1{\setbox0=\hbox{\boxit{\hbox{\cf#1}}}%
\immediate\write15{\the\ht0#1}}

\input test_data.tex\bye
The file test_data.tex is simple, containing just several thousand lines of

the following form:
...
\charfont{\char"9051}{9051}%
\charfont{\char"9052}{9052}%
\charfont{\char"9053}{9053}%
...

The second chunk of X ETEX code prints the characters themselves, which
enabled me to view the characters in bulk and identify ones that looked wrong.
\font\cf="KanjiStrokeOrders" at 40pt
\nopagenumbers\pdfpagewidth=331mm\pdfpageheight=207mm
\hsize=300mm\vsize=200mm
\parindent=0pt\hoffset=-0.5in\voffset=-0.9in\baselineskip=0pt
\def\boxit#1{\hbox{\vbox{\hrule\hbox%
{\vrule\vbox{#1}\vrule}\hrule}}}

\def\charfont#1#2{\setbox0=\hbox{\boxit{\hbox{\cf#1}}}\box0\ }
\input test_data.tex\bye

203

單喰営嗄嗅嗇嗔嗚嗜嗟嗣嗤嗷嗹嗽嗾嘆嘉嘔
嘖嘗嘘嘛嘩嘯嘱嘲嘴嘶嘸噂噌噎噐噛噤器噪
噫噬噴噸噺嚀嚆嚇嚊嚏嚔嚠嚢嚥嚮嚴嚶嚼囀
囁囂囃囈囎囑囓囗囘囚四回因団囮困囲図囹
固国囿圀圃圄圈圉國圍圏園圓圖團圜土圦圧
在圭地圷圸圻址坂均坊坎坏坐坑坡坤坦坩坪
坿垂垈垉型垓垠垢垣垤垪垰垳埀埃埆埋城埒
埓埔埖埜域埠埣埴執培基埼堀堂堅堆堊堋堕
堙堝堡堤堪堯堰報場堵堺堽塀塁塊塋塑塒塔
塗塘塙塚塞塢塩填塰塲塵塹塾境墅墓増墜墟
墨墫墮墳墸墹墺墻墾壁壅壇壊壌壑壓壕壗壘
壙壜壞壟壤壥士壬壮壯声壱売壷壹壺壻壼壽
夂変夊夏夐夕外夘夙多夛夜夢夥大天太夫夬
夭央失夲夷夸夾奄奇奈奉奎奏奐契奔奕套奘

Figure 1: Kanji Stroke Order Font test page

Figure 1 shows a typical page generated by this X ETEX fragment. There are
28 test pages in total, which means that looking through them for mis-formatted
characters is a tractable task.

2.2. Making the character widths consistent
All Japanese kanji notionally occupy a square of constant width. Therefore it
was necessary to adjust the width of the characters to all be the same. FontForge
provides a scripting language, which makes tasks like this easy.

SelectWorthOutputting()
SelectFewer(0u0000,0u2e8b) # Remove non-Japanese chars
SelectFewer(0uFF61,0uFF9F) # Omit half-width katakana
foreach

Print ("Doing next Jp ", GlyphInfo("Unicode"))
SetWidth(1024);
CenterInWidth();

endloop

Note the line of code that omits resizing the half-width katakana. These are a
relic from the early days of Japanese-language computing [12]. I use a similar
block of code with a call to SetWidth(512) to set the width of these characters.

204

2.3. Cleaning up the outlines
An effect of tracing the characters from image files is a surplus of points in the
character outlines. FontForge has a simplification function that cuts down the
number of points, thereby reducing the file size and improving maintainability.

FontForge also has a validation function, which enabled me to clean up some
problems with the TrueType font. However, so powerful is FontForge’s validation
feature that it was not practical to fix every validation error.

2.4. Add missing characters
The source svg dataset omitted some characters that are commonly used but
not relevant to stroke order analysis. To make the Kanji Stroke Order Font
more usable I merged it with another font to fill in the gaps; FontForge has a
built-in feature for doing exactly this. Originally I used a public domain font
called Tuffy [13] but once I had created the Unicode font Choumei [14] I used
that to fill in the gaps in the Kanji Stroke Order Font. I describe the Choumei
font in a separate section below.

Creation of the Kanji Stroke Order Font was now complete so I was able to
publish it on my website [15].

3. Maintenance

Maintaining the font is fiddly but simple. I rely on reports from users to track
down errors in the stroke order diagrams. When a user reports an error I verify
that the proposed revision to the stroke order is correct and then use FontForge
to change the affected character. The stroke order numbers are stored as shapes
in the font, with no references or underlying structure. This means that the only
way of changing the order of the stroke numbers is to cut and paste them.

At the time of writing, the current version of the Kanji Stroke Order Font
is v2.014. This contains 146 corrections to the initial revision. By the time this
paper is published I shall have produced v2.015 of the Kanji Stroke Order Font,
which will contain several more corrections.

User feedback is important for the Kanji Stroke Order Font: it is not practical
for me to check all the glyphs myself and most of the users of the font are
undoubtedly more skilled in kanji than I am. Moreover, accuracy is important
because the ease of use and broad coverage of the Kanji Stroke Order Font means
there is a risk that some users might treat it as being authoritative, which it
most certainly is not.

205

4. Future Possibilities
Dr. Apel has moved on to create the KanjiVG project [16], which uses a defined
svg format to store information about drawing kanji. It would be theoretically
possible to automatically create the Kanji Stroke Order Font from this data
using a script based on the technologies described in this paper.

A major advantage of this approach would be that the two projects could
be kept synchronized and corrections to either would be picked up by both. My
experience with creating the Kanji Stroke Order Font showed that font creation
requires a significant amount of manual tweaking, so it is not clear that such a
process would work in practice. This is an area for future study.

5. Choumei Unicode font
Free (as in speech or beer) fonts that cover a large number of kanji are rela-
tively few in number. This is to be expected because creating a quality kanji
font requires a large amount of effort. However, with the source data for the
Kanji Stroke Order Font already to hand, it was comparatively easy to create a
comprehensive kanji font (albeit one of dubious quality) by omitting the stroke
order numbers from the glyphs in the Kanji Stroke Order Font. I achieved this
by running through the Kanji Stroke Order Font workflow steps described in
this paper with a single change: I set the font size of the kanji stroke numbers
to zero in the Perl script at the svg modification stage. Thus, with minimal
additional effort, I was able to publish a free kanji font [14]. Given its simple
appearence, I named it Choumei for Kamo no Choumei (鴨長明, 1155?–1216),
author of the essay Life in a Ten Foot Square Hut.

Having created this initial draft of the Choumei font, I used FontForge to add
to its glyph compliment. I did this mostly by cutting, pasting and modifying
existing glyphs rather than drawing glyphs afresh. The characters I added were
mostly symbols and accented Latin letters. Having expanded Choumei signifi-
cantly, I merged it with the Kanji Stroke Order Font to expand the latter font’s
glyph coverage, albeit without stroke numbers.

I now treat the Choumei font as unmaintained.

Conclusion
A font can be generated from svg data using a workflow, each step of which
uses free (as in speech or beer or both) tools. Each of these steps is scalable and
therefore it is practical to use the workflow for a set of several thousand svg
files. This scalability made it possible to convert the A亜アあ-project’s kanji
stroke order svg files into a TrueType font.

206

References
[1] Halpern, Jack: Kôdansha Kanji Learner’s Dictionary, Kôdansha Interna-

tional, December 2001. ISBN 978-4-770-02855-6.
[2] Kanji Café website: http://www.kanjicafe.com/
[3] Quint, Julien; Apel, Ulrich: Does Learning How to Read Japanese Have to

Be So Difficult And Can the Web Help?, Proceedings of the WWW 2005
conference, Chiba, Japan, May 2005. ISBN 1-59593-052-3. URL:
http://www2005.org/cdrom/docs/p1152.pdf

[4] Quint, Julien; Apel, Ulrich: Teaching and Reference Material on Japanese
Kanji in SVG Stroke Order, Animated Drawings of Characters, Kanji Com-
ponents and their relationships. Proceedings of the SVG Open 2004 confer-
ence, Tokyo, Japan, September 2004. URL:
http://www.svgopen.org/2004/papers/svgopen/

[5] O’Neill, P. G.: Essential Kanji: 2,000 Basic Japanese Characters System-
atically Arranged for Learning and Reference, Weatherhill Inc., 1 Jan 1974.
ISBN 978-0-834-80222-3.

[6] Batik SVG Toolkit: http://xmlgraphics.apache.org/batik/
[7] IrfanView: http://www.irfanview.com/
[8] FontForge: http://fontforge.sourceforge.net/
[9] Cygwin: http://www.cygwin.com/

[10] Potrace: http://potrace.sourceforge.net/
[11] Autotrace: http://autotrace.sourceforge.net/
[12] Hensch, Kurt: Research and Development in IBM, History of Far Eastern

Languages in Computing, 2nd private edition, Roehm TYPOfactory GmbH,
Sindelfingen, Germany, 2004. ISBN 3-937267-03-4.

[13] Tuffy font: http://tulrich.com/fonts/
[14] Choumei Unicode Font: http://www.nihilist.org.uk/
[15] Kanji Stroke Order Font: http://www.nihilist.org.uk/
[16] KanjiVG project: http://kanjivg.tagaini.net/

Summary: Creating a Kanji Stroke Order Font

This article describes how a font that displays Kanji Stroke Orders can be created
from thousands of svg files containing this information.
Keywords: Kanji, Stroke Order, Font, TrueType, svg, FontForge.

Timothy Eyre, mail@nihilist.org.uk
CSTUG c/o FEL ČVUT, Technická 2

Prague, CZ-166 27, Czech Republic

207

