
Zpravodaj Československého sdružení uživatelů TeXu

Luigi Scarso
Two Applications of SWIGLIB: GraphicsMagick and Ghostscript

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 25 (2015), No. 3-4, 110–119

Persistent URL: http://dml.cz/dmlcz/150236

Terms of use:
© Československé sdružení uživatelů TeXu, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150236
http://dml.cz

Two Applications of SWIGLIB:
GraphicsMagick and Ghostscript

Luigi Scarso

We present two applications of SWIGLIB: a binding to the GraphicsMagick
library that under certain conditions can speed up conversion of bitmaps by up
to 20% and a binding to the Ghostscript library that simplifies the integration of
PostScript programs in ConTEXt with the LuaTEX engine. Examples of TIFF
conversion and barcodes in PostScript are shown.

Keywords: LuaTEX, ConTEXt, SWIGLIB, GraphicsMagick, Ghostscript,
image conversion

Introduction

In a previous paper (Scarso, 2015), we introduced the SWIGLIB project as a way
to add (or extend) functionality in LuaTEX by means of an external binary module.
Among the several modules available from the SWIGLIB project site (https:
//swiglib.foundry.supelec.fr), two are directly related to the management
of images: GraphicsMagic for bitmaps, and Ghostscript for PostScript files. These
are the libraries underneath the GraphicsMagic (the gm convert command) and
GhostScript (the gs command) programs, respectively, and in ConTEXt they
are used to convert BMP, GIF, TIFF and EPS to PDF.

The conversion is quite simple: the file is saved as PDF, which is subsequently
used instead of the original one. In a multi-pass run the conversion happens only
the first time, and ConTEXt takes care of keeping the original file and the PDF
in sync.

This happens for each file independently, and therefore n TIFF (for example)
files require n calls to the external program gm convert, and we can measure
the time of each call as the sum of two times, setup and close and conversion
with mean ts and tc. Assuming that n conversions with a module take only one
ts, the ratio s = n(ts + tc)/(ts + ntc) is the “speedup” of the module: for n great
enough such that ts/n is negligible with respect to tc, the speedup is with good
approximation 1 + ts/tc. Situations where ts ≥ tc means that at least half the
time is “wasted” in setup: the program is not very efficient, or more likely it’s
not the right fit for the current task. On the other hand, ts/tc ≈ 0 means that
the files take so much time to convert that it’s more robust to use the external
program, e.g., to minimize the risk of memory leaks and as protection against
crashes.

110 doi: 10.5300/2015-3-4/110

So, it’s reasonable to expect that 0.1 ≤ ts/tc ≤ 0.4, or 1.1 ≤ s ≤ 1.4. Let’s
emphasize that these figures are valid when each run has a number of conversions
n high enough to make ts/n negligible (for example, n ≥ 100) and each file takes
approximately the same time to be converted, conditions that are fairly likely
to be satisfied in servers with automatic workflows: in other cases, any speedup
could be irrelevant.

The format used is ConTEXt, which already has a caching system for con-
versions (more on this at the end of the next section); the measurements were
done on a laptop with an Intel Core i7-3610QM CPU @ 2.30GHz quad-core using
8GB memory and a Crucial_CT512MX1 SSD disk of 512GB.

The gm module

The module for the GraphicsMagick library is probably the most interesting
currently available, due to its high number of formats available for conversion,
although many of them, for example the PS and EPS formats, require an external
program to work and therefore there is no significant gain in speedup. Apart
from the PNG and JPEG formats, which are already supported in LuaTEX, the
most notable are TIFF, due its use in the printing industry and GIF, which still
sees application on web pages. Also of some interest are MIFF and MVG, the
bitmap and vector native format of GraphicsMagick, and the set of “portable
bitmap” formats such as PNM, PAM and PPM; these can be used to build a
portable bitmap image programmatically.

A question arises immediately: why not use the functions from the epdf
library which is already embedded in LuaTEX? The answer is that a converter
returns a complete PDF document as stream (i.e., a sequence of bytes and its
length) which the epdf library doesn’t know how to manage. Of course it is
possible to save the stream into an external file and load it again into memory,
and until recently this was the only solution—that is, until the latest release of the
poppler library, which offers the new MemStream function that is tailored exactly
for this case, avoiding the expensive task of saving and reloading from a file. A
binding to MemStream was therefore added to the epdf library as openMemStream.

Unfortunately, this is only half of the story. While openMemStream uses char*
for the bytes and long long for the length of the stream,1 it is not known in
advance how the converter returns the stream. In GraphicsMagick, the conversion
in memory is implemented by MagickWriteImageBlob:
unsigned char *MagickWriteImageBlob (

MagickWand *wand,
size_t *length);

1Probably unsigned char* and size_t would be more appropriate.

111

while on the Lua side the unsigned char* (the bytes) is seen as a generic
userdata object and not a string, as required by openMemStream, and the length
(the length of the stream) is used as an input parameter, not set as an output
parameter (!). It is therefore necessary to have an adapter, i.e., a software layer
that translates from the converter to openMemStream. This could be provided by
a third user module or, as in this case, by means of the helper module, which
can be seen as a kind of “general adapter”—with the limitation that it partially
covers only primitive types.

The code, omitting checks for the sake of simplicity, looks like this:
local l = -1
local _l = helpers.new_size_t_array(1)
gm.MagickSetImageFormat(wand, "PDF")
local s = gm.MagickWriteImageBlob(wand, _l)

l = helpers.size_t_array_getitem(_l, 0)
helpers.delete_size_t_array(_l)
local _s = helpers.userdata_to_lightuserdata_uchar_p(s)
local doc, doc_id, doc_uri = epdf.openMemStream(_s, l, stream_id)
On the Lua side, that final call,
epdf.openMemStream(_s, l, stream_id)
requires a userdata s that is a so-called “light” userdata (i.e., intended to store a
C pointer) and must point to a valid memory region of size l bytes; the parameter
stream_id is given by the user to identify the stream and during a given run
this identifier must be unique (else the behavior is undefined).

If, in some way, the user converts the stream in a Lua string s (taking care of
embedded zeroes)2 then it’s still possible to call
openMemStream(s,s:len(),stream_id)
which can be eventually wrapped as
function openStringStream(s,stream_id)
return openMemStream(s,s:len(),stream_id)

end
If there are no errors, openMemStream returns the doc_id used to identify

the stream at the TEX level; this has the same role as the filename of the PDF
figures. Of course, the end user doesn’t need to know these details. Usually, two
macros are enough: \gmloadimage to load a file, and \gmloadimage to return
the doc_id. In ConTEXt:
\gmloadimage{a.tiff}
\externalfigure[\gmgetimage{a.tiff}]
If the file contains multiple images:

2A converter that returns a stream as char* is wrapped by SWIG using lua_pushstring,
returning the stream until the first ’\0’, which is excluded. Since a valid PDF document can
contain an arbitrary number of ’\0’s, this kind of converter must be wrapped by the user in
the correct way—for example, using lua_pushlstring.

112

\gmloadimage{a.tiff}
\externalfigure[\gmgetimage{a.tiff}][page=1]
\externalfigure[\gmgetimage{a.tiff}][page=2]
\externalfigure[\gmgetimage{a.tiff}][page=3]

TIFF is not the only possible format. For example, if the library includes the
support for calling Gnuplot and Ghostscript as external programs, their formats
are valid too:
\usemodule[gm]
\starttext \startTEXpage
\gminit{}
\gmloadimage{prob-3.gplt}
\externalfigure[\gmgetimage{prob-3.gplt}]
\gmloadimage{tiger.eps}
\externalfigure[\gmgetimage{tiger.eps}]
\stopTEXpage \stoptext

With the MVG native format and a bit of Lua, it is also possible to create a PDF
at runtime:
\usemodule[gm]
\starttext \startTEXpage \framed{\startluacode
local res
local blob = ""
local gm = moduledata.swiglib.graphicsmagick; gm.init(’.’)
local report_state = gm.report_state
blob = [=[
push graphic-context
viewbox 0 0 140 130
stroke black
fill lightgray
path ’M 60,70 L 60,20 A 50,50 0 0,1 68.7,20.8 Z’
path ’M 60,70 L 68.7,20.8 A 50,50 0 0,1 77.1,23 Z’

113

path ’M 68,65 L 85.1,18.0 A 50,50 0 0,1 118,65 Z’
path ’M 60,70 L 110,70 A 50,50 0 1,1 60,20 Z’
stroke none fill black
font-size 10
text 57,19 ’10’ text 70,20 ’10’
text 90,19 ’70’ text 113,78 ’270’
path ’M700.0,600.0 L340.0,600.0 A360.0,360.0 0 0,1

408.1452123287954,389.2376150414973 z’
pop graphic-context]=]
local name = ’myblob’
if not(gm.formats[’MVG’]) then

report_state("ERROR: MVG FORMAT UNKNOWN")
return false end

res,name = gm.blobimage(blob,’MVG’,name)
if (res == 0) then

report_state("ERROR ON BLOB IMAGE")
return false end

res = gm.register(name)
if (res == 0) then

report_state("ERROR ON REGISTERING BLOB IMAGE")
return false end

context.externalfigure({gm.Images[name].doc_id}, {width=’10cm’})
\stopluacode}\stopTEXpage \stoptext

Let’s now consider this important point: ConTEXt is a multipass system,
storing the results of one pass for the next run in an external file. The same
happens for conversion to PDF (i.e., caching of the PDF), so that in practice only
the first run has the hard task: if a job requires only one run, the cached PDFs
are useless and can be deleted saving space, but the time to write them to disk
and read them again is lost. Caching is also possible in gm, but can be avoided if
it is known in advance that the job is one-pass, thus saving both space on disk
and the time to write/read. A first measure of the times for a file that loads 100
TIFF of size 500×500 at 300 dpi shows that the standard one-pass conversion
takes ti = 10.94 s, while for gm without caching of the PDF, tf = 8.52 s. The
gain is therefore |tf − ti| /ti × 100 = 22% with speedup s = 1.28. Things change
drastically when we look at a standard multipass run: enabling the caching in gm
reduces the gain to a value between 6% and 7%.

114

The gs module

The module for the Ghostscript library poses a challenge similar to Graphics-
Magick: one instance for many conversions. Unfortunately, this library still lacks
a clear method to save the PDF in memory and epdf.openMemStream is of no
help here—each PDF must be saved in an external file and then loaded again. On
the other hand, PostScript is not a binary format, and a Lua string is adequate
in most cases.

One of the most common uses is the conversion from EPS or PS to PDF:
\usemodule[gs]
\starttext \gsinit
%
\gsrunfile{tiger.eps}\gsflush
\externalfigure[tiger.pdf]
%
\gsrunfile{colorcir.ps}\gsflush
\externalfigure[colorcir.pdf]
\stoptext
where \gsflush closes the output file. There is only one instance and with
\gsrunonce the instance is also reinitialized after the conversion:
\usemodule[gs]
\starttext \gsinit
\gsrunonce[pstopdf,

-dNOPAUSE,
-dBATCH,
-dSAFER,
-sDEVICE=pdfwrite,
-sOutputFile=tiger1.pdf,
-c,.setpdfwrite,
-f,
tiger.eps]

\externalfigure[tiger1.pdf]
\stoptext

Converting a buffer is also immediate:
\usemodule[gs]
\starttext \startTEXpage
\gsinit
\startluacode
local psbuf = [==[%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 5 5 105 105
10 setlinewidth
10 10 moveto
0 90 rlineto 90 0 rlineto

115

0 -90 rlineto closepath
stroke]==]
local gs = moduledata.swiglib.ghostscript
gs.Run_buffer(psbuf,’mybuf.pdf’)
\stopluacode
\gsflush
\externalfigure[mybuf.pdf]
\stopTEXpage \stoptext

The barcode.ps program
A nice application is barcode.ps, a widely used PostScript program that supports
a huge number of barcodes (see Burton, 2015). The program in Figures 1 and 2
takes advantage of both the binding and the Lua language:
• it loads and executes barcode.ps only once, saving time in a multipass run;

(%% Load barcode.ps)
• it saves the barcode in PDF format, storing the filename in a persistent

database. This means that only the first run calls the interpreter, while the
others load the PDF already produced;
(%% Make a barcode, save it as pdf and store the name in the
table barcode/pdffile);

• the logic is in Lua—the macro \gmpsbarcode calls directly a Lua function
and returns the name of the relative PDF.
(%% bridge TeX<-->Lua and %% User macro).

As mentioned above, caching a PDF for later use is a common practice in
ConTEXt but usually the program that produces a barcode is called for each
single barcode (i.e., n barcodes take n(ts + tc)), while in this case the program
is called only one time (n barcodes take ts + ntc). The time of setup ts can be
important, given that the size of barcode.ps file is 723KB, which is loaded every
time in the first case. For this reason the distribution at Burton (2015) also
provides a single file for each barcode. (Ghostscript also currently suffers from
suboptimal garbage collection. In case of problems, the collector can be partially
disabled with an initial -dNOGC option.)

116

\usemodule[gs]
\starttext
\gsinit

%% Load barcode.ps
\startluacode
moduledata.swiglib.ghostscript.User = moduledata.swiglib.ghostscript.User or {}
local _t = moduledata.swiglib.ghostscript.User
_t.make_barcode_global_count = 1
_t.make_barcode_pdf_prefix = ’gspsbrc_1.0’
_t.make_barcode_hash = {}
_t.make_barcode_hashname = ’gspsbrc_1.0.lua’
if lfs.isfile(_t.make_barcode_hashname) then

_t.make_barcode_hash = dofile(_t.make_barcode_hashname)
return end

local barcode_ps_file = io.open(’barcode.ps’,’r’)
if barcode_ps_file == nil then

return -1000 end
local barcode_ps = barcode_ps_file:read(’*a’);
barcode_ps_file:close()

local function mydev(w,h,xoff,yoff,s,name)
return ’’

end
moduledata.swiglib.ghostscript.CalculateBBox = false
moduledata.swiglib.ghostscript.Run_buffer(barcode_ps,’’,mydev)
moduledata.swiglib.ghostscript.CalculateBBox = true
\stopluacode

%% Make a barcode, save it as pdf and store the name in the table barcode/pdffile
\startluacode
local function make_barcode(barcode_type,barcode_value,barcode_option,ps_option)

local frag1, frag2, psload, psload1
local arg1,arg2,arg3 = barcode_value,barcode_option,barcode_type
local newline = ’\string\n’
frag0 = (type(ps_option)=="string" and ps_option)

or " 0 1 1 0 0 translate scale rotate 0 0 moveto "
frag1 = " (%s) "
frag2 = " (%s) /%s /uk.co.terryburton.bwipp findresource exec "
psload1 = string.format(table.concat({’gsave ’,frag0,frag1,frag2,’ grestore ’}),

arg1, arg2, arg3)
psload = table.concat({psload1,’ showpage’,newline})
return psload

end

local _t = moduledata.swiglib.ghostscript.User
_t.make_barcode = make_barcode
--[==[update the db]==]
luatex.registerstopactions(function()

local _t = moduledata.swiglib.ghostscript.User
local f = io.open(_t.make_barcode_hashname,’w’)
f:write("return {\n")
for k,v in pairs(_t.make_barcode_hash) do

f:write(string.format("[’%s’] = ’%s’,\n",k,v)) end
f:write("}\n")

end)
\stopluacode

Figure 1: Producing a barcode with barcode.ps in a single instance (first part).

117

%% bridge TeX<-->Lua
\startluacode
moduledata.swiglib.ghostscript.User.gspsbarcode = function (btype,bvalue,bopt)

local _t = moduledata.swiglib.ghostscript.User
local make_barcode = _t.make_barcode
local global_count = _t.make_barcode_global_count
local pdf_prefix = _t.make_barcode_pdf_prefix
local hash = _t.make_barcode_hash
local psbuf
local pdffile
local key = table.concat({btype,bvalue,bopt})
pdffile = hash[key]
if (pdffile ~= nil) then return pdffile end
pdffile = table.concat({pdf_prefix,’-’,global_count,’.pdf’})
global_count = global_count+1
_t.make_barcode_global_count = global_count
psbuf = make_barcode(btype,bvalue,bopt)
moduledata.swiglib.ghostscript.Run_buffer(psbuf,pdffile)
context.gsflush()
hash[key] = pdffile
return pdffile

end
\stopluacode

%% User macro
\def\gmpsbarcode#1#2#3{\cldcontext{% assume no clash of macro name

context(moduledata.swiglib.ghostscript.User.gspsbarcode("#1","#2","#3"))}}

%% Examples
\hbox{\externalfigure[%

\gmpsbarcode{ean13}{2412345678901}{textfont=Courier includetext guardwhitespace}]

\externalfigure[%
\gmpsbarcode{gs1qrcode}{(01)03453120000011(8200)http://www.example.com}{}]}

\blank\hbox{\externalfigure[%
\gmpsbarcode{leitcode}{21348075016401}{includetext}]

\externalfigure[%
\gmpsbarcode{pdf417}{Strong error correction}{columns=2 eclevel=5}]}

\stoptext

Figure 2: Producing a barcode with barcode.ps in a single instance (second part).

2 412345 678901 21348.075.016.40 1

Figure 3: The barcodes of figs. 1 and 2 (formatted for TUB).

118

Conclusions
The module gm shows its full potential in a precise context: a single run with many
conversions. Typically this is an automatic workflow with minimal typographical
requirements and oriented to mass production of documents; for example, a
variable-data printing workflow, probably also tuned to reduce the times of
reading/writing to file. In this situation, the gain could be a time reduction of
20% without increasing disk use. On the other hand, for the common single run
situation, the gain is negligible and the standard conversion is the better choice.

The module gs is interesting not so much for the performance (which in any
case is no worse than the standard conversion) but for the tight integration of
the TEX engine and the PostScript interpreter. The barcode example fits well
in a variable-data printing workflow. It’s a pity that Ghostscript cannot save a
PDF in memory. If a user has a good knowledge of the PostScript language, the
module can also be conveniently used as a replacement for the gs program.

Currently the openMemStream is available only in the experimental branch
of LuaTEX at LuaTEX team (2015); it’s estimated that around the end of the
year, it will move to the trunk branch. Both modules gm and gs are available
at ConTEXt groups (2015).

References
Burton, Terry. Barcode Writer in Pure PostScript [on-line]. [cit. 2015-09-30].

Available at: http://bwipp.terryburton.co.uk/.
ConTEXt Group. ConTEXt Modules [on-line]. [cit. 2015-09-30]. Available at:

http://modules.contextgarden.net.
LuaTEX Team. Experimental branch [on-line]. [cit. 2015-09-30]. Available at:

http://foundry.supelec.fr/scm/viewvc.php/branches/?root=luatex.
Scarso, Luigi. The SWIGLIB project. TUB, 2015, Vol. 36, No. 1, p. 41–47.

Dvě užití SWIGLIB: GraphicsMagick a Ghostscript
Článek se věnuje dvěma softwarovým knihovnám, které byly v rámci projektu
SWIGLIB zpřístupněny formou ConTEXtových maker pro LuaTEX. Popsána je
knihovna GraphicsMagick, která za vhodných podmínek dosahuje až 20% zrychlení
při konverzi bitmapových obrázků, a knihovna Ghostscript, která umožňuje snadné
začlenění postscriptových obrázků do ConTEXtových dokumentů. Použití maker
je demonstrováno na ukázkách.
Klíčová slova: LuaTEX, ConTEXt, SWIGLIB, GraphicsMagick, Ghostscript,
konverze obrázků

Luigi Scarso, luigi.scarso@gmail.com

119

