
Zpravodaj Československého sdružení uživatelů TeXu

Bogusław Jackowski; Piotr Strzelczyk; Piotr Pianowski
GUST E-Foundry Font Projects

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 26 (2016), No. 1-4, 7–46

Persistent URL: http://dml.cz/dmlcz/150240

Terms of use:
© Československé sdružení uživatelů TeXu, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150240
http://dml.cz

GUST E-Foundry Font Projects
Bogusław Jackowski, Piotr Strzelczyk, Piotr Pianowski

In this paper, we present a summary of our work on the TEX Gyre fonts. We
also discuss inconsistencies in the existing fonts and encodings and show how
the problems are solved in the TEX Gyre fonts.

Keywords: TEX Gyre fonts, Latin Modern fonts, AFDKO, GUST e-foundry.

What is a document?
It is a sequence of rectangles containing a collection of graphic elements.
What is a font?
It is a sequence of rectangles containing a collection of graphic elements.

—Marek Ryćko

1. Introduction

The Polish TEX Users Group (GUST) has paid attention to the issue of the
fonts since the beginning of its existence. In a way, it was a must, because the
repertoire of the diacritical characters of the Computer Modern family of fonts
(CM), “canonical” TEX family defined as the Metafont programs (see [5]), turned
out to be insufficient for the Polish language. The efforts of the GUST font team
(GUST e-foundry), led by Bogusław Jackowski, were kindly acknowledged by the
professor Donald E. Knuth:

Obviously, our first fonts were PK bitmap fonts programmed using Metafont. Alas,
the TEX/Metafont bitmap font format never became the world-wide standard.

doi: 10.5300/2016-1-4/7 7

Therefore, the next step were fonts in the PostScript Type 1 format which fairly
soon became obsolescent and was replaced by the OpenType format (OTF, a joint
enterprise of Microsoft and Adobe, 1996, see [31]) which is actually a common
container for the Adobe PostScript Type1 and Microsoft TrueType (TTF) formats.
In 2007, Microsoft extended the OTF standard with the capability of typesetting
math formulas, largely based on ideas developed for TEX, and implemented it
in MS Office. Soon, TEX engines were adapted to process such math OTF fonts.
Therefore our recent fonts are released in the OpenType format, which also makes
them easily usable outside of the TEX realm.

So far, no OTF successor is in sight, which is both good and bad (cf. Sec-
tion 7.4).

We published our partial results successively as the work progressed. This
paper provides an overall summary of our work: it describes the collections of
fonts prepared by the GUST e-foundry, deals with some technical issues related
to the generation of fonts and their structure and puts forward a few proposals
concerning future works.

This is not an overly strict report, but rather a story about our technical
work on fonts, illustrated by representative examples which, we hope, show the
essence of the matter. In order to keep our narration smooth, we decided not
to use formal captions with explanations to figures and tables (only numbers of
figures and tables are given). The relevant detailed descriptions always appear in
the main text.

2. Historical background

PostScript and TEX are genetically related: their common ancestor is the ingenious
idea of a programming language for the description of documents understood as
a sequence of rectangular pages filled with letters and graphics. Both projects
were devised nearly at the same time—at the turn of the 1970s to the 1980s.1
And both are still alive and well, proving that the idea behind both projects was
indeed brilliant.

From our perspective, the most important thing in common, and at the same
time a key distinctive element, was the different handling of fonts and graphics;
in other words, both systems clearly distinguished illustrations from fonts. That
approach was justified by the computer technology at that time.

For both TEX and PostScript, fonts were external entities, both used metric
files plus files defining glyph shapes, both defined contours as Bézier splines
(planar polynomials of the 3rd degree), and for both fonts were to be prepared
separately with dedicated font programs, prior to creating documents.

1Formally, TEX was released a little earlier—TEX in 1982, PostScript in 1984, both with
earlier work.

8

And this exhausts the list of similarities.
TEX worked with binary metric files, TFM; its output, a device independent

file (DVI), was processed by so-called drivers which made use of the “proper”
fonts, that is, the relevant bitmap collections, and produced output that could
be sent to a printer or to a screen. The bitmaps were prepared independently
with the Metafont program(s) which interpreted scripts written in the Metafont
language and generated TFM and bitmap files.

In Metafont, the shapes of glyphs are defined as Bézier curves, stroked with a
“pen” and/or filled.

Basic PostScript fonts (i.e., Type 1; see [28]) employ contours defined as non-
intersecting closed Bézier outlines which can only be filled.2 The “filled outline”
paradigm relates also to the Microsoft TTF format and, thereby, to the OTF
format.

PostScript Type 1 fonts are usually (but not necessarily) accompanied by
corresponding ASCII metric files (AFM), not used by the interpreters of the
PostScript language. In the Microsoft Windows operating system, making an
already complex situation even more complex, binary printer font metric files
(PFM) were introduced for Windows drivers that used PostScript Type 1 fonts.

For a long time, only commercial programs for generating PostScript Type 1
fonts were available. Only in 2001, George Williams released his remarkable
FontForge program (initially dubbed PfaEdit; [25]). FontForge can generate
outline fonts in many formats, including PostScript Type 1 and OTF.

PostScript was promptly (and rightly) hailed as the standard for printers and,
more importantly, for phototypesetters, therefore a driver converting DVI files to
PostScript became necessary. Fortunately for TEXies, PostScript is equipped also
with Type 3 fonts; glyphs in Type 3 fonts can be represented by nearly arbitrary
graphic objects, in particular, by bitmaps, therefore the making of a PostScript
driver for converting DVI files to PostScript was possible already in 1986, when
Dvips, the first and still most popular driver was released by Tomas Rokicki. (It’s
a pity that the idea of Type 3 fonts was not supported and developed by Adobe.)

There were a few unsuccessful attempts to convert the basic TEX font col-
lection, CM, to the PostScript Type 1 format automatically, thus preserving the
parameterization. The main hindrance was the excessive usage of stroked (both
painted and erased) elements in the CM font programs, while, as was mentioned
previously, the PostScript Type 1 and OTF formats accept only filled shapes.

The “filled outline” paradigm was a convenient optimization at the beginning
of the computer typesetting era, when, for example, the generating of the complete

2The PostScript Type 1 documentation [28], p. 34, mentions the possibility of stroking: a
Type 1 font program can also be stroked along its outline when the user changes the PaintType
entry in the font dictionary to 2. In this case, overlapping subpaths will be visible in the output;
this yields undesirable visual results in outlined characters. In practice, this possibility is not
used.

9

collection of bitmaps for the CM fonts at resolution, say, 240 dots per inch (typical
for dot matrix printers) took a few days. Nowadays, the paradigm still thrives by
virtue of tradition: there is an abundance of such fonts and, and what is worse,
all operating systems support only this kind of font.

3. First steps

Taking the above into account, we made up our minds to design our own pro-
grammable system for generating fonts in “world-compatible” formats.

3.1. Our tools
Our primary tool was MetaPost [4], a successor of Metafont, which promised well
as a tool for making PostScript Type 1 fonts due to its native PostScript output.
We called our MetaPost-based package MetaType 1 [13]. It was instantiated
as a set of scripts using, besides MetaPost, T1utils, that is, Lee Hetherington’s
(dis)assembler for PostScript Type 1 fonts (cf. [3, 4]). A few scripts written
in Gawk and Perl were also employed.

On the one hand, such a simple approach turned out to be insufficient for
generating OTF fonts, in particular OTF math fonts. On the other hand, it
turned out to be flexible enough to include an extra external step for making OTF
fonts. For text fonts, we employed the Adobe Font Development Kit for Open-
Type (AFDKO [26]); for math fonts, the FontForge library governed by Python
scripts [15, 25]. In the future, we want replace AFDKO by a FontForge+Python
utility (cf. Section 7).

A set of MetaPost macros in the MetaType 1 package defines two important
procedures, essential for generating non-intersecting outlines and heavily used in
our font programs: finding a common outline for overlapping figures, known also
as removing overlaps, and finding the outline of a pen stroke, known as expanding
strokes or finding the pen envelope.

Another important feature, hinting, is implemented, but, in the end, we
decided to avoid manual hinting, since it is difficult to control and yields mediocre
results. Metafont has no notion of hinting— the Metafont language simply offers
rounding. Moreover, the language for describing outlines in PostScript Type 1
fonts cannot express even as trivial a mathematical operation as rounding.

For low-resolution devices, controlled rounding is crucial—hence the idea of
“hinting”, that is, controlled rounding. Alas, hinting algorithms remain undis-
closed, especially with regard to commercial typesetting devices such as photo-
typesetters. One can presume, however, that low-resolution devices are bound to
disappear sooner rather than later: the resolution of display devices has reached
almost 600 dpi and 1200 dpi (and more) for printers is nowadays nothing special.

10

Therefore, running with the hare and hunting with the hounds, we decided to
hint our recently released OTF fonts automatically with FontForge.

3.2. Trying our tools out
We tested our newborn MetaType 1 engine against a simple example, namely,
Donald E. Knuth’s logo font [17]: the sources, originally written in the Metafont
language, were adapted to MetaType 1’s requirements. The distributed package
contains both MetaType 1 sources and the resulting PostScript Type 1 files for
the logo font [13].

The test proved the usefulness of the approach; hence, in 1999, we started
a larger project: the programming of the long-established Polish typeface An-
tykwa Półtawskiego as a parameterized font. The preliminary family of fonts was
released in 2000. Ten years later, prompted by the TEX community, we released
the enhanced version of Antykwa Półtawskiego with the relevant OTF files [7].
In parallel, Janusz M. Nowacki used MetaType 1 to generate several replicas of
Polish fonts, namely, Antykwa Toruńska, Kurier, Iwona, and Cyklop [22].

4. Latin Modern collection of fonts

Recall that the repertoire of diacritical characters in CM fonts was insufficient for
most languages using diacritical characters. The TEX accenting mechanism (the
\accent primitive), meant as a solution to this problem, was unsatisfactory—
for example, accents and hyphenation conflicted. The problem was recognized
relatively early and various approaches were used to remedy the situation.

For example, the Polish extension of CM in the PK format was prepared in
Poland (PL fonts, [8]), but this worked only for Polish TEXies.

Also worthy of note is the European Computer Modern Fonts (EC) project led
by Jörg Knappen and Norbert Schwarz, triggered during the TEX Users Group
conference in Cork, 1990, and finished in 1997 [16]. The EC metric files, however,
are slightly incompatible with CM metric files, by circa 0.025%.3

A rather general technique was applied by Lars Engebretsen, who attempted
to eliminate the necessity of using the \accent primitive by making virtual fonts,
dubbed Almost European (AE), containing quite a large set of the European
diacritical characters [1].

Hyphenation worked with AE fonts, though still unsatisfactorily— for example,
coinciding of such accents as cedilla or ogonek with a main glyph is inconvenient

3The reason behind this discrepancy is a peculiarity of Metafont arithmetic: the formula
1/36 ∗ i yields different results than the formulas i/36 and 1/36i; for example, for i = 3600 the
results are 99.97559 for the first formula and 100 for the latter formulas. The first formula was
used in the EC fonts (in the gendef macro).

11

when a non-intersecting outline is required (for cutting plotters, for outlined
titles, and so on). Moreover, the virtual fonts are obviously unusable outside the
TEX realm.

4.1. Latin Modern fonts in the PostScript Type1 format
In 2002, during the EuroBachoTEX meeting, a proposal of converting Engebret-
sen’s AE fonts into the PostScript Type 1 format and augmenting with them
the set of necessary diacritical characters was put forward by representatives of
European TEX user groups. We had no choice but to accept the proposal with
delight.

Our initial plan was to use the AE fonts as our departure point; we even wanted
to preserve the original name, Almost European, coined by Lars Engebretsen. It
turned out, however, to be much more efficient to prepare the enhanced version
of the CM fonts from scratch, and so sticking to Lars Engebretsen’s name seemed
inadequate, because the differences were too essential.

All in all, inspired by both EC and AE fonts, we came up with the Latin
Modern (LM; see [11]) project which was accepted by the user groups.

Fortunately for us, freely available quality CM fonts in the PostScript Type 1
format already existed. In the 1980s and 90s, they were produced (from traced
bitmaps improved by very solicitous manual tuning) for commercial purposes by
Blue Sky Research and Y&Y. Nearly a decade later, they were released to the
public thanks to the efforts of the American Mathematical Society.4

We converted the PostScript Type 1 files of the CM fonts to MetaType 1 and
wrote the MetaPost software relevant for generating the characters we decided
to add (mainly diacritical letters). The work had already been partially done
by Janusz M. Nowacki, who prepared the PostScript Type 1 version of the PL
fonts in 1997. The official version of the LM fonts, 1.000, was eventually released
in 2006 (in the meantime, several unofficial versions were released for testing
purposes). The LM collection of fonts consisted of 72 text fonts, each counting
about 700 glyphs, plus 20 CM-like math fonts.

In 2009, an extensive revision of the LM fonts was carried out: the text fonts
now contain more than 800 glyphs each (altogether more than 60,000 glyphs)
and the glyphs conform to the changes introduced by Donald E. Knuth in 1992.

Almost all of the CM text fonts have counterparts in the LM family; the
exceptions are one monospaced font, cmtex10, emulating Donald E. Knuth’s
keyboard layout, and the rarely used cmff10, cmfi10, cmfib8, and cminch. So

4In 1997, a consortium of scientific publishers (American Mathematical Society, Elsevier
Science, IBM Corporation, Society for Industrial and Applied Mathematics, and Springer-
Verlag) in cooperation with Blue Sky Research and Y&Y decided to release these excellent
fonts non-commercially; in order to assure the authenticity of the fonts, copyright was assigned
to the American Mathematical Society. (http://www.ams.org/publications/type1-fonts).

12

far, nobody has complained about this inconsistency. Instead, encouraged by
Hans Hagen, we decided to create 10 variants of typewriter LM fonts not having
counterparts in the CM family: lmtlc10, lmtk10, lmtl10, lmvtk10, and lmvtl10
(monospaced light condensed and monospaced and variable-width dark and light,
respectively) plus their oblique variants lmtko10, lmtlo10, lmtlco10, lmvtko10,
and lmvtlo10.

4.2. Latin Modern fonts in the OTF format
It was relatively easy to prepare the LM family of fonts in the OTF format using
the AFDKO package: it mainly necessitated preparing a few extra data files
in the OpenType Feature File Specification language [32]. Needless to say, the
experience gathered at this stage came in handy during the work on the TG fonts
(see Section 5).

There was trouble, however, with the 20 math fonts. We provided the re-
spective LM equivalents in PostScript Type 1 format. For compatibility with
the (obsolete) PL fonts, the symbol fonts, lmsy* and lmbsy*, contain two extra
glyphs: slanted greater-or-equal and less-or-equal signs, used traditionally in Pol-
ish math typography. As the math extension for OpenType did not exist yet, we
decided not to convert these fonts to OTF. We knew that the companies that had
invented and maintained the OTF standard, in cooperation with the American
Mathematical Society and the Unicode Consortium, were working on extending
the standard with math typesetting capabilities. We expected that by using the
enhanced OTF specification we would be able to create a TEX-compatible math
OTF collection. Alas, the Unicode Consortium report on Unicode support for
mathematics [37], followed by the initially confidential Microsoft specification [29],
snuffed out our hopes. It turned out that OTF math and TEX math cannot be
reconciled. More information on the interrelationships between OTF and TEX
math can be found in Ulrik Vieth’s thorough analysis [24].

4.3. Repertoire issues
Our primary aim was to provide a repertoire of diacritical letters rich enough
to cover all European languages. We thoroughly exploited Michael Everson’s
comprehensive study of European alphabets [2], as well as other sources. Several
other languages using Latin-based alphabets, such as Vietnamese, Navajo and
Pali, are covered.

Initially, contrary to the Latin Modern name, we considered including Cyrillic
alphabets also. Having thought the matter over, we decided, with regret, to
abandon this idea and concentrated our efforts on OTF math fonts.

Besides diacritical characters, the Latin Modern fonts contain also a number
of glyphs traditionally present in TEX fonts, such as Greek symbols, currency

13

Fi
gu

re
1

symbols, technical symbols, etc. Detailed description of the contents of the
fonts can be found in the document entitled The Latin Modern Family of Fonts.
Technical Documentation, included in the LM distribution package [11].

Two groups of glyphs are widely used in typography but neglected to a certain
extent in the CM fonts, namely, caps and small caps and old style numerals, also
known as text figures or nautical digits; the latter name originates from their
widespread use in tables in nautical almanacs at one time. For reasons hard to
explain, the caps and small caps were implemented in the CM family as a separate
font, while the old style numerals (upright!) are in the math italic font (cmmi*).

The LM fonts incorporated caps and small caps from the CM family, together
with its width idiosyncrasy: the lmcsc10 font, like cmcsc10, has capital letters
wider than the lmr10 font by circa 8%. There are two caps and small caps
fonts in the LM collection, namely, the regular and typewriter specimen, lmcsc10
and lmtcsc10, as in CM, plus their oblique variants, lmcsco10 and lmtcsco10,
absent from CM. In principle, small caps glyphs could be transferred to other
fonts, but we decided to not alter the framing of the original CM family, more so as
CM has no sans-serif caps and small caps; however, the problem of extending the
LM family with bold counterparts of lmcsc10 and lmtcsc10 (and their oblique
variants), raised repeatedly by CM/LM users, needs serious consideration.

Concerning old style numerals, we could not accept the CM oddity and
included them in all text fonts of the LM family. Further, all numerals come in
2 ‘flavors’: normal (fixed-width a.k.a. tabular) and proportional (variable-width,
having balanced sidebearings) which altogether yields 4 variants— see Figure 1.

The TFM format contains only 256 slots for glyphs, thus, the whole repertoire
of glyphs cannot be accessed at once if TEX is used in a “traditional” way, that

14

is, with TFM files. In particular, accessing the different kinds of numerals when
using PostScript Type 1 fonts plus TFM metrics turns out to be clumsy; as a
result, only tabular old style numerals are available in our package, in the TS1
encoding (see below). On the one hand, OTF fonts seem more convenient as they
do not impose such a restriction; for example, all numerals can be accessed by
using the OTF feature mechanism, more precisely, by the features onum, lnum,
pnum, and tnum [33]. On the other hand, OTF metric data cannot, in general, be
fully compatible with TFM metric data because the glyph widths in OTF fonts
must be represented by integer quantities. This should be considered a drawback
by TEXies—see Section 4.4.

Following the LATEX tradition, we provided several encodings for the LM fonts,
namely:
� CS (CS TUG) encoding (cs-*.tfm),
� EC (Cork) encoding (ec-*.tfm),
� L7X (Lithuanian) encoding (l7x-*.tfm),
� QX (GUST) encoding (qx-*.tfm),
� RM (“regular math”, used in OT1 and OT4) encodings (rm-*.tfm),
� Y&Y’s TEX’n’ANSI a.k.a. LY1 encoding (texnansi-*.tfm),
� T5 (Vietnamese) encoding (t5-*.tfm),
� Text Companion for EC fonts a.k.a. TS1 (ts1-*.tfm).

The LATEX support for all these encodings, due to Marcin Woliński, is also part
of the LM distribution.

TFM files nominally representing the same encoding do not always define
the same set of characters; for example, the character sets of cmr10.tfm and
cmtt10.tfm differ. The original CM fonts comprise 7 different character sets, with
an idiosyncratic difference between the cmr10 and cmr5 layouts. As a remnant
of the CM design, there are 5 different character sets of the LM text fonts:

1. 821 glyphs (basic set): lmb10 lmbo10 lmbx10 lmbx12 lmbx5 lmbx6 lmbx7
lmbx8 lmbx9 lmbxi10 lmbxo10 lmdunh10 lmduno10 lmr10 lmr12 lmr17
lmr5 lmr6 lmr7 lmr8 lmr9 lmri10 lmri12 lmri7 lmri8 lmri9 lmro10
lmro12 lmro17 lmro8 lmro9 lmss10 lmss12 lmss17 lmss8 lmss9
lmssbo10 lmssbx10 lmssdc10 lmssdo10 lmsso10 lmsso12 lmsso17
lmsso8 lmsso9 lmu10 lmvtk10 lmvtko10 lmvtl10 lmvtlo10 lmvtt10
lmvtto10

2. 824 glyphs: lmssq8 lmssqbo8 lmssqbx8 lmssqo8
extra characters: varI varIJ varIogonek

3. 814 glyphs: lmcsc10 lmcsco10
missing characters: f_k ff ffi ffl fi fl longs

4. 785 glyphs: lmtk10 lmtko10 lmtl10 lmtlc10 lmtlco10 lmtlo10 lmtt10
lmtt12 lmtt8 lmtt9 lmtti10 lmtto10
missing characters: f_k ff ffi ffl fi fl Germandbls hyphen.prop IJ ij

15

permyriad servicemark suppress trademark varcopyright
varregistered zero.oldstyle zero.prop one.oldstyle one.prop
two.oldstyle two.prop three.oldstyle three.prop four.oldstyle
four.prop five.oldstyle five.prop six.oldstyle six.prop
seven.oldstyle seven.prop eight.oldstyle eight.prop
nine.oldstyle nine.prop

5. 784 glyphs: lmtcsc10 lmtcso10
missing characters: as in 4, also longs

4.4. Compatibility issues
We did our best to provide outline fonts that can be used as a replacement for
CM fonts. To a certain extent, we managed to achieve this goal, namely, the
PostScript drivers which process TEX documents typeset with CM metric files,
can use either CM or LM PostScript Type1 fonts— special map files for PostScript
Type 1 fonts are available for this purpose. The metric files, however, cannot be
used replaceably, because the typesetting algorithms are intrinsically unstable—
even tiny (rounding) errors may yield glaringly different results.

Therefore, LM users also cannot expect PostScript Type 1 and OTF fonts
to be used replaceably. Recall that the OTF format requires integer number
representation for glyph widths. The “reference” quantity is the em unit: 1 em =
2048 units for fonts using splines of the 2nd degree, 1 em = 1000 units for fonts
using splines of the 3rd degree (e.g., our LM and TG fonts). Therefore, in our case,
the difference in width is on average 1/2000 em (twice as large as the variation
in the EC widths), that is, circa 0.005 pt for 10-point fonts.

Because the MetaType 1 sources of the LM fonts are the result of conversion
from PostScript Type 1, the widths stored in the LM TFM files are not identical
to the respective original CM widths. They are closer, however, to the original
quantities by an order of magnitude compared to the EC and OTF widths. At
the cost of great effort (by referring to the Metafont sources), we might have
eliminated rounding errors in LM widths. But it would not cure the problem
of (non-)replaceability, as widths are not the only source of trouble. Differences
in heights and depths of glyphs may also yield unexpected behavior of the TEX
typesetting algorithm.

The problem of heights and depths in TEX turns out to be unavoidable, and
quite serious: the TFM format permits by design only 16 different heights and
depths, including the obligatory entries containing the value zero. If there are in
fact more heights and depths in a given font, their number is cleverly reduced
to 16 by Metafont (as well as by the MetaPost and TFtoPL programs). One of
the certainly unwanted results is that the same glyph in different encodings may
have different heights and/or depths! For example, the height of the letter ‘A’ is
6.88875pt in the rm-lmr10.tfm file (this layout is an extension to 256 slots of

16

the cmr10 layout), it is 6.99648 pt in the t5-lmr10.tfm file (Vietnamese layout),
while in the canonical cmr10.tfm file it is 6.83331 pt.

This is not the end of the list of possible sources of incompatibility between
CM and LM fonts. Positioning of the accents is also a long story. These and
related aspects are explained minutely in [12].

Finally, let us consider a somewhat atypical example of incompatibility be-
tween the LM and CM fonts related to Donald E. Knuth’s mistake in a CM
ligtable program, uncorrectable for obvious reasons but basically harmless;
namely, roman.mf contains the following:
% three degrees of kerning
k#:=-.5u#; kk#:=-1.5u#; kkk#:=-2u#;
ligtable "k":

if serifs: "v": "a" kern -u#, fi
"w": "e" kern k#, "a" kern k#,

"o" kern k#, "c" kern k#;

The culprit is the if serifs clause: the kern pair ‘ka’ appears twice in the TFM
files of serif fonts with the values −u# and −0.5u#, respectively, as is easily seen
in the following fragment of the cmr10.pl file (the respective lines are marked
with arrows):
(CHARACTER C k

(CHARWD R 0.527781)
(CHARHT R 0.694445)
(COMMENT

(KRN C a R -0.055555)⇐
(KRN C e R -0.027779)
(KRN C a R -.027779) ⇐
(KRN C o R -0.027779)
(KRN C c R -0.027779)
)

)

Moreover, there are no ‘va, ‘vc’, ‘ve’, and ‘vo’ kern pairs in sans-serif fonts,
although there are ‘kc’, ‘ka’, ‘ke’, ‘ko’, ‘wa’, ‘wc’, ‘we’, and ‘wo’ kern pairs in
these fonts. We could not see the reason for ignoring ‘v’ in this context, thus we
decided to add the relevant kern pairs in the LM fonts; we also added quite a few
other kern pairs missing, in our opinion, from the CM fonts, for example, ‘eV’
and ‘kV’.

Summing up, we believed that we had good reasons for giving up the struggle
for a “100-percent compatibility” between LM and CM metrics, whatever that
would mean, and to confine ourselves to providing the mentioned replaceability
of outlines.

17

5. The TEX Gyre collection of fonts

Heartened by the results of the LM enterprise, we accepted without hesitation
the next proposal: the “LMization” of the family of fonts provided by Ghostscript
as a replacement for the renowned Adobe base 35 fonts, generously released by
the URW++ company under free software licenses.

� ITC Avant Garde Gothic (book, book oblique, demi, demi oblique)
� ITC Bookman (light, light italic, demi, demi italic)
� Courier (regular, regular oblique, bold, bold oblique)
� Helvetica (medium, medium oblique, bold, bold oblique)
� Helvetica Condensed (medium, medium oblique, bold, bold oblique)
� New Century Schoolbook (roman, roman italic, bold, bold italic)
� Palatino (regular, regular italic, bold, bold italic)
� Symbol
� Times (regular, regular italic, bold, bold italic)
� ITC Zapf Chancery (medium italic)
� ITC Zapf Dingbats

Since our aim was “LMization”, we excluded the Symbol and ITC Zapf Ding-
bats non-text fonts from the scope of our interest.

After a brief (but heated) debate, the name of the project and of its constituent
fonts were coined. The project was dubbed TEX Gyre (TG) and the following
names were accepted (the respective file name kernels, original Adobe names and
Ghostscript, that is, URW, names are given in parentheses):

� TG Adventor (qag / ITC Avant Garde Gothic /URW Gothic L)
� TG Gyre Bonum (qbk / ITC Bookman /URW Bookman L)
� TG Cursor (qcr /Courier /Nimbus Mono L)
� TG Heros (qhv /Helvetica /Nimbus Sans L)
� TG Heros Condensed (qhvc /Helvetica Condensed /Nimbus Sans L

Condensed)
� TG Schola (qcs /New Century Schoolbook /Century Schoolbook L)
� TG Pagella (qpl /Palatino /URW Palladio L)
� TG Termes (qtm /Times /Nimbus Roman No9 L)
� TG Chorus (qzc / ITC Zapf Chancery /URW Chancery L)

We initially considered including Cyrillic alphabets, but, as in the case of the
LM fonts, we eventually abandoned this idea, also with regret, the more so as
the Ghostscript fonts at that time contained an (apparently unfinished) set of
Cyrillic glyphs.

18

Fi
gu

re
2

We expected that the main effort would be the making of extra glyphs plus
maybe correcting outlines here and there. To our surprise, quite a few glyphs
required tuning because of evident errors in outlines. One of the most striking
examples is the glyph ‘eight’ from the URW Schoolbook bold font5 —see Figure 2.

Mostly, we removed redundant or wrong nodes (points) from the outline
definitions, deleting more than 5% of them in all. In the case of TG Pagella,
however, the insertion of extra nodes turned out necessary. The chart in Figure 3
shows some statistics for the upright TG fonts. The diagram concerns the version
of the Ghostscript fonts which we used as our starting point. We used circa 350
glyphs from each font. The total number of nodes in these glyphs varied from
circa 10,000 to 25,000 per font. In the current release, the TG text fonts count
almost 1100 glyphs each with the number of nodes varying from circa 30,000 to
65,000 (for sans-serif and serif italic variants, respectively; see [14]).

5.1. Repertoire issues
The difference in the number of glyphs between the TG and LM text fonts (the
former having circa 250 glyphs more per font) is due mainly to the presence of
small caps in the TG fonts (225 glyphs per font). Also unlike the LM fonts, each
TG font contains the complete Greek alphabet and a few technical glyphs, such
as ‘lozenge’ and ‘lscript’.6 Except for these, the LM and TG fonts share the same
repertoire of glyphs and the same set of TFM encodings (see Section 4.3).

The LATEX support for these encodings was also provided by Marcin Woliński.

5Recently, the font has been renamed to ‘C059 bold’; the bug was removed from the Ghost-
script distribution only in 2015, although the TEX Collection 2016 distribution still contains
(due to the legacy reasons) the faulty glyph.

6For historical reasons, the LM fonts contain a few additional variants of the base, left, and
right double quotes, absent from the TG fonts.

19

Fi
gu

re
3

5.2. Compatibility issues
The consistency of the widths of the original Adobe and the respective TG
glyphs was one of our main concerns, as the TG fonts were meant as potential
replacements for the Adobe fonts. It turned out, however, that the original font
metric files [27], contained apparent metric flaws which we decided, with some
hesitation, not to retain.

A typical example (concerning Helvetica, a.k.a. Nimbus Sans L, a.k.a. TG He-
ros) is depicted in Figure 4. Both Spanish ‘¡’ and Scandinavian ‘ø’ glyphs belong
to the Adobe Standard Encoding set, hence one can expect that they should be
considered important and thus unchangeable. Nevertheless, we could not see a
reason for using widths different from the ‘!’ and ‘o’ widths, respectively, and
certainly there is no substantiation for the asymmetry of sidebearings, especially
in the case of ‘ø’; therefore, we decided to alter the metrics.

Fortunately, there are few such cases in the TG collection; each is mentioned
in the documentation of the TG fonts [14].

Because the original widths for the TG fonts, unlike in the LM collection, were
integer numbers, there is no metric discrepancy between the PostScript Type 1
and OTF font formats, as far as widths are concerned. Heights and depths,
however, are subject to the same restrictions as discussed in Section 4.4.

20

Fi
gu

re
4

6. OTF math fonts

The chronic problem of lack of math support for the TG collection became the
impetus for our third venture: math fonts for the LM and TG collections in the
OTF format. The recent update of the LM and TG fonts took place at the end
of 2009. The math extension for the OTF format ([29]) had been released and
there existed the FontForge font editor ([25]) capable of generating such fonts.
So we embarked upon an expedition into unknown regions— since then we have
focused our attention on the work on OTF math fonts, again with the benevolent
encouragement and support from the TEX users groups.

As we should have expected, the task turned out interesting and absorbing,
and, according to Hofstadter’s Law,7 we spent more time on it than we expected.
From the very beginning, we aimed at making a collection of mutually consistent
math OTF fonts and we underestimated the heterogeneity of the sources of
additional alphabets and the problem of interrelationships—works on subsequent
fonts entailed moving backwards to the fonts which we had prematurely considered

7Hofstadter’s Law: It always takes longer than you expect, even when you take into account
Hofstadter’s Law—Douglas R. Hofstadter.

21

ready. Nevertheless, in 2011, we happily announced the release of our first math
OTF font, namely, Latin Modern Math. Altogether, six math fonts have been
released by the GUST e-foundry so far [9, 10]:
� TG Latin Modern Math
� TG Bonum Math
� TG Schola Math
� TG Pagella Math
� TG Termes Math
� TG DejaVu Math

This amounts to nearly half of all OTF math fonts released in the world. Besides
these, the following OTF math fonts have been released: Asana by Apostolos Sy-
ropoulos, Neo-Euler and XITS by Khaled Hosny, STIX by the STI Pub companies,8
Cambria Math by Microsoft,9 Lucida Math by Bigelow & Holmes, and Minion
Math by Johannes Küster; the latter three fonts are distributed commercially.

6.1. OTF math font contents
Math OTF fonts, as we expounded in [10], are truly nasty beasts. In accordance
with [35] and [37], they are expected to contain a plethora of glyphs: letters,
arrows, math operators and delimiters, geometrical shapes, technical symbols,
etc. The presence of some of them, particularly the (over)abundance of peculiar
geometrical shapes and arrows, is hard to substantiate in our opinion.

Initially, we planned also releasing the math companion to the TEX Gyre
sans-serif fonts, TG Adventor and TG Heros, but the Unicode specification for the
contents of math fonts, [37], turned out definitely “serif-oriented”. Let us take,
for example, the arrangement of the LM Math font shown in Table 1: following
the cited specification, we combined several LM source fonts into a single complex
font. As the table clearly shows, the basic subsets, that is, plain, bold, italic and
bold italic are assumed to consist of serif glyphs by default. It is not obvious how
the table should be adjusted to suit sans-serif math fonts. Work on this issue is
in progress.

The original CM fonts, and thus the LM fonts, do not contain the complete
sans-serif Greek. We generated the missing glyphs using modified Metafont
sources in order to generate outlines instead of bitmaps and tuning the result
manually, if required.

8The STIX project began through the joint efforts of American Mathematical Society (AMS),
American Institute of Physics Publishing (AIP), American Physical Society (APS), American
Chemical Society (ACS), Institute of Electrical and Electronic Engineers (IEEE), and Elsevier
Science; these companies are collectively known as the STI Pub companies.

9Cambria Math was the first math font published, conforming to the specification MATH—
The mathematical typesetting table [29]. It was released by Microsoft in 2007, along with a
MS Office version equipped with the capability of handling the math font and editing math
formulas.

22

Ta
bl
e
1

category charset source fonts
plain (upright, serif) L*, G, D lmr, lmmi (upright)
bold L, G, D lmbx, lmmib (upright)
italic L, G lmmi
bold italic L, G lmmib
sans-serif L, D lmss
sans-serif bold L, G, D lmssbx
sans-serif italic L lmsso
sans-serif bold italic L, G lmssbo
calligraphic L eusm (slanted)
bold calligraphic L eusb (slanted)
Fraktur L eufm
bold Fraktur L eufb
double-struck L, D bbold (by Alan Jeffrey)
monospace L, D lmtt

L, G, D—Latin, Greek and digits, respectively
L*—contains also diacritical letters and punctuation
All the alphanumeric glyphs specified in the table,
except for the “plain” ones (first row), are given
special mathematical Unicode slots— see [37]

Moreover, a math font is bound to contain many other characters, most notably
glyphs used for subscripts of the 1st and 2nd order, used also for superscripts;
we’ll refer to them shortly pars pro toto as subscripts. They are accessed by the
OTF feature mechanism, more precisely by the math extension feature ssty [33].

Extensible symbols, like large brackets or radicals, are another important
group of math-oriented glyphs. An extensible symbol consists of a collection of a
few components (the left part of Figure 5) assembled by the typesetting engine
into a seemingly single character (the right part of Figure 5).

First, a glyph of adequate size is searched for in the so-called chain of glyph
variants (here: the three leftmost curly braces). If a proper glyph is not found, the
typesetting engine assembles a respectively large symbol from the relevant pieces
using a fairly complex algorithm—everybody who has attempted unsuccessfully
to fit braces around a formula according to one’s desire probably knows it.

In the case of the radical symbol, the situation is still more complex, because
the OTF and TEX geometric structure, as well as the relevant metric data of
the components differ, as is shown in Figure 6 which visualises “stages” of the
assembling of an extensible radical symbol.

In both cases, the radical symbol is assembled from glyphs taken from a
relevant font and a line (rule) drawn by the typesetting program at the top of

23

Fi
gu

re
5

Fi
gu

re
6

the symbol (marked with a gray color). The thickness of the rule, however, is
given explicitly as a parameter in math OTF files, while it is inferred from the
height of the top element of the radical symbol in TEX (recall the problem of the
limited number of heights in a TEX metric file).

There is an important difference between the TEX and OTF math font specifi-
cation concerning extensible glyphs: TEX is equipped with the ability to assemble
compound glyphs from pieces only vertically, while the OTF format offers both
horizontal and vertical assembling. In TEX (i.e., in the plain TEX format), such
glyphs as horizontal braces are defined by special macros using rules and a few
glyphs from a relevant font:
\def\downbracefill

{$\m@th \setbox\z@\hbox{$\braceld$}%
\braceld\leaders\vrule height\ht\z@

depth\z@\hfill\braceru
\bracelu\leaders\vrule height\ht\z@

depth\z@\hfill\bracerd$}
\def\upbracefill [...]

24

Incidentally, it seems that diagonal extensible glyphs have not yet been invented.
Could it be that the conundrum is too difficult to solve?

More on the differences between the TEX and OTF specifications of the
structure of math fonts can be found in Ulrik Vieth’s survey [24].

In the case of LM Math, we were fortunate to have well-known clean sources
for a base, already containing 7-point and 5-point variants, suitable for typesetting
subscripts, and components for assembling extensible glyphs.

We have to confess, however, that we were not especially delighted with the
Computer Modern calligraphic script. More pleasingly designed, to our eyes, are
the calligraphic letters of the renowned Euler family. Therefore, we decided to
transfer the glyphs from the Euler fonts (slanting them slightly) to the LM Math
font:

In the case of the TG math fonts, the situation was slightly worse. The basic
sources, that is, the text fonts, were already improved by us, but the sources of
the relevant additional character sets were highly heterogeneous. We used freely
available fonts of the best possible quality as our base; nevertheless, much manual
tuning was necessary (recall the tuning of the sources of the TG text fonts).

Moreover, not all suitable fonts had acceptable free licenses. In a few cases,
we had to contact the authors personally. It should be emphasized that in all
cases the authors, if we managed to reach them, courteously agreed to make their
fonts available for our purposes. The following external fonts were used in the
TG math fonts project (in alphabetical order):
� Lato by Łukasz Dziedzic (TG Schola Math)
� Kerkis by Apostolos Syropoulos and Antonis Tsolomitis (TG Bonum Math)
� Leipziger Fraktur replica by Peter Wiegel (TG Bonum Math and

TG Termes Math)
� Math Pazo by Diego Puga (TG Pagella Math)
� Odstemplik by Grzegorz Luk (gluk) (TG Pagella Math)
� Theano Modern by Alexey Kryukov (TG Schola Math)
We are most grateful to all the authors for their prominent aid.

6.2. Visual issues
Observe that the same monospaced alphanumeric characters (excerpted from TG
Cursor) are shared by TG Bonum Math, TG Schola Math, and TG Termes Math.
In such cases one must be carefully check whether the size of the glyphs being
included fits the size of the basic set of glyphs. Nominally, all fonts (both in the
PostScript Type 1 and OTF formats) have the same design size, 10 typographic

25

Fi
gu

re
7

Fi
gu

re
8

points (recall that 1 point = 1/72 inch; cf. Section 4.4). Working on the TG
math fonts, we had to adjust the size of the subsets a few times. For example, we
enlarged the borrowed monospaced glyphs to circa 112.5% in TG Schola Math;
otherwise the monospaced alphabet looked too small in combination with Schola’s
brawny glyphs.

The visual harmonizing of the supplementary alphabets with the main font
face concerns not only alphanumeric glyphs. Even essentially geometrical shapes
should also reflect the characteristic features of the main font, for example, the
thickness of stems, the ending of arms, etc. Seemingly trivial glyphs, such as
arrows, serve as a convenient example: they have slightly different shapes in each
of our math fonts— see Figure 7.

Another example is the shape of integrals. Historically, the integral symbol
originates from the letter ‘long s’10 which is nowadays identical with a barless ‘f’.
Therefore, we did our best to preserve some characteristic features of the letter
‘f’ in the design of the integral shape—see Figure 8.

10The cursive long ‘s’ for denoting an integral operation, i.e., infinite summation, was intro-
duced by Gottfried Wilhelm Leibniz in 1675 in an unpublished paper Analyseos tetragonisticæ
pars secunda (Second part of analytical quadrature).

26

We are not going to dwell on the visual aspects of the math font design, as
the number of details relevant for a font with over 4000 glyphs (and counting)
would perhaps become rather overwhelming. Notwithstanding, one aspect needs
emphasizing, namely, the problem of sidebearings and kerning for alphanumeric
symbols.

It is generally accepted by typographers that math symbols should have larger
sidebearings than the respective text glyphs. In particular, TEX math italic
glyphs are a little bit broader and have larger sidebearings than the text italic
glyphs. It is not obvious, however, how large such sidebearings should be. We
have already experimented with a few sizes but further tuning will probably be
necessary. Of course, the broadening of sidebearings should not be applied to
the basic font, that is, regular upright, because of multiletter names of functions
and operators, such as ‘sin’ or ‘max’, which are traditionally typeset with regular
upright letters.

As regards the problem of kerning, we decided not to include kerns in math
fonts, although providing kerns for the upright regular alphabet might be reason-
able. Actually, we consider introducing special math kerning (so-called “staircase”
kerns a.k.a. “cut-ins”; see Section 7). Thankfully, nobody has complained yet
because of the lack of kerning in our math OTF fonts.

6.3. Repertoire issues
At present, a common standard for the repertoire of characters that should be
present in an OTF math font does not exist. After several debates (mostly during
TEX conferences) and many experiments, we came up with the tentative repertoire
scheme presented in Table 2, which can be considered a detailed specification of
Table 1.

We would like all TG math fonts (Bonum, DejaVu, Pagella, Schola, and
Termes) to share this pattern. For LM Math, however, we adopted another
scheme because of legacy concerns. Currently, LM Math contains circa 4800
glyphs while the remaining fonts contain circa 4250 glyphs each. LM Math
contains more subscripts, as the original sources already provided them. On the
other hand, the TG math fonts contain more size variants of integral symbols.
This yields circa 550 glyphs more (net) in LM Math. At the moment, TEX Gyre
DejaVu Math contains (in accordance with Table 2) subscript variants for bold
upright glyphs, while the remaining TG math fonts need to be complemented with
these glyphs. It is a typical instance of the frequently occurring “backtracking”
procedures: the final decision was undertaken only after a few fonts had been
released.

27

Ta
bl
e
2

B – basic letters, A – accented letters, G – Greek letters,
D – digits, O – other symbols, P – punctuation

B A G D O P
plain (upright, serif) + s + s +ds + s + + s

italic + s + s

bold + s +ds + s

bold italic + s + s

sans-serif + +
sans-serif italic +
sans-serif bold + + +
sans-serif bold italic + +
calligraphic +
bold calligraphic +
Fraktur +
bold Fraktur +
double-struck + +
monospace + +
d—digamma excluded from relevant Unicode blocks
s— subscripts are to be added

Concerning subscripts, it should be emphasized that subscript glyphs for the
TG math fonts are obtained using the approach applied in the Metafont sources
of the Euler family of fonts, that is, by non-uniform rescaling of the respective
normal-size glyphs. In a way, such “optical scaling” can be considered undesirable;
nevertheless, it proved acceptable for the Euler fonts, thus we decided to apply it
also to the TG math fonts.

Some rather quirky characters which received Unicode slots are spaces. Uni-
code [35] defines quite a few space-related glyphs:
0008 BACKSPACE (<control>)

*0020 SPACE
*00A0 NO-BREAK SPACE
*2002 EN SPACE
*2003 EM SPACE
1361 ETHIOPIC WORDSPACE
1680 OGHAM SPACE MARK

*2004 THREE-PER-EM SPACE
*2005 FOUR-PER-EM SPACE
*2006 SIX-PER-EM SPACE
*2007 FIGURE SPACE
*2008 PUNCTUATION SPACE

28

*2009 THIN SPACE
*200A HAIR SPACE
*200B ZERO WIDTH SPACE
*202F NARROW NO-BREAK SPACE
*205F MEDIUM MATHEMATICAL SPACE
2408 SYMBOL FOR BACKSPACE
2420 SYMBOL FOR SPACE
3000 IDEOGRAPHIC SPACE
303F IDEOGRAPHIC HALF FILL SPACE

*FEFF ZERO WIDTH NO-BREAK SPACE
1DA7F SIGNWRITING LOCATION-WALLPLANE SPACE
1DA80 SIGNWRITING LOCATION-FLOORPLANE SPACE
E0020 TAG SPACE

We decided to include a subset of the Unicode-defined spaces (marked with
asterisks in the above list), even though their meaning and usage seems vague.
The problem of spaces touches a general problem of the relation between the
Unicode standard and typography. We discuss this topic in more detail in the
next section.

The next two pages show the representative subset (for LM Math and TG
Termes Math) of the repertoire we adopted as the GUST e-foundry “private
standard”; gray squares denote zero-width characters. As one can see, the
repertoires are very similar. One can assume that the difference in the repertoire
will be imperceptible in practical applications.

6.4. Unicode: the typographer’s friend or enemy?
An important subject, closely related to the contents and repertoire issues, is
briefly mentioned in Sections 4.2, 6.1, and 6.3: the problem of the character set
defined by the Unicode standard [35], and specified for math fonts in Unicode
Technical Report #25 [37].

The Unicode Consortium claims that “the Unicode standard follows a set
of fundamental principles” and gives, among others, the following “principle”:
characters, not glyphs and semantics. We are not able to reconcile these principles
with the cases discussed in this section.

It should be emphasized that not all glyphs used extensively in typography, in
particular, in or out of math formulas, are assigned Unicode numbers. Examples
of such glyphs are small caps and old style numerals. Nothing in these two classes
of glyphs has received Unicode numbers, although there are codes for much more
narrowly used double struck characters or monospaced and sans-serif digits.

Another example of “unicodeless” glyphs are the pieces used for assembling
extensible characters (cf. Section 6.1, Figures 5 and 6).

29

It is not so bad if whole blocks of characters are included or excluded. The
worse situation is an inconsistency of including only some glyphs. The above-
mentioned double struck glyphs are a good example of such a situation. Here
is the group of double struck glyphs assigned Unicode slots, without apparent
rhyme or reason:
2102 DOUBLE-STRUCK CAPITAL C
210D DOUBLE-STRUCK CAPITAL H
2115 DOUBLE-STRUCK CAPITAL N
2119 DOUBLE-STRUCK CAPITAL P
211A DOUBLE-STRUCK CAPITAL Q
211D DOUBLE-STRUCK CAPITAL R
2124 DOUBLE-STRUCK CAPITAL Z
213C DOUBLE-STRUCK SMALL PI
213D DOUBLE-STRUCK SMALL GAMMA
213E DOUBLE-STRUCK CAPITAL GAMMA
213F DOUBLE-STRUCK CAPITAL PI
2140 DOUBLE-STRUCK N-ARY SUMMATION
2145 DOUBLE-STRUCK ITALIC CAPITAL D
2146 DOUBLE-STRUCK ITALIC SMALL D
2147 DOUBLE-STRUCK ITALIC SMALL E
2148 DOUBLE-STRUCK ITALIC SMALL I
2149 DOUBLE-STRUCK ITALIC SMALL J
The remaining letters of the alphabet (upper and lower case) and digits received
mathematical codes (1D538 – 1D56B), with gaps at the glyphs above.

Another notable example are sub- and superscripts, theoretically not needed
in math fonts, because the sub- and superscript characters (“unicodeless”) are
accessed there by the OTF feature mechanism (the ssty feature, cf. Section 6.1).
In practice, for legacy reasons, sub- and superscript glyphs are expected to be
present in a text font, and, consequently, in the basic (plain) charset of a math
font too—see Table 1. The Unicode standard [35] enumerates the following Latin
letters in this context:
1D62 LATIN SUBSCRIPT SMALL LETTER I
1D63 LATIN SUBSCRIPT SMALL LETTER R
1D64 LATIN SUBSCRIPT SMALL LETTER U
1D65 LATIN SUBSCRIPT SMALL LETTER V
2090 LATIN SUBSCRIPT SMALL LETTER A
2091 LATIN SUBSCRIPT SMALL LETTER E
2092 LATIN SUBSCRIPT SMALL LETTER O
2093 LATIN SUBSCRIPT SMALL LETTER X
2094 LATIN SUBSCRIPT SMALL LETTER SCHWA
2095 LATIN SUBSCRIPT SMALL LETTER H

32

2096 LATIN SUBSCRIPT SMALL LETTER K
2097 LATIN SUBSCRIPT SMALL LETTER L
2098 LATIN SUBSCRIPT SMALL LETTER M
2099 LATIN SUBSCRIPT SMALL LETTER N
209A LATIN SUBSCRIPT SMALL LETTER P
209B LATIN SUBSCRIPT SMALL LETTER S
209C LATIN SUBSCRIPT SMALL LETTER T
2C7C LATIN SUBSCRIPT SMALL LETTER J
2071 SUPERSCRIPT LATIN SMALL LETTER I
207F SUPERSCRIPT LATIN SMALL LETTER N

Besides the somewhat surprising presence of the ‘schwa’ character and the
striking asymmetry between the number of sub- and superscripts, most ques-
tionable here is the incompleteness of the Latin alphabet. So far, we have not
included these glyphs in neither text nor math fonts.

Another example concerns math italic symbols. The Unicode standard reads:
1D44E MATHEMATICAL ITALIC SMALL A
1D44F MATHEMATICAL ITALIC SMALL B
1D450 MATHEMATICAL ITALIC SMALL C
1D451 MATHEMATICAL ITALIC SMALL D
1D452 MATHEMATICAL ITALIC SMALL E
1D453 MATHEMATICAL ITALIC SMALL F
1D454 MATHEMATICAL ITALIC SMALL G⇐?
1D456 MATHEMATICAL ITALIC SMALL I
1D457 MATHEMATICAL ITALIC SMALL J
1D458 MATHEMATICAL ITALIC SMALL K
1D459 MATHEMATICAL ITALIC SMALL L
1D45A MATHEMATICAL ITALIC SMALL M
1D45B MATHEMATICAL ITALIC SMALL N
1D45C MATHEMATICAL ITALIC SMALL O
1D45D MATHEMATICAL ITALIC SMALL P
1D45E MATHEMATICAL ITALIC SMALL Q
1D45F MATHEMATICAL ITALIC SMALL R
1D460 MATHEMATICAL ITALIC SMALL S
1D461 MATHEMATICAL ITALIC SMALL T
1D462 MATHEMATICAL ITALIC SMALL U
1D463 MATHEMATICAL ITALIC SMALL V
1D464 MATHEMATICAL ITALIC SMALL W
1D465 MATHEMATICAL ITALIC SMALL X
1D466 MATHEMATICAL ITALIC SMALL Y
1D467 MATHEMATICAL ITALIC SMALL Z

33

Math italic ‘h’ is apparently missing. In fact, the Unicode Consortium decided
to leave the slot 1D455 unused forever and “inflate” the meaning of the slot
formerly assigned to the Planck constant:
210E PLANCK CONSTANT

= height, specific enthalpy, ...
* simply a mathematical italic h;

this character’s name results
from legacy usage

More on Unicode’s ambiguities, inconsistencies, riddles, curiosities, etc. con-
cerning typography applications, especially math typesetting, can be found in
Piotr Strzelczyk’s ruminations [23].

From the typographer’s point of view, the enumeration of all signs used in
the world does not seem to be a good idea. Therefore, it should be no surprise
that it turned out to be impossible to create a math OTF font that has an
internally logical and coherent structure and, at the same time, is practically
useful. Conforming rigorously to the mentioned specifications does not help too
much— it would lead, in our opinion, to fonts containing mostly seldom used
glyphs. Needless to say, research examining which characters from the Unicode
repertoire are actually used in practice, would be welcome. Lacking such empirical
data, we adopted Cambria Math as our “reference point”. Cambria Math contains
circa 6500 glyphs; we decided to reduce this number to at most 4500 for the TEX
Gyre series of math fonts. We can reluctantly consider proposals for suitable
extensions, if truly needed.

6.5. Compatibility issues
We already explained why 100-percent compatibility of the LM text fonts with
the parent Computer Modern fonts is unfeasible; thereby, the same applies, even
to a greater extent, to the LM Math font (cf. the case of horizontal extensible
braces in Section 6.1).

Recall that we used an alternative calligraphic alphabet in LM Math (Sec-
tion 6.1). This incompatibility can be relatively easily patched, by including two
calligraphic scripts in the font and using OTF ‘stylistic sets’ features, implemented
as the OTF features ss01 – ss20 (see [33]).

There is, however, a flaw shared by both Computer Modern and Euler cal-
ligraphic alphabets and thus inherited by the Latin Modern Math: the lack of
a corresponding lower case alphabet. The Unicode specification assigns slots to
lower case mathematical calligraphic letters, implying that they are expected to
be present in math fonts.

We could not find a calligraphic font with a proper license optically matching
Euler or Computer Modern upper case calligraphic letters, and we gave up in
advance the idea of designing the respective matching lower case letters ourselves.

34

Fi
gu

re
9

Instead, we began to consider the inclusion of yet another stylistic set, a “home-
made” calligraphic font inspired by (but not based on) the original Computer
Modern calligraphic script. Although we would never dare to make a text
calligraphic font without close cooperation by a professional type designer, we
took a chance and attempted to prepare a symbol calligraphic font for TG DejaVu
Math.

There was an additional reason for doing our own calligraphic script. An-
ticipating future work (see Section 7 below), we looked for a calligraphic script
matching a sans-serif font. Having not found any, we decided to prepare our own.
Because our calligraphic alphabet for TG DejaVu Math was, of course, defined by
a parametric MetaType 1 program, it was possible to prepare a sans-serif (linear)
variant of the calligraphic script with reasonable effort. A tentative, experimental
linear calligraphic alphabet is shown in Figure 9: the calligraphic script used in
TG DejaVu Math (top) and its linear variant to be used in a sans-serif math font
(bottom).

Fortunately, there is no issue of compatibility regarding the TG math fonts,
as there are no predecessors. The only question is the similarity of repertoire
between the LM and TG math fonts. As explained in Section 6.3, the repertoires
are bound to differ slightly, for the usual legacy reasons.

For the same reasons, some technical details of the font structure also cannot
be implemented similarly. Worthy of mentioning in this context is a peculiar
difference between the LM and TG math fonts related to integrals; namely, the
TG math fonts contain extensible integrals, which are definable within the OTF
math format—but we are not aware of any typesetting engine that can take
advantage of this possibility.

35

7. Plans for the future
7.1. Testing and maintenance
Tasks that are important today and will be forever important in the future are
maintenance and testing. There is, of course, neither a single tool for testing nor
a unique maintenance procedure. Each case demands a specific approach.

It is Piotr Pianowski who is responsible for testing fonts and preparing ade-
quate tools. Tests refer to both the appearance of the fonts and their internal
structure. In particular, the intermediate PostScript Type 1 code needs checking.
The following example shows a case where the inspection of the code revealed an
error in the parenright.ex procedure (describing an extender of the extensible
right parenthesis, which should be just a rectangle), probably due to the wrong
rounding procedure: the number ‘1’ means that the line drawn by the command
rlineto is not strictly vertical. The left column contains the correct code for
the corresponding component of the extensible left parenthesis:
/parenleft.ex { /parenright.ex {

143 609 hsbw 338 609 hsbw
127 418 rmoveto 128 418 rmoveto
-127 hlineto -128 hlineto
-418 vlineto 1 -418 rlineto
127 hlineto 126 hlineto
closepath closepath
endchar endchar
} ND } ND

It is next to impossible to perceive such a tiny deformity on a printout of glyph
shapes, which does not mean that the bug should not be fixed.

The next example, Figure 10, shows one of the tests we use for checking a
vexing problem regarding Greek letter names. Some Greek letters have a shape
variant, and there is an unfortunate discrepancy between TEXies and the rest of
the world (the rightmost two columns marked with asterisks) as to which glyphs
are considered “normal” and which “variant”.

Almost every time we deal with the Greek alphabet, a mistake in variant
names tries to creep in. Without tests of this kind we would be lost.

The last example concerning maintenance and testing issues, Figure 11, shows
a typical test of the structure of extensible characters, “embellished” horizontal
arrows in this case: ‘vh 2’ means that there are 2 size variants, ‘ch 3’ and ‘ch 5’—
that there are 3 and 5 horizontal components of a given glyph, respectively. Tests
of this kind are essential for maintaining uniformity across a font collection as
well as inside a single font.

As a result of remarks to date from the users of our fonts, we gathered a list of
recommended fixes and improvements— some trivial, like reports on malformed
glyphs or wrongly assigned Unicode slots, some fairly difficult, like suggestions to

36

Fi
gu

re
10

Fi
gu

re
11

implement anchors or math staircase kerns.
The latter two potential improvements are still pending, mainly because

of vague specification and the question of practical application. Being unsure
whether all relevant typesetting programs would be able to handle such improve-
ments, we preferred to linger till the engines would become stable. It seems that
the time is ripe to attempt these extensions, especially as the staircase kerns were
ultimately implemented in X ETEX in the middle of 2014.

We are also not sure which OTF features should be present in math fonts.
At the moment, only math-oriented OTF features are implemented. Perhaps we
should consider the inclusion of text-oriented OTF features too, like the mentioned

37

onum, lnum, pnum, and tnum for switching between numeral variants, or stylistic
sets for switching between calligraphic alphabets.

Also as suggested by users, we consider excerpting a number of glyphs, mostly
geometrical shapes and arrows but also selected math operators and relational
symbols, etc. (but excluding extensible and subscript characters), from math
fonts and transferring them into the respective text fonts. Such glyphs, though
prepared for math-oriented applications, can also be fruitfully used in conventional
fonts, that is, those not equipped with the MATH table, for the typesetting of
technical documents. This, obviously, requires a proper specification and careful
selection of the glyphs in question. This is, in fact, one of the planned stages of
work on new fonts.

Of course, MetaType1 itself also requires maintenance: enhancing, modifying,
fixing, etc. For example, we had to extend the otherwise stable set of MetaPost
macros used in MetaType 1 in order to handle the math extension of the OTF
specification.

Commencing our works for the GUST e-foundry, we underestimated the
inexorable Hofstadter’s Law (see footnote 7 on page 21) which apparently applies
not only to time resources. We believed that MetaType 1 could be kept simple:
just MetaPost, a few trivial Gawk scripts and a stand-alone, stable converter to
PostScript Type 1 fonts, T1utils, and that’s all. In accordance with Hofstadter’s
Law, the task has unavoidably turned out to be much more complex than we
expected and the implementation—too heterogeneous.

In order to remedy this, we intend to unify MetaType 1 by eliminating Gawk,
Perl, T1utils, and, as we mentioned in Section 3.1, AFDKO. We aim at employing
two basic “subengines”, namely, MetaPost (for generating outlines) and Python
(for arranging the MetaPost output) plus one external, possibly replaceable,
“subengine”, for now, the FontForge Python library (for generating OTF fonts
and the theoretically obsolescent but still widely used PostScript Type 1 fonts).

7.2. More GUST e-foundry fonts
In the nearest future, we would like to elaborate and release three experimental
math fonts, namely: bold math, sans-serif math, and monospaced math. These
fonts fit neither the Microsoft nor Unicode specifications ([29] and [37], respec-
tively). Therefore, we have to start by working out an altered specification,
adjusted to our purposes, for these non-standard cases. For example, it is not at
all clear what to do with the sans-serif alphabet in a sans-serif math font: should
it be omitted, left intact, or modified somehow (how?).

Bold math fonts can be used in titles containing math formulas, as shown in
Figure 12 (a tentative version of TG Termes Bold Math is used).

Nowadays, many documents are being typeset in sans-serif, even schoolbooks.
Computer presentations may serve as another example. For such applications

38

Fi
gu

re
12

Fi
gu

re
13

sans-serif math seems plausible. An example of such an application is shown in
Figure 13 (a tentative version of TG DejaVu Sans Math is used).

TEX users are accustomed to the use of control sequences for math-oriented
glyphs such as \infty, \sum or \pm. Some of these glyphs can be accessed (typed
in and displayed) directly in text editors, provided the font used by the editor
contains the relevant glyphs. The lion’s share of nominally math-oriented glyphs
can also be prepared as monospaced glyphs, usable in text editors, provided they
are assigned Unicode numbers. One can expect that it will improve the legibility

39

Fi
gu

re
14

of sources and, thereby, the efficiency of preparation of such documents—see
Figure 14 (a tentative version of TG DejaVu Mono Math is used).

Note that treating subscripts incoherently by the Unicode Standard (Sec-
tion 6.4) may prove to be a significant impediment in the latter case, that is, for
fonts without full subscript support. Perhaps the defining of the complete set
of subscripts and superscripts (partially “unicodeless”) and accessing them via
stylistic set features (ss01 – ss20) can be a solution, provided a given text editor
handles the relevant OTF features.

7.3. Legal issues
The problem of copyrights and licenses has clung to us like a leech from the very
beginning and still persists. We are not copyright experts and we do not want to
be. Being sick of trouble with releasing our work due to discussions about legal

40

aspects of distributing free fonts, we coined a pun lice-sense. Just one example:
the release of TG DejaVu Math was delayed by about a year because of doubts
raised concerning legal matters.

Having said this, we should emphasize that it does not mean that there has
been no activity from the side of the GUST e-foundry regarding legal issues.
On the contrary, our magnificent liaison officer, Jerzy Ludwichowski, has made
Herculean efforts in order to provide appropriate licenses for GUST fonts. In
particular, he prepared a proposal of a license for the URW fonts that would
suit GUST e-foundry needs, managed to contact in person the URW++ managing
director, Dr. Peter Rosenfeld, and, after long negotiations, received the gracious
approval for the additional license.

All the fonts released so far are licensed under the GUST Font License (GFL;
see [30]), except for TG DejaVu Math which has a somewhat complex license
(see [9], the Manifest file for TG DejaVu Math). Recently, many fonts are being
released under the SIL Open Font License (OFL; see [34]); therefore, we consider
dual-licensing GUST fonts (GFL+OFL).

More details concerning legal matters relevant to GUST e-foundry fonts can
be found in a series of publications by Jerzy Ludwichowski— see, for example [18,
19, 20, 21].

7.4. Constraints of tradition vs. our dreams
We are not particularly enthusiastic about font technology nowadays, but we are
not going to spit into the wind, and try to make the best of what is available. This
does not mean, however, that we are going to relinquish dreams of a successor to
the currently prevalent “Knuth –Gutenberg” model of typesetting, that is, the
model of stiff rectangles (types) arranged within a larger rectangle (page; a series
of pages being called a document), deeply ingrained in Johannes Gutenberg’s
technology of movable type, and transferred by Donald E. Knuth, among others,
to the realm of computers.

Computers facilitate some operations, such as kerning and ligatures, thereby
accelerating work on documents. The ease of use of affine transformations is also
considered an advantage of computers by many graphic designers. We are inclined
to consider both these aspects as being of rather equivocal benefit. Leaving aside
these philosophical questions and a far-reaching yet obvious idea, in fact also
philosophical, that a font could be defined as a structured collection of general
purpose object programs, we confine ourselves to pointing out two examples of
aspects that might be improved within the framework of the contemporary edifice
of typesetting.

Shrinkable and stretchable spaces, as in TEX, would supposedly be convenient
also in OTF fonts and seem not too hard to implement. This simple problem
touches on a fairly general and not in the least trivial problem which could be

41

called “the conflict of competence”: which “knowledge” should be implemented
in a font and which— in a typesetting program.

Another improvement, this time hard to implement, is related to a naïve
question: why must additional alphabets be embedded into a single math font?
The answer is simple: operating systems are poorly designed with regard to font
management. In particular, a user is not allowed to define a “private” family
of fonts— the commonplace pattern “regular, regular italic, bold, bold italic” is
very difficult to dislodge. One can imagine other variants of this idea, namely,
borrowing components for extensible characters or kerns from several fonts. As
far as we know, such an approach has not been implemented in any typesetting
program or any operating system. TEX is no exception (unless virtual fonts are
used); note, for example, that changing fonts within a word switches off the TEX
hyphenation mechanism.

It should be emphasized that several such problems were tackled in LuaTEX
by Hans Hagen and team; it does not seem, however, as if amendments of this
kind are to be introduced worldwide in any near future. This is understandable,
as the constraints of tradition and compatibility usually slow down the innovative
processes. For example, recently announced advancements in the OTF format
specification (see, e.g., [6]), can actually be considered a step backward towards a
previously abandoned idea, temporarily as it turns out, of multiple master fonts.
Anyway, this announcement augurs both ill and well for us: it means, on the
one hand, that we will probably have to reimplement MetaType 1 in order to
keep pace with the surrounding world and, on the other hand, that we still have
something to do and something to think about.

8. Acknowledgements

We are indebted to all the people and TEX groups that have supported our font
enterprises. Almost all the GUST e-foundry projects have been kindly supported
by the Czechoslovak TEX user group CSTUG, the German-speaking TEX user
group DANTE e.V., the Polish TEX Users Group GUST, the Dutch-speaking TEX
user group NTG, TUG India, UK-TUG, and, last but not least, TUG. In a few
cases, GUTenberg, the French-speaking TEX Users Group, supported us too.

We are very grateful to Karel Píška and Ulrik Vieth, who performed extensive
tests of our fonts and inspired us with insightful comments, and to Marcin
Woliński, who provided the indispensable LATEX support for our fonts.

The exceptional, personal thanks we owe to our friends who kept our spirits
up for many years and tirelessly encouraged us to work on fonts: Hans Hagen,
Johannes Küster, Jurek Ludwichowski, Volker RW Schaa, Jola Szelatyńska—
hearty thanks!

All trademarks belong to their respective owners and have been used here for
informational purposes only.

42

References
Presentations, publications and packages
[1] Lars Engebretsen, Almost European Fonts

https://ctan.org/pkg/ae
[2] Michael Everson, The Alphabets of Europe

http://www.evertype.com/alphabets/
[3] Lee Hetherington, Eddie Kohler, T1utils

http://www.lcdf.org/type/t1asm.1.html
http://www.lcdf.org/type/t1disasm.1.html

[4] John D. Hobby, MetaPost
https://ctan.org/pkg/metapost

[5] Donald E. Knuth, The TEXbook, TEX: The Program, The Metafontbook,
Metafont: The Program, Computer Modern Typefaces,
Computers & Typesetting, vol. A –E, Addison-Wesley, Reading,
Massachusetts, 1986

[6] John Hudson, Introducing OpenType Variable Fonts, 2016
https://medium.com/@tiro/https-medium-com-tiro-introducing-
opentype-variable-fonts-12ba6cd2369

[7] Bogusław Jackowski, Janusz M. Nowacki, Piotr Strzelczyk, Antykwa
Półtawskiego: a parameterized outline font, Proceedings of the EuroTEX
Conference, Heidelberg, Germany, 1999
article:
http://www.staff.uni-giessen.de/partosch/eurotex99/jackowski
download: http://www.gust.org.pl/projects/e-foundry/poltawski

[8] Bogusław Jackowski, Marek Ryćko, Polish extension of Computer Modern
fonts
https://ctan.org/pkg/pl-mf

[9] Bogusław Jackowski, Piotr Strzelczyk, Piotr Pianowski, GUST e-foundry
math fonts
The Latin Modern Math (LM Math) font:
http://www.gust.org.pl/projects/e-foundry/lm-math
The TEX Gyre (TG) Math Fonts:
http://www.gust.org.pl/projects/e-foundry/tg-math
https://ctan.org/pkg/tex-gyre-math

[10] Bogusław Jackowski, Piotr Strzelczyk, How to make more than one math
OpenType font or the Beasts of Fonts, DANTE 2011 Meeting, Bremen,
Germany, 2011
http://www.gust.org.pl/projects/e-foundry/math/beasts05.pdf

[11] Bogusław Jackowski, Janusz M. Nowacki, Piotr Strzelczyk, The Latin
Modern (LM) Family of Fonts
http://www.gust.org.pl/projects/e-foundry/latin-modern

43

[12] Bogusław Jackowski, Janusz M. Nowacki,
Latin Modern fonts: how less means more
Proceedings of the EuroTEX conference, Pont-à-Mousson, France, 2005
http://tug.org/TUGboat/tb27-0/jackowski.pdf

[13] Bogusław Jackowski, Janusz M. Nowacki, Piotr Strzelczyk, MetaType 1:
a MetaPost-based engine for generating Type 1 fonts, 2001
article: http://www.ntg.nl/maps/26/15.pdf
presentation: http://ntg.nl/eurotex/JackowskiMT.pdf
download: https://ctan.org/pkg/metatype1

[14] Bogusław Jackowski, Janusz M. Nowacki, Piotr Strzelczyk, The TEX Gyre
(TG) Collection of Fonts
http://www.gust.org.pl/projects/e-foundry/tex-gyre

[15] Bogusław Jackowski, Janusz M. Nowacki, Piotr Strzelczyk, TEX Gyre
Pagella Math or Misfortunes of Math Typographer, BachoTEX XX,
Bachotek, Poland, 2012
http:
//www.gust.org.pl/projects/e-foundry/math/misfortunes02.pdf

[16] Jörg Knappen, Norbert Schwarz, European Computer Modern Fonts
https://ctan.org/pkg/ec

[17] Donald E. Knuth, Metafont and MetaPost logo fonts.
https://ctan.org/pkg/mflogo-font

[18] Jerzy B. Ludwichowski, GUST font licenses, BachoTEX XIV, Bachotek,
Poland, 2006
http://tug.org/fonts/licenses/gfl.pdf

[19] Jerzy B. Ludwichowski, Karl Berry, GUST Font License: An application of
the LATEX Project Public License, XVII European TEX Conference and
BachoTEX XV, Bachotek, Poland, 2007; TUGboat, Volume 29 (2008), No. 1
http://www.gust.org.pl/projects/e-foundry/licenses/tb91Berry_
Ludwichowski.pdf

[20] Jerzy B. Ludwichowski, Licensing of the TEX Gyre family of fonts, XIX
European TEX Conference and 3rd International ConTEXt User Meeting,
The Hague, The Netherlands, 2009
https://www.ntg.nl/EuroTeX/2009/slides/jerzy-slides.pdf

[21] Jerzy B. Ludwichowski, Is there life besides licensing?, DANTE e.V. General
Meeting, Bremen, Germany, 2011
https://www.dante.de/events/Archiv/dante2011/programm/
vortraege/folien-jl.pdf

[22] Janusz M. Nowacki, Polish fonts
http://jmn.pl/en/

44

[23] Piotr Strzelczyk, Standard Unicode w typografii, Acta Poligraphica
nr 1/2013 (in Polish; to be published also in English under the title
Standard Unicode in typography)
http://www.cobrpp.com.pl/actapoligraphica/uploads/pdf/AP2013_
01_Strzelczyk.pdf
see also: Piotr Strzelczyk, (uni)coding of math fonts, BachoTEX XIX,
Bachotek, Poland, 2011
http://www.gust.org.pl/bachotex/2011-en/presentations/
Strzelczyk_1_2011

[24] Ulrik Vieth, OpenType math illuminated, TUGboat, Volume 30 (2009),
No. 1
http://tug.org/TUGboat/tb30-1/tb94vieth.pdf

[25] George Williams and FontForge project contributors, FontForge
http://fontforge.github.io/en-US/

General purpose documentation:

[26] Adobe Font Development Kit for OpenType
http://adobe.com/devnet/opentype/afdko.html

[27] Adobe base 35 fonts
Adobe original AFM files:
ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles/base35/
URW replacement: https://ctan.org/pkg/urw-base35

[28] Adobe Type 1 Font Format
https:
//partners.adobe.com/public/developer/en/font/T1_SPEC.PDF

[29] MATH—The mathematical typesetting table
https://www.microsoft.com/typography/OTSPEC/math.htm

[30] GUST Font License
http://www.gust.org.pl/fonts/licenses/GUST-FONT-LICENSE.txt
http://tug.org/fonts/licenses/GUST-FONT-LICENSE.txt

[31] OpenType specification (full)
http://www.microsoft.com/en-ph/download/details.aspx?id=1144

[32] OpenType Feature File Specification
http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_
syntax.html

[33] Registered features—definitions and implementations (p – t)
https://www.microsoft.com/typography/otspec/featuretags.htm

[34] SIL Open Font License
https://scripts.sil.org/OFL

[35] The Unicode Standard 9.0.0, 2016
http://unicode.org/versions/Unicode9.0.0

45

[36] The Unicode Standard: A Technical Introduction
http://unicode.org/standard/principles.html

[37] Barbara Beeton, Asmus Freytag, Murray Sargent III, Unicode Technical
Report #25. Unicode Support for Mathematics
http://unicode.org/reports/tr25/

All links above were tentatively accessed on 5th July 2015.

Fontové projekty e-písmolijny GUST

V tomto článku shrnujeme naši práci na TEX Gyre fontech. Také popisujeme
nesrovnalosti v existujících fontech a kódováních a ukazujeme, jak je toto vyřešeno
v TEX Gyre fontech.

Klíčová slova: TEX Gyre fonty, LM fonty, AFDKO, e-písmolijna GUST.

Bogusław Jackowski – Gdańsk, Poland
b_ jackowski@ gust. org. pl

Piotr Strzelczyk – Sopot, Poland
p. strzelczyk@ gust. org. pl

Piotr Pianowski – Trąbki Wielkie, Poland
p. pianowski@ gust. org. pl

46

