
Zpravodaj Československého sdružení uživatelů TeXu

Luigi Scarso
The SWIGLIB Project

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 26 (2016), No. 1-4, 47–61

Persistent URL: http://dml.cz/dmlcz/150243

Terms of use:
© Československé sdružení uživatelů TeXu, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150243
http://dml.cz

The SWIGLIB Project
Luigi Scarso

The SWIGLIB project aims to show a way to build and distribute shared libraries
for LuaTEX by means of SWIG. This paper depicts the infrastructure that has
been created and the rationale behind it. Simple examples are shown.

Keywords: LuaTEX, SWIGLIB, SWIG, external libraries

Introduction

The Lua language is well-known for its simplicity and compactness, and also
for its easy integration into an existing project. This integration refers both
to compilation—TEX Live currently provides binaries for 21 platforms and all
of them have a luatex executable—and in a more general sense the relatively
small amount of time required to get acquainted with its constructs and data
structures.

Analogous to the \usepackage macro of LATEX, it is easy to extend the
built-in features of Lua by means of external Lua modules, usually loaded with
load("〈module_name〉"). What perhaps is less well known is that the same
is also available for binary modules; for example, a C library compiled in the
native format of the platform. This is due to the double nature of Lua, as both
an interpreted language and a library that can be linked with an application
(see Ierusalimschy, 2013, p. 249):1 the interaction of the Lua library and the
application must follow the application programming interface (API) of Lua.

While for LuaTEX there is currently no official C API—it is a program,
not a library—the Lua API is completely described in the Lua manual (http:
//www.lua.org/manual) and it counts 245 items, including constants, macros,
functions and standard libraries. They consistently use a stack to exchange data
(and hence several functions are dedicated to the stack manipulation) and use an
opaque data structure to store the current state, but the stack is accessible only
by the state and sometimes it is confused with it. By design (related to the choice
of ANSI C for the implementation language) the Lua state is not thread-safe,
but the library is carefully designed to avoid destructive interference in global
variables and in some cases multithreading with a single shared state appears to
be possible (Scarso, 2014). In any case, the best solution is to avoid sharing the

1By design the standard Lua library is written in ANSI C and it is precisely for this reason
that integration into disparate platforms is easy.

doi: 10.5300/2016-1-4/47 47

-- a Lua function that adds two numbers
function add (x, y)

return x + y

/* The C code that calls the Lua function; */
/* we suppose that the state L */
/* is already initialised. */

/* Lua headers */
#include <lua.h>

int lua_add (int x, int y){
int sum;
lua_getglobal(L, "add"); /* function name */
lua_pushnumber(L, x); /* first argument */
lua_pushnumber(L, y); /* second argument */
lua_call(L, 2, 1); /* call the function

with 2 arguments, return 1 result */
sum = (int)lua_tointeger(L, -1);/* get result*/
lua_pop(L, 1); /* clear the stack */
return sum; /* return the sum */

}

Figure 1: Calling a Lua function from C.

state between multiple threads—the library can in fact safely manage different
states, at the price of more complex code.

Every “well done” C library exposes its services by means of an API which is,
of course, completely unrelated to the Lua API. Communication between the two
can happen in either direction: when the application library wants to execute a
Lua function it has to follow the Lua API as shown for example in Figure 1, and
similarly when a C function is called by the Lua interpreter (see Figure 2)—and
this latter case is the subject of this paper. It is clear that if an application
library has tens or hundreds of functions, writing the corresponding code can
take a considerable amount of time.

Before discussing the tools and the infrastructure used, it is worth mentioning
at least these three scenarios where an application library can be useful:
• pre/post processing of data, typically pre- processing images (i.e. conversion)

and post- processing PDFs;
• extending LuaTEX, for example to connect to a database at runtime;
• extending the application with LuaTEX as a scripting language—probably
a less common, but still important, use.

48

/* Example C function to be called from Lua. */

/* Lua headers */
#include <lua.h>
#include <lauxlib.h>
#include <lualib.h>

int c_add (int x, int y) {
return x+y;

}

int _wrap_c_add (lua_State *L) {
int x,y, sum;
x = (int)lua_tointeger(L, -1); /* first arg */
y = (int)lua_tointeger(L, -2); /* second arg */
sum = c_add(x,y); /* call c_add */
lua_pushnumber(L, sum); /* push result */
return 1; /* return sum */

}

static const luaL_Reg myapplication [] = {
{"add", _wrap_c_add}, /* register c_add */
{NULL,NULL} /* sentinel */

};

int luaopen_myapplication(lua_State *L) {
luaL_newlib(L,myapplication);
return 1;

}

-- Calling c_add from Lua
local myapplication = require("myapplication")
print (myapplication.add(2,3))

Figure 2: Calling a C function from Lua.

49

The SWIG tool

As described above, to connect an application library with the Lua interpreter a
third layer which acts as interface is needed. This layer, called wrapper code, must
know the application API and, of course, the Lua API. In Figure 2, c_add is the ap-
plication function, and the wrapper code items are _wrap_c_add, myapplication
and luaopen_myapplication; the local Lua variable myapplication is the bind-
ing. Under Linux the compilation is straightforward:
$ gcc -I/usr/include/lua5.2 -fPIC \

-o myapplication.o \
-c myapplication.c

$ gcc -I/usr/include/lua5.2 -shared \
-o myapplication.so myapplication.o \
-llua5.2

where -fPIC tells the compiler to generate position independent code, given that
myapplication.so is a shared library. From this elementary example we can
identify the following issues:
• how to generate a wrapper for a rich and complex application API?
• how to compile the wrapper to obtain a suitable binary module?
• how to distribute the module?
The next subsections will try to address these questions.

Generate a wrapper
After a initial period of experimentation the following assumptions have emerged
as suitable for a project that aims to serve the TEX community:

1. the wrapper code should be generated in an automatic fashion preserving
as much as possible the meaning and the names of the functions and data
structures of the application API;

2. the application and Lua API should be freely accessible.
The tool chosen is SWIG, the Simplified Wrapper and Interface Generator program
available for different platforms, including Linux, Windows and MacOSX. Its web
site is http://www.swig.org; for a quick overview, see also http://www.ibm.
com/developerworks/aix/library/au-swig. SWIG has a powerful C/C++
preprocessor and can analyse2 a header file and produce the wrapper code. For
example, given the C API

2SWIG works particularly well with C libraries, while with C++ libraries usually the
developer has to manually write some customisation, e.g. to manage function overloading or
multiple inheritance. For C++, in fact, “at the lowest level, SWIG generates a collection of
procedural ANSI C-style wrappers”; see http://www.swig.org/Doc3.0/SWIGDocumentation.
html#SWIGPlus_nn2 .

50

/* myapplication.h */
#include <lua.h>
#include <lauxlib.h>
#include <lualib.h>

extern int c_add (int, int);
the SWIG interface file to create the wrapper is:
%module core
%{
/* code included in the wrapper */
#include "myapplication.h"
%}
/* header to analyse */
%include "myapplication.h"
The wrapper itself (by default core_wrap.c) is generated with
$ swig -lua core.i
and, supposing that the application header and the shared library myapplication.so
live in the current directory ./ , the binary module core.so is compiled as below
(again for the Linux platform):
$ gcc -I/usr/include/lua5.2 -I./ -fPIC \

-o core_wrap.o \
-c core_wrap.c

$ gcc -L./ -Wl,-rpath,’$ORIGIN/.’ -shared \
-o core.so core_wrap.o \
-lmyapplication -llua5.2

and loaded in Lua with
local myapplication = require("core")
print (myapplication.c_add(2, 3))

This example shows all the basic components used in the SWIGLIB project.
A practical interface file is in fact only a bit more complex: here is one for the
cURL library, a free and easy-to-use client-side URL transfer library (http:
//curl.haxx.se/libcurl):3
%module core
#ifdef SWIGLIB_WINDOWS
%include <windows.i>
#endif

/* Section for utilities, such as */
/* built-in wrappers for C arrays, */
/* C pointers, function pointers. */
...

3The real file has a few more directives, but this example shows the important pieces.

51

/* API */
%{
#include "curl/curl.h"
%}

/* Headers to generate the wrapper */
%include "curl/curlver.h"
%include "curl/curlbuild.h"
%include "curl/curlrules.h"
%include "curl/curl.h"
%include "curl/easy.h"
%include "curl/multi.h"

/* Customisation */
%include "native.i"
%include "inline.i"
%include "luacode.i"

Each binary module of the SWIGLIB project is named core, so each needs
to be saved into a specific directory, as will be shown later. Next, there is a
section to eventually include the wrappers that SWIG supplies by default for
the basic C types such as char, int, long, etc. (useful, for example, when a
parameter of a function is an array or a pointer to a basic type). After that is
the section that includes the application API into the wrapper and generates
the wrapper; the order of the %include directives is not random, but reflects
the dependencies between the headers.4 Finally, the native.i file is used when
the developer wants to replace the standard SWIG wrapper of a function with a
custom implementation; the inline.i file is useful to add new members to the
application API; and the luacode.i file to add Lua code when the module is
initialised at loading time.

Normally, these .i files are empty but it turns out that our example of the
cURL API has several functions that take a variably-typed argument—either a
pointer to a long or a pointer to a char, etc.; in any case, a finite set of types
as described in the documentation of the API. Here the inline.i file defines,
for each variation of such functions, several C helper functions with the third
argument fixed; i.e. one function with a pointer to a long, a second with a pointer
to a char, etc. The luacode.i file has the single Lua function that calls the helper
functions with the right third argument: of course this means that a lot of code
is hand-written, given that a single function can have 3 or 4 helper functions—it
sounds complicated but it is not especially difficult.5

4gcc -H can be used with a header file to print out its dependencies.
5Although the chapter “Variable Length Arguments” at

52

In most cases this simple organisation of the interface file is enough, but it
can be extended in two ways: first, to build a helper module that consists solely
of SWIG directives as in
%module core
#ifdef SWIGLIB_WINDOWS
%include <windows.i>
#endif
%include "carrays.i"
%include "cpointer.i"
%include "constraints.i"
%include "cmalloc.i"
%include "lua_fnptr.i"

%{ /* array functions */ %}
%array_functions(char, char_array);
%array_functions(unsigned char, u_char_array);
%array_functions(char*, char_p_array);
%array_functions(unsigned char*, u_char_p_array);
/* Several other SWIG directives ...*/

Second, by adding C functions and data structures to the inline interface a
user can build a custom usermodule, eventually using other application libraries.
In other words, SWIG also supports interface files usercore.i, usernative.i,
userinline.i and userluacode.i and hence a usercore binary module that
stays in the same directory as the core application.

Compilation of a wrapper
Compilation of binary modules is not as difficult as it seems at first sight: given an
application header and the corresponding shared library, SWIG generates ANSI
C wrapper code, which is usually both portable and easily compilable. Of course
much depends on the application library, but currently all the modules provided
are compiled for 64-bit Linux (Ubuntu 14.04 LTS) with the GCC toolchain and
cross-compiled for Microsoft Windows 32-bit and 64-bit using the Mingw-w64
toolchain; it is also possible under Linux to use the native compiler suite for
Windows from http://tdm-gcc.tdragon.net

In this way the application headers and library match among different plat-
forms (only two in this phase) which in turn means that at the LuaTEX level
the interface to the application library is the same. While the compilation of an
application module almost always uses the configure script generated from the
GNU Autotools, SWIGLIB uses for the wrapper simple bash scripts; for example,
for curl under Linux:
http://www.swig.org/Doc3.0/SWIGDocumentation.html#Varargs does start with a.k.a. “The
horror. The horror.”

53

trap ’echo "Error on building library"; exit $?’ ERR
echo "building for : linux 64bit"
SWIG
swig -I$(pwd)/resources/include64 -lua -o core_wrap.c ../core.i
Compile wrapper
rm -f core_wrap.o
gcc -O3 -fpic -pthread -I$LUAINC -I./resources/include64/ \

-c core_wrap.c -o core_wrap.o
Build library
rm -f core.so
CFLAGS="-g -O3 -Wall -shared -I./resources/include64

-L./resources/lib64"
LIBS="-lcurl -lssh2"
gcc $CFLAGS -Wl,-rpath,’$ORIGIN/.’ core_wrap.o $LIBS -o core.so
End
mv core.so resources/lib64
rm core_wrap.o
rm core_wrap.c
and for Windows 64-bit it is almost the same:
trap ’echo "Error on building library"; exit $?’ ERR
SWIG
swig -DSWIGLIB_WINDOWS -I$(pwd)/resources/include64 \

-lua -o core_wrap.c ../core.i
Compile the wrapper
rm -f core_wrap.o
$GCCMINGW64 -O3 -I$LUAINC -I./resources/include64/ \

-c core_wrap.c -o core_wrap.o
Build the library
rm -f core.dll
CFLAGS="-O3 -Wall -shared "
LIBS="$LUALIB/$LUADLL64

resources/lib64/libssh2-1.dll
resources/lib64/zlib1.dll
resources/lib64/libcurl-4.dll
resources/lib64/ssleay32.dll
resources/lib64/libeay32.dll "

$GCCMINGW64 $CFLAGS \
-Wl,-rpath,’$ORIGIN/.’ core_wrap.o $LIBS -o core.dll

End
mv core.dll resources/lib64
rm core_wrap.o
rm core_wrap.c

A simple bash script should be easily ported to different platforms: the GNU
Autotools are well suited for Unix-like systems, but Windows has its own toolchain

54

and such a shell script can be translated in a batch script without much effort,
giving a good starting point (see Calcote, 2010, p. 3).

A binary module can easily depend on other binary modules. Under Windows,
these modules are searched first in the same directory of the wrapper, but in Linux
(and hopefully on other Unix-like systems too) that “local” search is enforced with
the linker option -Wl,-rpath,’$ORIGIN/.’ . We do this to keep the wrapper
module and its dependencies as much as possible self-contained in a TDS tree.

In spite of the efforts to mask the differences between the systems, at some
point they emerge and it is not always possible to find a nice way to manage them.
One of these differences is symbol resolution and collision: when an application
module has a reference to an external symbol (i.e. a function or a data item),
under Linux this reference is resolved at run-time while in Windows it must be
resolved at build-time, when the module is compiled.

Given that an application module always needs to resolve the Lua API symbols,
the first consequence is that the luatex Windows binary must be compiled with a
dynamic link to an external Lua library (a Lua DLL) and the same DLL must be
used at build-time for the application module. Under Linux the Lua API symbols
are unequivocally resolved inside the luatex binary, but if the application module
needs a symbol from another API (for example, a function from libpng, which is
part of luatex) it must resolve that symbol to an external auxiliary library and
not inside the luatex binary: with Windows this happens automatically because,
by default, the symbols are not visible if not explicitly marked as such, but in
Linux the situation is just the opposite. The luatex binary must be compiled
with the gcc flag -fvisibility=hidden—this will be the default starting with
TEX Live 2015:6 hence, all the Linux binaries before this date are not safe.

Another fundamental difference is that Linux 64-bit and Windows 64-bit do
not use the same data model. Linux uses the so-called LP64, where the type
long and a pointer are both 64 bits, while Windows uses LLP64, where a long
is 32 bits and a pointer 64 bits. As a consequence, if a program under 64-bit
Linux uses a long to store an address, it cannot be automatically ported to 64-bit
Windows. Although the 64-bit Windows version could use the type long long,
this is a C99 extension and it is not supported by the Microsoft Visual C compiler.
The situation is no better in C++: the following example that uses GMP 6.0.0
fails to compile with Mingw-w64 but works with GCC under Linux7—and in
both cases sizeof a returns 8.
#include <gmpxx.h>
#include <iostream>
using namespace std;

6Peter Breitenlohner has done incalculable work in implementing the symbol visibility and
the build of shared versions of the TEX-specific libraries.

7And the fork MPIR 2.7.9 compiles correctly under Mingw-w64 and gives the same result as
Linux!

55

int main(void) {
size_t a = 5;
mpz_class b(a);
cout << b.get_ui() << endl;
cout<< sizeof a <<endl;
return 0;

}

Deployment

The SWIGLIB project is hosted8 at http://swiglib.foundry.supelec.fr with
a public readonly Subversion source repository accessible at http://foundry.
supelec.fr/projects/swiglib. The root has currently the following applica-
tion modules:
trunk

attic
basement
curl
experimental
ghostscript
graphicsmagick
helpers
leptonica
libffi
lua
luarepl
mysql
parigp
physicsfs
postgresql
qpdf
R
sqlite
swig
usermod
zeromq

COPYRIGHT
build.sh
Each application module has the following layout (here shown for curl):
curl

7.40.0
8Thanks to Fabrice Popineau for his invaluable support.

56

docs
linux

resources
include32
include64

curl
lib32
lib64

test
build-linux-x86_64.sh
osx

resources
include32
include64
lib32
lib64

windows
resources

include32
curl

include64
curl

lib32
lib64

test
build-mingw32.sh
build-mingw64.sh
build-msys32.sh
build-msys64.sh

core.i
inline.i
luacode.i
native.i

where lib64 (lib32) hosts the application API and lib64 (lib32) the binary
module. The osx directory is a placeholder—currently it is empty. The lua
directory contains the Lua API and the binaries for Linux 64-bit, Windows 32-bit
and 64-bit:

luatex-beta-0.79.3.1
include

lauxlib.h
luaconf.h
lua.h
lua.hpp
lualib.h

57

patch-01-utf-8
patch-02-FreeBSD
patch-03-export

linux
luatex

w32
libkpathsea-6.dll
luatex.exe
texlua52.dll

w64
libkpathsea-6.dll
luatex.exe
texlua52.dll

Application module location in the TDS
The natural location of a binary module inside a TDS directory is under bin/.
The current layout looks like the following (for Linux 64-bit):
tex

texmf-linux-64
bin

lib
luatex

lua
swiglib

curl
7.40.0

core.so
libcurl.so

SWIGLIB doesn’t require a particular method to load a wrapper module,
because this is a task of the format. The tests in the Subversion repository use
the low-level Lua function load, but they need to know the system and the full
path of the module; on the other hand, ConTEXt has a global swiglib function
(see util-lib.lua and Hagen, 2016) that is independent from the system and
the path—but it doesn’t use the kpse library.

Conclusions

Without a doubt, building a wrapper module requires a working knowledge at
least of the C language, for which Kernighan and Ritchie (1988) is still a
pleasure to read; useful information on shared libraries is also in Drepper (2011)
and Levine (1999) while for Linux (Kerrisk, 2010) is still one of the best
references, as Russinovich (2012a) and Russinovich (2012b) are for Windows.

58

Moreover, having a working wrapper is only half of the story: the rest is a
working Lua/TEX layer that suits with the format in use—and this cannot be
part of the underlying SWIGLIB. The example with GMP 6.0.0 shows that an
application module that compiles well and passes all the tests can still fail to
compile an apparently innocuous program. The C code itself is not always easy
to understand, as for example with the following program
/* test.c */
#include <stdlib.h>
void foo(int *x){

int y = *x;
if (x == NULL)

return;
}
int main(){

int *x;
x = NULL;
foo(x);
return 0;

}
which gives a segmentation fault if compiled with gcc without optimisation
(gcc -o test test.c), but it is ok with optimisation (gcc -O3 -o test test.c).9
Portable multithreading also looks problematic, due to the lack of support in
ANSI C and hence in Lua. Of course the Linux and Windows platforms are
not the only ones to consider and the absence of MacOSX is the most notable;
FreeBSD as well, which seems to be rather easier to add.

Despite these issues, SWIG is an exceptionally flexible program, and it can
adapted to manage almost any situations. If an interface file is complicated, it can
often be simplified with an auxiliary C module; if a user needs to customise an
application module, this can be done by adding a set of Lua functions and/or C
functions—and all this while always formally writing an interface file. A possible
objection is that LuaTEX does not have a read-eval-print loop (“repl”) program
as standard Lua does, but SWIGLIB has a pure Lua module luarepl that
mimics the original one quite well. This means that it is possible to use LuaTEX
as a general-purpose scripting language, i.e. to manage the installation of TEX
packages.

Regarding LuaJITTEX (Scarso, 2013): even when it is possible to use
the same interface file, the API and the luajitex libraries are not the same.
Furthermore, LuaJIT users seem to prefer the use of the LuaJIT ffi module,
which is roughly similar to SWIG. It should still be doable to implement in SWIG
via a new backend LuaJIT-ffi that emits ffi chunks instead of the LuaJIT C

9y = *x results in undefined behaviour when x is NULL, but the optimisation -O3 is able to
detect that y is never used and it deletes it.

59

API, effectively eliminating the need for a C compiler. Clearly work for the
future.

Some practical examples of applications are shown in Hagen (2016) and
Scarso (2011). These will also be the subject of a future paper.

References
Calcote, John. Autotools: A Practitioner’s Guide to GNU Autoconf, Au-

tomake, and Libtool. 1. ed. San Francisco : No Starch Press, 2010.
xxiv + 332 pp. ISBN 978-1-59327-206-7.

Drepper, Ulrich. How to Write Shared Libraries [on-line]. 2011. [cit. 2015-03-
05]. Available at: http://www.akkadia.org/drepper/dsohowto.pdf.

Hagen, Hans. SWIGLIB basics [on-line]. 2016. [cit. 2016-12-25]. Available at:
http://www.pragma-ade.com/general/manuals/swiglib-mkiv.pdf.

Ierusalimschy, Roberto. Programming in Lua. 3. ed. Rio de Janeiro :
Lua.Org, 2013. 366 pp. ISBN 978-85-903798-5-0.

Kernighan, Brian W.; Ritchie, Dennis M. The C Programming Language.
2. ed. Englewood Cliffs (NJ) : Prentice Hall, 1988. xii + 272 pp.
ISBN 0-13-110370-9.

Kerrisk, Michael. The Linux Programming Interface: A Linux and UNIX
System Programming Handbook. 1. ed. San Francisco : No Starch Press,
2010. 1552 pp. ISBN 978-1-59327-220-3.

Levine, John R. Linkers and Loaders. 1. ed. San Francisco : Morgan Kaufmann
Publishers, 1999. 256 pp. ISBN 1-5586-0496-0.

Russinovich, Mark E., Solomon, David A., Ionescu, Alex. Windows
Internals, Part 1: Covering Windows Server 2008 R2 and Windows 7. 6. ed.
Redmond : Microsoft Press, 2012a. 752 pp. ISBN 978-0-7356-4873-9.

Russinovich, Mark E.; Solomon, David A.; Ionescu, Alex. Windows
Internals, Part 2: Covering Windows Server 2008 R2 and Windows 7 (Win-
dows Internals). Redmond : Microsoft Press, 2012b. 672 pp.
ISBN 978-0-7356-6587-3.

Scarso, Luigi. Extending ConTEXt MkIV with PARI/GP. ArsTEXnica, 2011,
Vol. 11, p. 65–74. (ISSN 1828-2369.)

Scarso, Luigi. LuaJITTEX. TUGboat, 2013, Vol. 34, No. 1, p. 64–71.
(ISSN 0896-3207.)

Projekt SWIGLIB
Článek se věnuje tématu přístupu k binárním knihovnám v LuaTeXu. Popisuje
problémy s přístupem ke sdíleným knihovnám na rozdílných platformách a tvorbou
rozhraní zpřístupňujících tyto knihovny pro programy v jazyce Lua.

60

Pro zjednodušení tvorby rozhraní pro binární knihovny je navrhnut projekt
SWIG, který umožňuje jejich poloautomatickou tvorbu za pomoci konfigurač-
ního souboru a analýzy hlavičkových souborů zpracovávaných knihoven. Projekt
SWIGLIB pak řeší způsob kompilace tohoto rozhraní na rozdílných platformách
a umístění výsledných binárních knihoven tak, aby byly přístupné LuaTeXu.
Pro nahrání knihoven je třeba upravit nahrávací rutiny v Lue. Existuje podpora
v ConTeXtu, pro ostatní formáty musí podpora teprve vzniknout.

Klíčová slova: LuaTEX, SWIGLIB, SWIG, externí knihovny

In fulfillment of the TEX Development Fund grant no. 23, Dynamic library
support in LuaTEX, 2013. Grants from (in alphabetical order) CSTUG, DANTE
e.V., GUST, NTG and TUG.

Luigi Scarso, luigi. scarso@ gmail. com

61

