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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 58 (2022), 115–132

PROPERTIES OF SOLUTIONS OF QUATERNIONIC RICCATI
EQUATIONS

Gevorg Avagovich Grigorian

Abstract. In this paper we study properties of regular solutions of quaternio-
nic Riccati equations. The obtained results we use for study of the asymptotic
behavior of solutions of two first-order linear quaternionic ordinary differential
equations.

1. Introduction

Let a(t), b(t), c(t) and d(t) be quaternionic-valued continuous functions on
[t0,+∞), i.e.: a(t) ≡ a0(t) + ia1(t) + ja2(t) + ka3(t), b(t) ≡ b0(t) + ib1(t) + jb2(t) +
kb3(t), c(t) ≡ c0(t) + ic1(t) + jc2(t) + kc3(t), d(t) ≡ d0(t) + id1(t) + jd2(t) + kd3(t),
where an(t), bn(t), cn(t), dn(t) (n = 0, 3) are real-valued continuous functions on
[t0,+∞), i, j, k are the imaginary unities satisfying the conditions
(1.1) i2 = j2 = k2 = ijk = −1 , ij = −ji = k .

Consider the quaternionic Riccati equation
(1.2) q′ + qa(t)q + b(t)q + qc(t) + d(t) = 0 , t ≥ t0 .
Particular cases of this equation appear in various problems of mathematics,
in particular in problems of mathematical physics (e.g., in the Euler’s vorticity
dynamics [13], in the Euler’s fluid dynamics [4], in the problem of classification of
diffeomorphisms of S4 [14], and in the other ones [2, 12]). A quaternionic-valued
function q = q(t), defined on [t1, t2)(t0 ≤ t1 < t2 ≤ +∞) is called a solution of Eq.
(1.2) on [t1, t2), if it is continuously differentiable on [t1, t2) and satisfies (1.2) on
[t1, t2). It follows from the general theory of ordinary differential equations that
for every t1 ≥ t0 and γ ∈ H (here and after H denotes the algebra of quaternions)
there exists t2 > t1 (t2 ≤ +∞) such that Eq. (1.2) has the unique solution q(t) on
[t1, t2), satisfying the initial condition q(t1) = γ. Thus for every t1 ≥ t0 and γ ∈ H
a solution q(t) of Eq. (1.2) with q(t1) = γ exists or else on some finite interval
[t1, t2) or else on [t1,+∞). In the last case the solution q(t) we will call a t1-regular
(or simply regular) solution of Eq. (1.2). Notice that some sufficient conditions
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for existence of regular solutions are obtained in the works [1, 11, 13]. In the real
case properties of regular solutions of Eq. (1.2) are studied in [6] and have found
several applications (see [7]–[10]). In this paper we study the properties of regular
solutions of Eq. (1.2). We use the obtained result to study the asymptotic behavior
of solutions of systems of two first-order linear quaternionic differential equations.

2. Auxiliary propositions

It is not difficult to verify that there exists a one to one correspondence q ↔ Q
between the quaternions q = q0 + iq1 + jq2 + kq3, qk ∈ R, k = 0, 3 and the skew
symmetric matrices

Q ≡


q0 q1 q2 −q3
−q1 q0 −q3 −q2
−q2 q3 q0 q1
q3 q2 −q1 q0

 ,

keeping the arithmetic operations: qm ↔ Qm, m = 1, 2 ⇒ q1 + q2 ↔ Q1 +
Q2, q1q2 ↔ Q1Q2, q−1

1 ↔ Q−1
1 (q1 6= 0). The matrix Q we will call the symbol

of q and will denote by q̂. By |q| we denote the euclidean norm of the vector
q : |q| ≡

√
q2

0 + q2
1 + q2

2 + q2
3 . We also denote Re q ≡ q0 – the real part of q and

Im q ≡ iq1 + jq2 + kq3 – the imaginary part of q. Finally by tr q̂ we denote the
trace of q̂.

Lemma 2.1. For every quaternion q the equalities

det q̂ = |q|4 , tr q̂ = 4 Re q

are valid.

Proof. By direct checking.
Let A(t), B(t), C(t) and D(t) be the symbols of a(t), b(t), c(t) and d(t) respec-

tively. Consider the matrix Riccati equation

(2.1) Y ′ + Y A(t)Y +B(t)Y + Y C(t) +D(t) = 0 , t ≥ t0 .

Obviously the solutions q(t) of Eq. (1.2), existing on an interval [t1, t2) (t0 ≤ t1 <
t2 ≤ + ∞) are connected with solutions Y (t) of Eq. (2.1) by relation

(2.2) q̂(t) = Y (t) , t ∈ [t1, t2) .

Let Y (t) be a solution of Eq. (2.1) on [t1, t2). Then every solution Y1(t) of Eq. (2.1)
on [t1, t2) is connected with Y (t) by the formula (see [3], pp. 139, 140, 158, 159,
Theorem 6.2)

Y1(t) = Y (t) + [ΦY (t)Λ−1(t1)(I + Λ(t1)MY (t1, t))ΨY (t)]−1 , t ∈ [t1, t2) ,

where ΦY (t) and ΨY (t) are the solutions of the linear matrix equations

Φ′ = [A(t)Y (t) + C(t)]Φ , t ∈ [t1, t2) ,

Ψ′ = Ψ[B(t) + Y (t)A(t)] , t ∈ [t1, t2) ,
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respectively with ΦY (t1) = ΨY (t1) = I, I is the identity matrix of dimension 4×4,

MY (t1, t) ≡
t∫

t1

Φ−1
Y (τ)A(τ)Ψ−1

Y (τ)dτ , t ∈ [t1, t2) ,

Λ(t1) ≡ Y1(t1)− Y (t1), provided det Λ(t1) 6= 0. From here we obtain

(2.3) Y1(t) = Y (t) + Ψ−1
Y (t)[I + Λ(t1)MY (t1, t)]−1Λ(t1)Φ−1

Y (t) , t ∈ [t1, t2) .
By the Liouville formula we have:

det ΦY (t) = exp
{ t∫
t1

tr [A(τ)Y (τ) + C(τ)]dτ
}
, t ∈ [t1, t2) ,(2.4)

det ΨY (t) = exp
{ t∫
t1

tr [A(τ)Y (τ) +B(τ)]dτ
}
, t ∈ [t1, t2) ,(2.5)

Let q(t) be a solution of Eq. (1.2) on [t1, t2). Then due to (2.2) from (2.3) it follows
that for every solution q1(t) of Eq. (1.2) on [t1, t2) the equality
(2.6) q1(t) = q(t) + ψ−1

q (t)[1 + λ(t1)µq(t1, t)]−1λ(t1)φ−1
q (t), t ∈ [t1, t2)

is valid, where φq(t) and ψq(t) are the solutions of the linear equations
φ′ = [a(t)q(t) + c(t)]φ , t ∈ [t1, t2) ,

ψ′ = ψ[b(t) + q(t)a(t)] , t ∈ [t1, t2) ,

respectively with φq(t1) = ψq(t1) = 1, λ(t1) ≡ q1(t1)− q(t1),

µq(t1, t) ≡
t∫

t1

φ−1
q (τ)a(τ)ψ−1

q (τ)dτ , t ∈ [t1, t2) .

By (2.3) and Lemma 2.1 from (2.5) and (2.6) we obtain

|φq(t)| = exp
{ t∫
t1

Re [a(τ)q(τ) + c(τ)]dτ
}
, t ∈ [t1, t2) ,(2.7)

|ψq(t)| = exp
{ t∫
t1

Re[a(τ)q(τ) + b(τ)]dτ
}
, t ∈ [t1, t2) .(2.8)

Let qm(t), m = 1, 2 be solutions of Eq. (1.2) on [t1, t2). Set: λm,s(t1) ≡ qm(t1)−
qs(t1), m, s = 1, 2. By (2.4) we have
a(t)[qm(t)− qs(t)] = a(t)ψ−1

qs (t)[1 + λm,s(t1)µqs(t1; t)]−1φ−1
qs (t) , t ∈ [t1, t2) .

Hence,
[1 + λm,s(t1)µqs(t1; t)]′ = Aqm,qs(t1; t)[1 + λm,s(t1)µqs(t1; t)] , t ∈ [t1, t2) ,
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where

Aqm,qs(t1; t) ≡ λm,s(t1)ψ−1
qs (t)

[
qm(t)− qs(t)

]
φ−1
qs (t)λ−1

m,s(t1) , t ∈ [t1, t2), m = 1, 2 .

From here it follows[
I+ ̂λm,s(t1) ̂µqs(t1; t)

]′= ̂Aqm,qs(t1; t)
[
I+ ̂λm,s(t1) ̂µqs(t1; t)

]
, t ∈ [t1, t2), m = 1, 2 .

By Lemma 2.1 and the Liouville’s formula from here we obtain

(2.9) |1 + λm,s(t1)µqs(t1; t)| = exp
{ t∫
t1

Re [a(τ)(qm(τ)− qs(τ))]dτ
}
, t ∈ [t1, t2),

m, s = 1, 2. From here we immediately get:

(2.10) |1+λm,s(t1)µqs(t1; t)||1+λs,m(t1)µqm(t1; t)| ≡ 1 , t ∈ [t1, t2) , m, s = 1, 2 .

�

3. Properties of regular solutions of Eq. (1.2)

Definition 3.1. A t1-regular solution q(t) of Eq. (1.2) is called t1-normal if there
exists a neighborhood U(q(t1)) of q(t1) such that every solution q̃(t) of Eq. (1.2)
with q̃(t1) ∈ U(q(t1)) is also t1-regular, otherwise q(t) is called t1-extremal.

Definition 3.2. Eq. (1.2) is called regular if it has at least one regular solution.

Remark 3.1. Since the solutions of Eq. (1.2) are continuously dependent on
their initial values every t1-normal (t1-extremal) solution of Eq. (1.2) is also a
t2-normal (t2-extremal) solution of Eq. (1.2) for all t2 > t1. Due to this a t1-normal
(t1-extremal) solution of Eq. (1.2) we will just call a normal (a extremal) solution
of Eq. (1.2). Note that a t2-normal (t2-extremal) solution of Eq. (1.2) may not
be a t1-normal (t1-extremal) solution of Eq. (1.2) if t1 < t2, because a t2-regular
solution of Eq. (1.2) may not be t1-regular for t1 < t2.

Theorem 3.1. If Eq. (1.2) has a t1-regular solution q(t) for some t1 ≥ t0, then it
has also another (different from q(t)) t1-regular solution.

Proof. Let q(t) be a t1-regular solution for some t1 ≥ t0. Since µq(t1; t) is conti-
nuously differentiable by t there exists γ ∈ H\{0} such that µq(t1; t) 6= γ for all
t ≥ t0 (µq(t1; t1) = 0 and the curve f(t) ≡ µq(t1; t), t ≥ t1 is not space filling).
Therefore by (2.7) the solution q1(t) of Eq. (1.2) with q1(t1) = q(t1) − 1

γ is a
t1-regular solution of Eq. (1.2), different from q(t). The theorem is proved. �

Denote by Q(t; t1;λ) the general solution of Eq. (1.2) in the region Gt1 ≡ {(t; q) :
t ∈ It1(λ), q, λ ∈ H}, where It1 is the maximum existence interval for the solution
q(t) of Eq. (1.2) with q(t1) = λ.

Example 3.1. Consider the equation

(3.1) q′ + qa(t)q = 0 , t ≥ −1 .
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The general solution of this equation in the region G0 ∩ [−1,+∞)×H is given by
formula

(3.2) Q(t; 0;λ) = 1

1 + λ
t∫
t1

a(τ)dτ
λ , λ ∈ H , 1 + λ

t∫
t1

a(τ)dτ 6= 0 , t ≥ t1 .

Assume a(t) has a bounded support. Then from (3.2) is seen that Eq. (3.1) has
no 0-extremal solution, and all its solutions Q(t, ; 0;λ) with enough small |λ|
are 0-normal. If a(t) is a non negative function with an unbounded support and

I0 ≡
+∞∫
0
a(τ)dτ < +∞ then from (3.2) is seen that the solution q0(t) = Q(t; 0;− 1

I0
)

is 0-extremal; all the solutions Q(t; 0;λ) with λ ∈ H\(−∞,− 1
I0

) are 0-normal and
all the solutions Q(t; 0;λ) with λ ∈ (−∞,− 1

I0
) are not 0-regular. Assume now

t∫
0
a(τ)dτ = arctan(cos t + i sin t + j cosπt + k sin πt), t ≥ 0. Then from (3.2) is

seen that all the solutions Q(t; 0;λ) with |λ| =
√

2
π are 0-extremal (since the set

{ 1√
2 (cos t + i sin t + j cosπt + k sin πt) : t ≥ 0} is everywhere dense in the unite

sphere {q : |q| = 1}) and all solutions Q(t; 0;λ) with |λ| <
√

2
π are 0-normal.

Example 3.2. For u0 ∈ H and 0 < r < R < +∞ denote Kr,R(u0) ≡ {q ∈ H :
r < |q − u0| < R} - an annulus in H with a center u0 and radiuses r and R. For
any ε > 0 denote Kε,r,R(u0) ≡ {ξ1, . . . , ξm ∈ Kr,R(u0): if u ∈ Kr,R(u0) then there
exists s ∈ {1, . . . ,m} such that |u − ξs| < ε}- a finite ε-net for Kr,R(u0) (here
m depends on ε). Consider the sequence of 1

2n -nets: {K 1
2n ,

1
n ,n

(u0)}+∞
n=1. Let the

function f(t) ≡
t∫

0
a(τ)dτ , t ≥ 0 has the following properties: f(t) 6= u0, t ∈ [0, 1];

when t varies from n to n + 1 (n = 1, 2, . . . ) the curve f(t) crosses all points
of K 1

2n ,
1
n ,n

(u0) (i.e. for every v ∈ K 1
2n ,

1
n ,n

(u0) there exists ζv ∈ [n, n + 1] such
that f(ζv) = v); f(t) ∈ K 1

2n ,+∞(u0) n = 1, 2, . . . , t ≥ 1. From these properties
it follows that for every T ≥ 0 the set {f(t) : t ≥ T} is everywhere dense in H
and f(t) 6= u0, t ≥ 0. Hence from (3.2) it follows that Eq. (3.1) has no t1-normal
solutions for all t1 ≥ 0 and has at least two extremal solutions: q1(t) ≡ 0 and q2(t)
with q2(0) = − 1

u0
. By analogy using 1

2n -nets K 1
2n ,

1
n ,n

(u0; . . . ul) ≡ {ξ1, . . . , ξm ∈
l⋂

k=0
K 1
n ,n

(uk) : u ∈
l⋂

k=0
K 1
n ,n

(uk) ⇒ ∃s ∈ {1, . . . ,m} : |u − ξs| < 1
2n} of the

intersections
l⋂

k=1
K 1
n ,n

(uk) in place of K 1
2n ,

1
n ,n

(u0), n = 1, 2, . . . one can show

that there exists a Riccati equation which has no t1-normal solutions and has at
least l + 2 t1-extremal solutions for all t1 ≥ 0.

Theorem 3.2. A t1-regular solution q(t) of Eq. (1.2) is t1-normal if and only if
µq(t1; t) is bounded by t.
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Proof. Sufficiency. Set M ≡ sup
t≥t1
|µq(t1; t)|. Let q1(t) be a solution of Eq. (1.2)

with |q(t1)− q1(t1)| < M
2 . Then obviously

1 + (q1(t1)− q(t1))µq(t1; t) 6= 0 , t ≥ t1 .
By (2.7) from here it follows that q1(t) is t1-normal.

Necessity. Suppose µq(t1; t) is unbounded by t on [t1,+∞). Let then t1 < t2 <
· · · < tm, . . . be an infinitely large sequence such that
(3.3) |µq(t1; tn)| ≥ n , n = 2, 3, . . .
Let qn(t), n = 2, 3, . . . be the solutions of Eq. (1.2) with
(3.4) qn(t1)− q(t1) = −µq(t1; tn)−1 , n = 2, 3, . . .
Since q(t) is t1-normal there exists δ > 0 such that every solution q̃(t) of Eq. (1.2)
with |q̃(t1)− q(t1)| < δ is t1-regular. Hence from (3.3) and (3.4) it follows that for
enough large n the solutions qn(t) are t1-regular. On the other hand by (2.7) from
(3.4) it follows that for enough large n every solution qn(t) is unbounded in the
neighborhood of tn. It means that for enough large n the solutions qn(t) are not
t1-regular. The obtained contradiction completes the proof of the theorem. �

By (2.9) from Theorem 3.2 we immediately obtain

Corollary 3.1. The following statements are valid:
1) any two t1-regular solutions q1(t) and q2(t) of Eq. (1.2) are t1-normal if and
only if the function

Iq1,q2(t) ≡
t∫

t1

Re [a(τ)(q1(τ)− q2(τ))]dτ , t ≥ t1

is bounded;
2) if qN (t) and q∗(t) are t1-normal and t1-extremal solutions of Eq. (1.2) respectively
then

lim sup
t→+∞

t∫
t1

Re [a(τ)(q∗(τ)− qN (τ))]dτ < +∞ ,

lim inf
t→+∞

t∫
t1

Re [a(τ)(q∗(τ)− qN (τ))]dτ = −∞ ;

3) if q∗(t) and q∗(t) are t1-extremal solutions of Eq. (1.2) then

lim sup
t→+∞

t∫
t1

Re [a(τ)(q∗(τ)− q∗(τ))]dτ = +∞ ,

lim inf
t→+∞

t∫
t1

Re [a(τ)(q∗(τ)− q∗(τ))]dτ = −∞ .

Definition 3.3. A regular Eq. (1.2) is called normal if it has no extremal solutions.
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Definition 3.4. A regular Eq. (1.2) is called irreconcilable if its every regular
solution is extremal.

Definition 3.5. A regular Eq. (1.2) is called sub extremal if it has only one
extremal solution.

Definition 3.6. A regular Eq. (1.2) is called super extremal if it has at least two
extremal solutions and normal solutions.

From Definitions 3.3 – 3.6 is seen that every regular Eq. (1.2) is or else normal
or else irreconcilable or else sub extremal or else super extremal. The examples,
illustrated above, show that all these types of equations exist.

For any t1-regular solution q(t) of Eq. (1.2) set

νq(t) ≡
+∞∫
t

φ−1
q (τ)a(τ)ψ−1

q (τ)dτ , t ≥ t1 ,

where φq(t) and ψq(t) are the solutions of the linear equations
φ′ = [a(t)q(t) + c(t)]φ , t ≥ t1 .

ψ′ = ψ[b(t) + q(t)a(t)] , t ≥ t1 ,
respectively with φq(t1) = ψq(t1) = 1.

Theorem 3.3. Let q0(t) be a t1-regular solution of Eq. (1.2) such that the integral
νq0(t1) is convergent. Then in order that Eq. (1.2) has a t1-extremal solution it is
necessary and sufficient that νq0(t) 6= 0, t ≥ t1. If this condition is satisfied then:
1) the unique t1-extremal solution q∗(t) of Eq. (1.2) is given by the formula

(3.5) q∗(t) = q0(t)− 1
Vq0(t) , t ≥ t1 ,

where Vq0(t) ≡ φq(t)νq0(t)ψq(t);
2) for all t1-normal solutions q(t) of Eq. (1.2) and only for them the integrals νq(t)
converge for all t ≥ t1 and νq(t) 6= 0, t ≥ t1;
3) for all t ≥ t1
(3.6) νq∗(t) =∞ ;
4) for two arbitrary t1-normal solutions q1(t) and q2(t) the integral

+∞∫
t1

Re
[
a(τ)

(
q1(τ)− q2(τ)

)]
dτ

converges;
5) for every t1-normal solution qN (t) of Eq. (1.2) the equality

(3.7)
+∞∫
t1

Re
[
a(τ)

(
q∗(τ)− qN (τ)

)]
dτ = −∞

is valid.
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Proof. Let q0(t) be a t1-regular solution of Eq. (1.2) for which νq0(t1) converges
and νq0(t) 6= 0 t ≥ t1. Then

(3.8) 1− 1
νq0(t1)µq0(t1; t) 6= 0, t ≥ t1.

Indeed otherwise if for some t2 > t1 νq0 = µq0(t1; t2) then from the equality
νq0(t) = µq0(t1; t2) + νq0(t2) it follows that νq0(t2) = 0, which contradicts our
assumption. Let q∗(t) be the solution of Eq. (1.2) with q∗(t1) = q0(t1) − 1

νq0 (t1) .
Then by (2.7) from (3.8) it follows that q∗(t) is t1-regular and according to (2.10)
we have ∣∣∣1 + 1

νq∗(t1)µq∗(t1; t)
∣∣∣ ∣∣∣1− 1

νq0(t1)µq0(t1; t)
∣∣∣ ≡ 1 , t ≥ t1 .

From here it follows νq∗(t1) = lim
t→+∞

µq∗(t1; t) = ∞. Then by virtue of Theorem
3.2 q∗(t) is t1-extremal and (3.6) is valid. Assume now Eq. (1.2) has a t1-extremal
solution q∗(t). Show that νq0(t) 6= 0, t ≥ t1. Suppose for some t2 ≥ t1 νq0(t2) = 0.
Then obviously

(3.9) lim
t→+∞

[1 +
(
q∗(t2)− q0(t2)

)
µq0(t2; t)] = 1 .

By (2.10) we have∣∣1 +
(
q0(t2)− q∗(t2)

)
µq∗(t2; t)||1 +

(
q∗(t2)− q0(t2)

)
µq0(t2; t)

∣∣ ≡ 1 , t ≥ t2 .

This together with (3.9) implies that µq∗(t2; t) is bounded by t on [t2,+∞). There-
fore µq∗(t1; t) is bounded by t on [t1,+∞), and according to Theorem 3.2 q∗(t) is
t1-normal, which contradicts our assumption. The obtained contradiction shows
that νq0(t) 6= 0, t ≥ t1. Let us prove (3.5). By (2.7) we have

(3.10) q∗(t) = q0(t) +
[
φq(t)[λ(t1)−1 + µq0(t1, t)]ψq(t)

]−1
, t ≥ t− 1 ,

where λ(t1) = q∗(t1)− q0(t1). Since q∗(t1)− 1
νq0 (t1) from her and from (3.10) we

obtain (3.5).
Let q(t) be a t1-normal solution of Eq. (1.2). By (2.10) we have∣∣1 +

(
q(t1)− q∗(t1)

)
µq∗(t1; t)

∣∣∣∣1 +
(
q∗(t1)− q(t1)

)
µq(t1; t)

∣∣ ≡ 1 , t ≥ t1 .

This together with (3.6) implies

lim
t→+∞

[
1 +

(
q∗(t1)− q(t1)

)
µq(t1; t)

]
= 0 .

Therefore the integrals νq(t) converge for all t ≥ t1. The inequality νq(t) 6= 0, t ≥ t1
follows immediately from the already proven necessary condition of existence of a
t1-extremal solution of Eq. (1.2).

Let q1(t) and q2(t) be t1-normal solutions of Eq. (1.2). By (2.9) we have

∣∣1 +
(
q1(t1)− q2(t1)

)
µq2(t1; t)

∣∣ = exp
{ t∫
t1

Re
[
a(τ)

(
q1(τ)− q2(τ)

)]
dτ
}
, t ≥ t1 .
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From here and from the convergence of νq2(t1) it follows the convergence of the
integral

+∞∫
t1

Re
[
a(τ)

(
q1(τ)− q2(τ)

)]
dτ .

Let qN (t) be a t1-normal solution of Eq. (1.2). By (2.9) we have

∣∣1+
(
q1(tN )−q∗(t1)

)
µq∗(t1; t)

∣∣ = exp
{ t∫
t1

Re
[
a(τ)

(
q∗(τ)−qN (τ)

)]
dτ
}
, t ≥ t1 .

This together with (3.6) implies (3.7). The theorem is proved. �

Corollary 3.2. Let Eq. (1.2) have a t1-regular solution q∗(t) such that νq∗(t1) =∞.
Then the statements 1) – 5) of Theorem 3.3 are valid.

Proof. By Theorem 3.3 it is enough to show that Eq. (1.2) has a t1-regular solution
q0(t) such that νq0(t1) converges and νq0(t) 6= 0, t ≥ t1. Let q0(t) be a t1-regular
solution of Eq. (1.2), different from q∗(t). In virtue of (2.10) we have

(3.11)
∣∣1+

(
q0(t1)−q∗(t1)

)
µq∗(t1; t)

∣∣∣∣1+
(
q∗(t1)−q0(t1)

)
µq0(t1; t)

∣∣ ≡ 1 , t ≥ t1 .

From the condition of the corollary it follows that

lim
t→+∞

∣∣1 +
(
q0(t1)− q∗(t1)

)
µq∗(t1; t)

∣∣ = +∞ .

From here and from (3.11) it follows that q0(t) is t1-normal and the integral νq0(t1)
converges. Moreover by virtue of Theorem 3.2 from the condition of the corollary
it follows that q∗(t) is t1-extremal. Since q0(t) is an arbitrary t1-regular solution of
Eq. (1.2), different from q∗(t) it follows that q∗(t) is the unique t1-extremal solution
of Eq. (1.2). Then by Theorem 3.3 νq0(t) 6= 0, t ≥ t1. The corollary is proved. �

Theorem 3.3 and Corollary 3.2 allow us to give the following equivalent defini-
tions.

Definition 3.7. Eq. (1.2) is called extremal if for some t1 ≥ t0 it has a t1-regular
solution q(t) such that νq(t1) converges and νq(t) 6= 0, t ≥ t1.

Definition 3.8. Eq. (1.2) is called extremal if for some t1 ≥ t0 it has a t1-regular
solution q(t) such that νq(t1) =∞.

Example 3.3. Let λ(t) be a quaternionic valued continuously differentiable
function on [t0,+∞), α(t) ≡ α0(t) + iα1(t), β(t) ≡ β0(t) + jβ1(t), t ≥ t0,
where α0(t), α1(t), β0(t) and β1(t) are some real-valued continuous functions on
[t0,+∞). Consider the Riccati equation

q′ + qa(t)q − [λ(t)a(t) + α(t)]q − q[a(t)λ(t) + β(t)]− λ′(t)
+ λ(t)a(t)λ(t) + α(t)λ(t) + λ(t)β(t) = 0 , t ≥ t0 .(3.12)
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It is not difficult to verify that q = λ(t) is a t0-regular solution of this equation and

φλ(t) = exp
{
−

t∫
t0

β(τ)dτ
}
, ψλ(t) = exp

{
−

t∫
t0

α(τ)dτ
}
, t ≥ t0 .

So

νλ(t) =
+∞∫
t

exp
{ τ∫
t0

β(s)
}
a(τ) exp

{ τ∫
t0

α(s)ds
}
dτ , t ≥ t0 .

Therefore if νλ(t0) converges and νλ(t) 6= 0, t ≥ tt for some t1 ≥ t0 or if νλ(t0) =∞,
then Eq. (3.12) is extremal. If νλ(t0) converges and νλ(t) has arbitrary large zeroes,
then Eq. (1.2) is normal.

Obviously every extremal Eq. (1.2) is sub extremal. The next example shows
that not all sub extremal equations are extremal.

Example 3.4. Consider the Riccati equation

(3.13) q′ + q(t cos t)q = 0 , t ≥ t0 , t0 sin t0 + cos t0 = 0 .

For every λ ∈ H the solution q(t) of this equation with q(t0) = λ has the form

q(t) = 1

1 + λ
t∫
t0

τ cos τ dτ
λ = 1

1 + λ(t sin t+ cos t)λ , 1 + λ(t sin t+ cos t) 6= 0 .

Hence every solution q(t) of this equation with q(t0) ∈ H\(R\{0}) is t0-regular
and for q(t0) ∈ R\{0} q(t) is not t0-regular. Therefore q0(t) ≡ 0 is a t0-extremal
solution of Eq. (3.13) and all its solutions q(t) with q(t0) ∈ H\R are t0-normal.
From here it follows that Eq. (3.13) is sub extremal. Obviously the integral

νq0(t0) =
+∞∫
t0

t cos t dt

neither is convergent nor divergent to ∞. Therefore Eq. (3.13) is not extremal.

4. The asymptotic behavior of solutions of systems of two
first-order linear quaternionic ordinary differential equations

Let aml(t), m, l = 1, 2 be quaternionic-valued continuous functions on [t0,+∞).
Consider the linear system

(4.1)

 φ′ = a11(t)φ+ a12(t)ψ,

ψ′ = a21(t)φ+ a22(t)ψ , t ≥ t0
and the quaternionic Riccati equation

(4.2) q′ + qa12(t)q + qa11(t)− a22(t)q − a21(t) = 0 , t ≥ t0 .
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It is not difficult to verify that the solutions q(t) of Eq. (4.2), existing on some
interval [t1, t2) (t0 ≤ t1 < t2 ≤ +∞) are connected with solutions (φ(t), ψ(t)) of
the system (4.1) by relations
(4.3) φ′(t) = [a12(t)q(t) + a11(t)]φ(t) , ψ(t) = q(t)φ(t) , t ∈ [t1, t2) .
From here it follows

φ̂(t)
′

= [â12(t)q̂(t) + â11(t)]φ̂(t) , t ∈ [t1, t2) .
By Liouville’s formula from here we obtain

det φ̂(t) = det φ̂(t1) exp
{ t∫
t1

tr
[
â12(τ)q̂(t) + â11(τ)

]
dτ
}
, t ∈ [t1; t2) .

By virtue of Lemma 2.1 from here it follows

(4.4) |φ(t)| = |φ(t1)| exp
{ t∫
t1

Re [a12(τ)q(τ) + a11(τ)]dτ
}
, t ∈ [t1, t2) .

So if φ(t1) 6= 0, then
(4.5) φ(t) 6= 0 , t ∈ [t1, t2) .
Remark 4.1. It can be shown that if for a solution (φ(t), ψ(t)) of the system (4.1)
the function φ(t) does not vanish on [t1, t2) then q(t) = ψ(t)φ−1(t), t ∈ [t1, t2) is a
solution of Eq. (4.2) on [t1, t2).
Definition 4.1. A solution (φ(t), ψ(t)) of the system (4.1) is called t1-regular
(t1 ≥ t0) if φ(t) 6= 0, t ≥ t1.
Definition 4.2. A t1-regular (t1 ≥ t0) solution (φ(t), ψ(t)) of the system (4.1)
is called principal (non principal) if q(t) ≡ ψ(t)φ−1(t), t ≥ t1 is a t1-extremal
(t1-normal) solution of Eq. (4.2).
Definition 4.3. The system (4.1) is called regular if it has at least one t1-regular
solution for some t1 ≥ t0.
Remark 4.2. It follows from (4.5) and Remark 4.5 that the system (4.1) has a
t1-regular solution for some t1 ≥ t0 if and only if Eq. (4.2) has a t1-regular solution.
Remark 4.3. If (φ(t), ψ(t)) is a solution of the system (4.1) then for every λ ∈
H(φ(t)λ, ψ(t)λ) is also a solution of the system (4.1), but (λφ(t), λψ(t)) may not
be a solution of the system (4.1). For example (eit, ekt), t ≥ t0 is a solution of the
system {

φ′ = iφ ,

ψ′ = kψ , t ≥ t0
but (jeit, jekt), t ≥ t0 is not a solution of this system.
Definition 4.4. The solutions (φm(t), ψm(t)), m = 1, 2 are called linearly de-
pendent if there exists λ ∈ H\{0} such that φ2(t) = φ1(t)λ, ψ2(t) = ψ1(t)λ,
otherwise they are called linearly independent.
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Remark 4.4. It follows from Theorem 3.1 and Remark 4.5 that if the system (4.1)
has a t1-regular solution (φ(t), ψ(t)), then it has also another t1-regular solution,
linearly independent of (φ(t), ψ(t)).

Definition 4.5. The regular system (4.1) is called normal (irreconcilable, sub
extremal, super extremal, extremal) if Eq. (4.2) is normal (irreconcilable, sub
extremal, super extremal, extremal).

Hereafter every t1-regular solution of the system (4.1) we will just call a regular
solution of the system (4.1). On the basis of (4.4) from Corollary 3.1 we immediately
get.

Theorem 4.1. The following statements are valid:
I) if the system (4.1) is normal then for its two regular solutions (φm(t), ψm(t)),
m = 1, 2 the inequalities

lim sup
t→+∞

|φ1(t)|
|φ2(t)| < +∞, lim sup

t→+∞

|φ2(t)|
|φ1(t)| < +∞

are valid;

II) if the system (4.1) is irreconcilable then for its two arbitrary linearly independent
regular solutions (φm(t), ψm(t)), m = 1, 2 the equalities

lim sup
t→+∞

|φ1(t)|
|φ2(t)| = lim sup

t→+∞

|φ2(t)|
|φ1(t)| = +∞

are valid;

III) If the system (4.1) is sub extremal then there exists a regular solution (φ∗(t), ψ∗(t))
of (4.1) such that for every regular solutions (φm(t), ψm(t)), m = 1, 2 of (4.1)
linearly independent of (φ∗(t), ψ∗(t)) the relations

lim sup
t→+∞

|φ∗(t)|
|φ1(t)| < +∞ , lim inf

t→+∞

|φ∗(t)|
|φ1(t)| = 0 ,

lim sup
t→+∞

|φ1(t)|
|φ2(t)| < +∞ , lim sup

t→+∞

|φ2(t)|
|φ1(t)| < +∞

are valid;

IV) if the system (4.1) is super extremal then there exist two regular solutions
(φ∗(t), ψ∗(t)) and (φ∗(t), ψ∗(t)) of (4.1) such that

lim sup
t→+∞

|φ∗(t)|
|φ∗(t)| = lim sup

t→+∞

|φ∗(t)|
|φ∗(t)|

= +∞

and for all two arbitrary solutions (φm(t), ψm(t)), m = 1, 2 of (4.1) linearly
independent of each (φ∗(t), ψ∗(t)) and (φ∗(t), ψ∗(t)) the following relations are
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valid

lim sup
t→+∞

|φ1(t)|
|φ2(t)| < +∞ , lim sup

t→+∞

|φ2(t)|
|φ1(t)| < +∞ ,

lim sup
t→+∞

|φ∗(t)|
|φm(t)| < +∞ , lim sup

t→+∞

|φ∗(t)|
|φm(t)| < +∞ ,

lim inf
t→+∞

|φ∗(t)|
|φm(t)| = lim inf

t→+∞

|φ∗(t)|
|φm(t)| = 0 , m = 1, 2 .

Theorem 4.1 shows that in the normal case of the system (4.1) all regular
solutions of (4.1) are asymptotically equivalent. This case differs from the other
cases by the scarcity of asymptotic behavior patterns at +∞ of the solutions of
the system (4.1). In the supercritical case of (4.1) we have “the richest” (among
the other cases) variety of asymptotic behavior pattern at +∞ of regular solutions
of the system (4.1)

Let
a12(t) = a0(t)+ ia1(t)+ ja2(t)+ka3(t), −a22(t) = b0(t)+ ib1(t)+ jb2(t)+kb3(t) ,
a11(t) = c0(t)+ ic1(t)+jc2(t)+kc3(t), −a21(t) = d0(t)+ id1(t)+jd2(t)+kd3(t) .
where am(t), bm(t), cm(t) and dm(t), m = 0, 3 are real-valued continuous functions
on [t0,+∞). Set:

p0,m(t) ≡ bm(t) + cm(t) , m = 1, 3
p11(t) ≡ b1(t) + c1(t) , p12(t) ≡ b2(t)− c2(t) ,
p13(t) ≡ b3(t)− c3(t) , p21(t) ≡ b1(t)− c1(t) ,
p22(t) ≡ b2(t) + c2(t) , p23(t) ≡ b3(t)− c3(t) ,
p3m(t) ≡ bm(t)− cm(t) , m = 1, 3 , t ≥ t0 ,

D0(t) ≡


3∑

m=1
p2

0m(t) + 4a0(t)d0(t) , if a0(t) 6= 0 ,

4d0(t) if a0(t) = 0 ,

Dn(t) ≡


3∑

m=1
p2
nm(t)− 4an(t)dn(t) , if an(t) 6= 0 ,

−4dn(t) if an(t) = 0 , n− 1, 3, t ≥ t0 .
Let S be a non empty subset of the set {0, 1, 2, 3} and let D be its complement

i. e. D = {0, 1, 2, 3}\S.

Theorem 4.2. Let the conditions
α) an(t) ≥ 0, t ≥ t0, n ∈ S and if an(t) = 0 then pnm(t) = 0, m ∈ S, an(t) ≡ 0,
n ∈ D, Dn(t) ≤ 0, t ≥ t0, n = 0, 3;

β)
+∞∫
t0

|a12(τ)| exp
{ t∫
t0

[
Re a22(s)− Re a11(s)

]
ds
}
dτ < +∞.

be satisfied. Then the following statements are valid:
1) the system (4.1) is or else normal or else extremal:
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2) for all T -regular (T ≥ t0) non principal solutions (φ(t), ψ(t)) of the system
(4.1) the integral

+∞∫
T

|a12(τ)|
|φ(τ)|2 exp

{ τ∫
T

[
Re a11(s) + Re a22(s)

]
ds
}
dτ

converges;
3) if the system (4.1) is extremal, then:
31) for its unique (up to arbitrary right multiplier) principal solution (φ∗(t), ψ∗(t))
the equality

(4.6)
+∞∫
T∗

|a12(τ)|
|φ∗(τ)|2 exp

{ τ∫
T∗

[
Re a11(s) + Re a22(s)

]
ds
}
dτ = +∞ ;

is valid, where T∗ ≥ t0 such that φ∗(t) 6= 0, t ≥ T∗;
32) for all non principal solutions (φ(t), ψ(t)) of the system (4.1) the equality

(4.7) lim
t→+∞

|φ∗(t)|
|φ(t)|| = 0

is valid;
33) for two arbitrary non principal solutions (φm(t), ψm(t)), m = 1, 2 of the system
(4.1) the relation

(4.8) lim
t→+∞

|φ1(t)|
|φ2(t)|| = c 6= 0

is valid.

To prove this theorem we need in the following result from [11] (see [11, Theorem
3.1])

Theorem 4.3. Let the conditions α) of Theorem 4.2 be satisfied. Then for all
γn ≥ 0, n ∈ S, γn ∈ (−∞,+∞), n ∈ D Eq. (4.2) has a solution q0(t) =
q0,0(t)− iq0,1(t)− jq0,2(t)− kq0,3(t) on [t0,+∞) with q0,n(t0) = γn, n = 0, 3 and
q0,n(t) ≥ 0, n ∈ S, t ≥ t0.

Proof of Theorem 4.2. Let q0(t) be the solution of Eq. (4.2) with q0(t) = 0. In
virtue of Theorem 4.3 it follows from the conditions α) of the theorem that q0(t) is
t0-regular and

(4.9) Re [a12(t)q0(t)] ≥ 0 , t ≥ t0 .

Consider the integral

ν̃q0(t) ≡
+∞∫
t

φ−1
q0

(τ)a12(τ)ψ−1
q0

(τ)dτ , t ≥ t0 ,
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where φq0(t) and ψq0(t) are the solutions of the linear equations

(4.10)
φ′ = [a12(t)q0(t) + a11(t)]φ , t ≥ t0 ,

ψ′ = ψ[q0(t)a12(t)− a22(t)] , t ≥ t0
respectively with φq0(t0) = ψq0(t0) = 1. By (2.7) and (2.8) we have respectively

(4.11)

|φq0(t)| = exp
{ t∫
t0

Re
[
a12(τ)q0(τ) + a11(τ)

]}
,

|ψq0(t)| = exp
{ t∫
t0

Re
[
a12(τ)q0(τ)− a22(τ)

]}
, t ≥ t0 .

Hence,

(4.12) |ν̃q0(t)| ≤
+∞∫
t

|a12(τ)|
|φq0(τ)||ψq0(τ)|dτ

=
+∞∫
t

|a12(τ)| exp
{
−

τ∫
t0

[
2 Re a12(s)q0(s)+Re a11(s)−Re a22(s)

]
ds
}
dτ , t ≥ t0 .

This together with (4.9) and β) implies that
(4.13)

|ν̃q0(t)| ≤
+∞∫
t

|a12(τ)| exp
{ τ∫
t0

[
Re a22(s)− Re a11(s)

]
ds
}
dτ < +∞ t ≥ t0 .

It follows from here that the integrals ν̃q0(t), t ≥ t0 converge. Two cases are possible:
a) ν̃q0(t) has arbitrary large zeroes;
b) ν̃q0(t) 6= 0, t ≥ T0 for some T0 ≥ t0.
Then by Theorem 3.3 the system (4.1) is or else normal (in the case a)) or
else extremal (in the case b)). The statement 1) of the theorem is proved. Let
(φ0(t), ψ0(t)) be the solution of the system (4.1) with φ0(t0) = 1, ψ0(t0) = 0.
Then by (4.3) φ0(t) is a solution of Eq. (4.10). So φ0(t) coincides with φq0(t).
Therefore from β), (4.9) and (4.11) it follows

(4.14)
+∞∫
t

|a12(τ)|
|φ0(τ)|2 exp

{ τ∫
t0

[
Re a11(s) + Re a22(s)

]
ds
}
dτ

≤
+∞∫
t

|a12(τ)| exp
{ τ∫
t0

[
Re a22(s)− Re a11(s)

]
ds
}
dτ < +∞ , t ≥ t0 .

Let (φ(t), ψ(t)) be a T -regular (T ≥ t0) non principal solution of the system (4.1).
Then q(t) ≡ ψ(t)φ−1(t), t ≥ T is a T -normal solution of Eq. (4.2). It follows from
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(4.13) that µq0(T ; t) is bounded on [T,+∞). Hence, according to the statement 1)
of Corollary 3.1 we have

sup
t≥T

∣∣∣ t∫
T

Re
[
a12(τ)

(
q0(τ)− q(τ)

)]
dτ
∣∣∣ < +∞ .

This together with (4.10) implies
+∞∫
T

|a12(τ)|
|φ(τ)|2 exp

{ τ∫
T

[Re a11(s) + Re a22(s)]ds
}
dτ

=
+∞∫
T

|a12(τ)|
|φ0(τ)|2 exp

{ τ∫
T

[
Re a11(s) + Re a22(s)

]
ds
}

× exp
{

2
τ∫
T

Re
[
a12(s)(q0(s)− q(s))

]
ds
}
dτ

≤M
+∞∫
T

|a12(τ)|
|φ0(τ)|2 exp

{ τ∫
t0

[Re a11(s) + Re a22(s)]ds
}
dτ < +∞ ,

where

M ≡ exp
{
−

T∫
t0

[Re a11(s) + Re a22(s)]ds
}

× exp
{

2 sup
t≥T

∣∣∣ τ∫
t0

Re [a12(s)(q(s)− q(s))]ds
∣∣∣} < +∞ .

The statement 2) of the theorem is proved. Assume the system (4.1) is extremal.
Then Eq. (4.2) has the unique extremal solution q∗(t). Let q∗(t) be T∗-regular
for some T∗ ≥ t0 and let (φ∗(t), ψ∗(t)) be the solution of the system (4.1) with
φ∗(T∗) = 1, ψ∗(T∗) = q∗(T∗). Then by (4.3) (φ∗(t), ψ∗(t)) is the unique (up to
arbitrary right multiplier) principal solution of the system (4.1) and φ∗(t) is a
solution of the linear equation

(4.15) φ′ = [a12(t)q∗(t) + a11(t)]φ , t ≥ T∗.

Consider the integral

ν̃q∗(T∗) ≡
+∞∫
T∗

φ−1
q∗ (τ)a12(τ)ψ−1

q∗ (τ)dτ ,

where φq∗(t) and ψq∗(t) are the solutions of Eq. (4.15) and the equation

ψ′ = ψ[q∗(t)a12(t)− a22(t)] , t ≥ T∗
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respectively with φq∗(T∗) = ψq∗(T∗) = 1. Since q∗(t) is extremal in virtue of
Theorem 3.3 we have

(4.16) ν̃q∗(T∗) =∞.

By (2.7) and (2.8) we have respectively

|φq∗(t)| = exp
{ t∫
T∗

Re [a12(τ)q∗(τ) + a11(τ)]dτ
}
, t ≥ T∗,

|ψq∗(t)| = exp
{ t∫
T∗

Re [a12(τ)q∗(τ)− a22(τ)]dτ
}
, t ≥ T∗.

Therefore

(4.17) |ψq∗(t)| = |φq∗(t)| exp
{
−

t∫
T∗

Re [a11(τ) + a22(τ)]dτ
}
, t ≥ T∗.

Obviously φ∗(t) = φq∗(t), t ≥ T∗. This together with (4.17) implies

|ν̃q∗(T∗)| ≤
+∞∫
T∗

|a12(τ)|
|φ∗(τ)|2 exp

{ τ∫
T∗

Re [a11(s) + a22(s)]ds
}
dτ .

From here and from (4.16) it follows (4.6). Let (φ(t), ψ(t)) be a non principal solution
of the system (4.1). Without loss of generality we may take that (φ(t), ψ(t)) is
T∗-regular. Then q(t) ≡ ψ(t)φ−1(t), t ≥ T∗ is a T∗-normal solution of Eq. (4.2). By
(3.7) from here it follows

+∞∫
T∗

Re [a12(τ)(q∗(τ)− q(τ))]dτ = −∞ .

By (2.7) from here we obtain (4.7):

lim
t→+∞

|φ∗(t)|
|φ(t)| = lim

t→+∞
exp

{ t∫
T∗

Re [a12(τ)(q∗(τ)− q(τ))]dτ
}

= 0 .

Let (φm(t), ψm(t)), m = 1, 2 be non principal T -regular (T ≥ t0) solutions of the
system (4.1). By (4.3) qm(t) = ψm(t)φ−1

m (t), t ≥ T , m = 1, 2 are T -normal solutions
of Eq. (4.2). Then according to the statement 4) of Theorem 3.3 the integral

+∞∫
T

Re [a12(τ)(q1(τ)− q2(τ))]dτ

converges. By (2.7) from here it follows (4.8). The theorem is proved. �
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Remark 4.5. From the estimate (4.13) is seen that if supp a12(t) is bounded,
then ν̃q0(t) has arbitrary large zeroes. Hence in this case under the conditions of
Theorem 4.2 the system is normal. If supp a12(t) is unbounded and the coefficients
of the system (4.1) are real-valued, then it is not difficult to verify that under the
conditions of Theorem 4.1 ν̃q0(t) 6= 0, t ≥ t0. So in this case (4.1) is extremal.
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