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On the asymptotics of counting

functions for Ahlfors regular sets

DUSAN POKORNY, MARC RAUCH

Abstract. We deal with the so-called Ahlfors regular sets (also known as s-regular
sets) in metric spaces. First we show that those sets correspond to a certain class
of tree-like structures. Building on this observation we then study the following
question: Under which conditions does the limit lim. 04 €N (e, K) exist, where
K is an s-regular set and N (e, K) is for instance the e-packing number of K?

Keywords: Ahlfors regular; s-regular; packing number; Minkowski measurability;
renewal theory

Classification: 30L99, 28A80

1. Introduction

In [10], S. P. Lalley proved as an application of the renewal theory the follow-
ing result: If K is a non-lattice self-similar set which satisfies the strong open
set condition, then lim._,o; ePP(e,K) = P € (0,00), where D is the so-called
Minkowski dimension of K. Here P(e, K) denotes the packing number of K with
parameter €. S.P. Lalley continued with his fundamental paper [11], where he
proved abstract renewal theorems in shift spaces and applied those to the study of
the asymptotic behaviour of packing numbers for the limit sets of Shottky groups.

Such approaches based on the renewal theory turned out to be very fruitful
in various contexts, including the most prominent case of the Minkowski mea-
surability. This includes for example results on the Minkowski measurability of
self-similar sets by D. Gatzouras, see [5], or a class of self conformal sets by
U. Freiberg and S. Kombrink, see [4]. Recently, very strong versions of renewal
theorems were obtained by S. Kombrink and M. Kessebohmer, see [9] and [7], and
applied in various situations in fractal geometry in [8]. Similar use of the renewal
theory can also be found when dealing with the so-called fractal curvatures, see
e.g. [15].
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In this paper we take another point of view and discuss how far those ideas
can be pushed in the context of more general metric spaces.

The key notion of our contribution is the concept of an Ahlfors regular or, as
we will call it, s-regular set. A compact subset K of a metric space X is called
s-regular, if there is a Borel measure p and some 0 < «, 3, R < oo such that
0 < u(K) < p(X)<ooand

ar® < u(B(z,r)) < pre

for all z € K and R > r > 0. Many regular sets such as balls or spheres in R?,
or, more general, compact domains with a C? boundary (or their boundaries) are
examples of Ahlfors regular sets. A classical examples of fractal Ahlfors regular
sets are the self-similar sets satisfying the open set condition, see for instance [12,
Theorem 4.14].

We first observe that s-sets can be characterized by the existence of a tree sat-
isfying certain natural properties, which we call an s-tree. Assuming the existence
of an s-tree which satisfies more restrictive conditions, we then prove results on the
asymptotic behaviour of counting functions including packing numbers, counting
numbers and also results on Minkowski measurability. In fact we prove an ab-
stract result on an axiomatically defined class of counting functions, which then
can be applied to the notions mentioned above.

The plan of the paper is as follows. First in Section 2 we recall some background
material mostly from metric spaces, fractal geometry and ergodic theory, including
the main points from the abstract renewal theory introduced in [11]. We also
introduce a concept of general counting function, see Section 2.2.2. This captures
(at least for our applications) all important features of functions such as covering
or packing numbers.

In Section 3 we introduce our key concept of an s-tree, a tree construction that
allows us to characterize s-sets. This is certainly not a new idea, such type of
tree construction appeared for instance in [1] or [16], but to our knowledge, it is
not known that such trees can be used to characterize s-sets. The main points of
this section are Lemma 3.6 and Lemma 3.7, which explain how s-trees relate to
s-sets.

Next Section 4 contains the main result, see Theorem 4.3. It states that under
some technical but natural conditions the limit lim._,o4 °C(e, K) exists, where
C is a general counting function and K is an s-set. Moreover, at the end of the
section we show how to modify the method so it can also be used for proving
Minkowski measurability of K.

In the last Section 5 we present a method how to produce trees satisfying
the assumptions of our main theorem from Section 4. Such trees are produced
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using a class of mappings which we call a-almost similar mappings. Moreover,
we show that the class of a-almost similar mappings somehow relates to the class
of conformal C'* diffeomorphisms, see Proposition 5.4, and so Theorem 4.3 can
be in particular applied to images of non-lattice self-similar sets with respect to
conformal C'** diffeomorphisms.

2. Preliminaries

2.1 Notation and basic facts. For K C R? we denote by | K| the volume (i.e.
the d-dimensional Lebesgue measure) of K. Let (X,d) be a metric space. By
Int A and OA we denote the interior and boundary of a set A C X, respectively.
Given some z € X and € > 0, we denote by B(xz,¢) = {y € X: d(z,y) < €}
the closed ball around x with radius € and by U(z,¢e) = {y € X: d(z,y) < ¢}
the open ball around x with radius e. If # # A C X is some subset of X, the
distance of x to A is denoted by d(x, A) == inf,c 4 d(z,y). Define the parallel set
of a set A with radius € > 0 by

Ac:={z e X: dist(z,A) < e}.

Now let (Y, ) be another metric space and ¢: A — Y be a mapping such that
for some constants 0 < L1, Lo < 0o

(2.1) Lid(x,y) < o(¥(z),%(y)) < Lad(z,y)

for every x,y € A. We call such ¢ to be Ly-La-bi-Lipschitz on A. Note that (2.1)
immediately implies for each K C X that

(2.2) (V(K))r,s € P(Ks) C (Y(K))L,s,

whenever 1: X — Y is onto and Li-Ls-bi-Lipschitz on X.

Moreover, the condition that 1 is onto, can be substituted by the following
assumption (which is relevant when applying Theorem 4.3): suppose §) # K C R?
to be compact, § > 0 and ¢: K5 — R? to be L;-Lo-bi-Lipschitz. Then again (2.2)
holds. To see this, first observe that the second inclusion in (2.2) again follows
directly from (2.1). For the first inclusion, note that the case 6 = 0 is trivial. Next
suppose § > 0 and that there is some y € (Y(K))r,6 ¥ (K5). Then there exists by
the definition of the parallel set also an z € (Int(¢(K))r,s) ¢ (Ks). In particular
we obtain dist (x,1¢(K)) < L16. As K is compact and ¢ is continuous, we can
find a u € ¥(K) such that dist (x,¢¥(K)) = | — u|. Let L be the line segment
between = and u, and define the compact set M = L \ Int ¢)(Ks). Let w be the
nearest point to u in M. Then w € 9¢(Kj5) and dist (w,(K)) < L1d. Define
z =1~} (w) (note that due to the compactness of Ks one has 9¢(Ks) C 1(Ks)).
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One has z € 0K;. Indeed, suppose z € Int Ks5. By the invariance of domain
theorem, the set 1 (Int Ks) is open. Thus w = 9(z) € (Int Ks) C Int ¢ (Ks),
which contradicts w € 9y(Ks).

At present as z € 9K, one has dist (z, K) = ¢, but thereafter (2.1) implies
dist (w, ¥(K)) > L18, which contradicts dist (w, ¥ (K)) < L;0.

2.2 Minkowski dimension and measurability.

2.2.1 Packing and covering numbers. Let (X, d) be a metric space, K C X
and € > 0. A set M C X will be called

o e-separated in K, if M C K and d(z,y) > ¢ for all z #y € M;
o e-covering of K, if K CJ, .5 B(w,¢€);
o e-packing in K, if M C K and B(z,e) N B(y,e) =0 for allz #y € M.

To any of those notions (as well as some others) we can assign a corresponding
counting function. For instance we denote P (e, K') the maximal cardinality of an
e-packing in K and call it the packing number of K (with parameter €). Simi-
larly C(e, K) will be the minimal cardinality of an e-covering of K and is called
the covering number of K (with parameter ¢). We define similarly to P (e, K)
a counting function S(e, K'), which corresponds to the notion of e-separated sets.

The above notions of counting functions also give rise to corresponding defi-
nitions of fractal dimensions. For instance, we can define the upper Minkowski
dimension dim(K) and the lower Minkowski dimension dim ,,(K) of a compact
set K C X using the packing numbers as

Tmpc(K) = limsup— 285D g dim () = liminf — D& )

=0+ log(e) e=0+  log(e)

In fact it is well known and easy to verify that the following chain of inequalities

holds:

S(2¢,K) <P(g,K) <C(e,K) < S(g, K).

Thus we can replace P (e, K) with any other counting function and obtain exactly
the same values for both dimensions. If dima(K) = dim ,,(K), then the common
value is denoted dima(K) and called the Minkowski dimension of K.

If the set K has a well defined Minkowski dimension s, one can ask about
finer properties of the function ¢ — °P(e, K). For instance the finiteness of
limsup, o, e°P(e, K), positivity of liminf. ,o; e*P(e, K), or, as we intend to
do in Section 4 of this paper, the existence of the limit.

It is good to note that the existence of the limit lim. o4 e°P(e, K) is a rel-
atively natural counterpart of the notion of Minkowski measurability in those
metric spaces, where there is no natural notion of volume.
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2.2.2 General counting functions. We want to generalize the notion of
a counting function on a metric space M. Let N be a mapping that assigns
to each compact set K C M and every ¢ > 0 a value N (g, K) € [0,00). Consider
the following conditions:

(C1l) N(e,K) < N(d, K) whenever ¢ <¢;

(C2) N(e,K)> N(e, H) whenever K D H;

(C3) N(e,Ui; K;) <3| N(e, K;) for any compact sets K1, ..., Ky;

(C4) thereis a constant A such that N(e, KUQ) = N(g, K)+N (e, Q) whenever

dist (K, Q) > Ae;

(C5) there is a constant G > 0 (depending on N) such that for every 7,L > 0
one has N(e,K) > N(Le,¢(K)) whenever ¢: M — M is a mapping
which is L-Lipschitz on Kg, and ¢ < T;

(C6) there is a constant B > 0 such that (1/B)S(Be,K) < N(¢,K) <
BS(e/B, K).

Note that if both (C1) and (C6) hold, it follows that
(2.3) B>1.

It is easy to verify that P, C and S satisfy all of those conditions. In fact
conditions (C1)—(C3) and (C6) are trivial and it is also easy to see that (C4)
holds with A = 2 for P and C, and with A = 1 for S. The only nontrivial
condition is (C5), and we will provide a proof that it holds with G = 1 for the
packing number P. The proof for C and S is similar, the constant G for C and S
is equal to 2 and 0, respectively.

To do so let 7 > 0 and let ¢: M — M be a mapping which is L-Lipschitz
on K. Consider for some ¢ < 7 an Le-packing z1,...,z, of ¢(K) and find y;
such that z; = ¢(y;), ¢ = 1,...,n. We will prove that y1,...,y, is an e-packing
of K. Suppose that this is not the case. Then there are different ¢ and j and
z € M such that z € B(y;,e) N B(y;,e). This in particular implies that z € K,
and therefore ¢(z) € B(z;,Le) N B(x;, Le) which is a contradiction to the fact
that x1,..., 2, form an Le-packing of ¢(K).

2.2.3 Minkowski measurability. Suppose that K C R? is a compact set, than
there is another way of defining the Minkowski dimension, namely via the scaling
of the volume of its parallel sets. More precisely

—— . log(|K<|) : o log(|KL|)
d K)=d-1 —_— d d K)=d-1 f————.
m e (K) Sor logle) im v (K) Dot log(e)
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We can also define the upper and lower s-Minkowski content by

TR — 1 | K| SO K|
M (K) = limsup , and MP(K) = lérgérlfgd <

Those two notions are closely related to the Minkowski dimension by the fact that
dimp(K) = inf{s: M (K) = 0} and dim ,,(K) = inf{s: M*(K) = 0}.

The set K is called Minkowski measurable, if M (K) = M*(K) € (0,00) for
some s. The common value is then called Minkowski content of K and denoted
by M?*(K). Note that the value of s is in that case necessarily equal to the
Minkowski dimension of K.
Define M (g, K) = |K.|/e?. Then K is Minkowski measurable if and only if
61_1>%1+5 'M(e, K) € (0, 00),

where s is again the Minkowski dimension of K. The mapping (e, K) — M(e.K)
satisfies all conditions (C1)—(C6) but not (C5). Indeed, the only nontrivial ones
are (C1) and (C6). To see (C6) it is sufficient to observe that

VaS(e, K) < M(e, K) < 2%V,;C(e, K),

where V; is a volume of the d-dimensional unit ball. Condition (C1) is a conse-
quence of the following lemma:

Lemma 2.1. Let K C R? be a nonempty compact set. Then the function

(2.4) | Ke|

is nonincreasing on (0, 00).

PRrROOF: Let f: (0,00) — R be defined as f(r) = |K,|. It is well known, see
[14 Lemma 2, Theorem 1], that f/ exists everywhere in (0,00) and that
= [, fi(t)dt. Moreover, the function r — f}(r)/r?~! is nonincreasing.

Those facts imply

(2.5) 0= [ roaz [ o) a= 5.

Having now 0 < r < s we can write

/f+ dt</f+ Tt

26) FL(r) st —
—Jus & <f<>((r)—1)’
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where the last inequality holds by (2.5). Regrouping terms in (2.6) we obtain

S

7 < () 500,

r

which is what we need. O

Although (C5) is not valid for M, it satisfies a weaker condition
(C’5) there is a constant G > 0 such that N(e,K) > (L/M)IN(Le, $(K))
whenever ¢ is a mapping which is L-M-bi-Lipschitz on Kg, and ¢ < 7.

To see this pick G = 1. Then each ¢ which is L-M-bi-Lipschitz on Kq, is also
L-M-bi-Lipschitz on K. for every 0 < ¢ < 7, and so for any such € we can write

Mee. K - el 5 10D 100K )0)

cd = Mded = )fdgd
= (LMl (Y wre, o)),

where the first inequality holds due to the area formula for Lipschitz mappings,
and the second one due to (2.2).

2.3 Self-similar sets. Let ¢1,...,¢on: R = R? be contracting similarities
with contracting ratios 0 < r1,...,ry < 1. It is well known, see e.g. [6], that
there exists a unique nonempty compact set K satisfying

N
}(ZZLJ@KK7

This is then called the self-similar set generated by similarities ¢1,..., N (the
so called iterated function system — IFS). The self-similar set K (or rather the
mappings ¢1,...,en) is said to satisfy the open set condition (OSC), if there
exists a nonempty open set U C R? such that

o p;(U)CU foreveryi=1,...,N;

o pi(U)Ng;(U) =0 whenever i # j.
The set U is thereafter called the feasible open set for K (or for the mappings
Py s PN)-

If (OSC) is satisfied, the unique solution s of the equation ) rf = 1 (the so
called similarity dimension of K) is then equal to both Hausdorff and Minkowski
dimension of K. Note that by [13] the open set condition is equivalent to the strong
open set condition (SOSC), where one additionally assumes that K N U # 0.

The self-similar set K (or rather the ratios ri,...,ry) is called lattice, if there
exists some r > 0 such that log(r;)/log(r) € N for every ¢ = 1,...,N. It will be
called non-lattice, if it is not lattice.
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2.4 Doubling and s-regular spaces. One of the most important properties of
s-regular sets is the fact that their lower and upper Minkowski dimensions are
both equal to s, and the same is true for the Hausdorff dimension. This can be
formulated in a more quantitative way by observing that there are 0 < L* < 0o
such that

(2.7) liminfe*N(e, K) = L~ and limsupe®N(e, K) = L*.
e—0+ e—0+

Here the function NV can represent any counting function defined in Section 2.2.1.

Definition 2.2. A metric space (X, d) is called doubling, if there exists a number
M € N such that for all x € X and all r > 0 there exist x1,...,zy € X satisfying

M
B(x,2r) C | B(ai,r).
1=1

It is good to note that every s-regular set is also a doubling metric space, this
can be seen from the fact that the doubling property is equivalent to the existence
of a so-called doubling measure.

We conclude the section with the following simple observation concerning s-
regular sets.

Lemma 2.3. Let K be an s-regular set and € > 0. Then there is a constant
R = R(¢e) € (0,00) such that

1 7e1\¢ _ S(eq, K) €1\°
2.8 — (=) < —/—/—— L < R(—=
( ) R(EQ) - S(El,K) - (52> ’
whenever € > e1,e9 > 0.

PRrROOF: Fix ¢ > 0. From observation (2.7) and the fact that ¢ — S(e, K) is

positive and bounded on any interval not containing 0, it follows that there is an
C = C(e) € (0,00) such that
1
— L~ <S(,K)<CL*
C
for each 0 < &’ < e. Thus, if 0 < e1,e2 < &, one has
S(e2, K) (€1>S e5S(e2, K) <2 Lt (€1>S
S(e1, K) \ea/ &3S(e1, K) = L= \eg/’

and similarly
L~ (5_1)6 < S(EQ,K)-
C?L+ \ey/ ~ S(e1, K)

Setting R(g) := C?(L" /L) shows the statement. O
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2.5 Shift space and shifts of finite type. For N > 2 let Ay :={0,...,N—1}
be the alphabet and Xy = AY; be the space of addresses with N symbols. Given
some address w = (w1, ws,...) € Xy, we use the notation w = wyws ... Similarly,
if we have some k > 0, we denote the first k symbols of w by w|x = wiws...wi €
{0,...,n — 1}*. In case k = 0 one has wl;, = () for all w € X, which is called
empty word. If T C Yy is a subset, T* := {w|: w € T, k > 0} denotes the set
of all finite words of T. To distinguish between members of T and T*, we use
capital letters for finite words I € T, and Greek lower-case letters for addresses
weT.

Given some word I € T*, there exists by definition an address w € T such
that w|y = I for some k > 0. As k does not depend on the choice of w, |I| =k
is well defined and called length of I. The length of an address w € T is set to
|w] == co. Similarly to addresses we define Iy := I1I5...I; for all I € T* and
0 <k <|I|. We have T* = J,— T, where T, := {I: I € T*, |I| = k} denotes
the set of finite words of length k. As a special case, 71 C Ay for all 7 C Xy
follows.

Given z,y € T*UT such that |z| < |y|, we say « and y are incomparable,
if xp # yi for some 1 < k < |z|. We write z < y, if xp = yi for all 1 <k < |z|.
If < y does not hold we write x £ y. The concatenation IJ of I,J € Xy is
defined to be IJ == I115 .. .I|[|J1J3 o J‘J‘ € X%. We agree that concatenation
has higher precedence than the length operator; that is IJ|, = (IJ)|x for all
I,JeT*and k> 0. For each I € T*, the set [I] :={w € T:w, = I} for k =
1,..., 1|} is called cylinder of the word I. We set [I] :== T, if I is the empty
word in T .

We equip X with the product topology, which is induced for example by
the metric (w,w’) — 1/2", where n := max{k > 0: w|y = '|x}. Thus Xy is
a compact metric space. The mapping on: Xy — XN, W = Wiws - -+ — Waws . . .
is called full shift on ¥ . It is continuous with respect to the product topology.
We will simply write o in the cases when the subscript NV will be clear from the
context.

Let T C Xy be an o-invariant subset, that is, c=1(7) = 7. We say that
(T,o0) is a shift of finite type, if there is an irreducible and aperiodic matrix
A C{0,1}N*N (the so-called transition matriz) such that

T={weXn: Au, w.,, =1 forall ne N}

Note that for simplicity we write (7, 0) instead of (T,o|7r). Now if f: T — R
is a continuous function, denote for each n > 0 by S, f: T — R the mapping
defined by

Snf(w) = f(w)+ flow)+ -+ f(o" 'w).

7
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Also, define for n > 0 the nth variation of f by

var, (f) ==sup{|f(w) — f(T)]: w €T, wln =7|n}

Although var,(f) depends on 7T, and this dependence is not reflected by the
notation, throughout the paper the subshift (7, 0) should always be clear from
the context. For 0 < o < 1 we in addition define

var, (f)
=g - 7
| fla SUp—

Y

and call f «-Hélder continuous if |f|, < oo.

We say that functions f,g: T — R are cohomologous, if there is a continuous
function h: 7 — R such that f—g = hoo—h. A function f will be called lattice,
if it is cohomologous to a function that takes values in a proper closed (additive)
subgroup of R.

If T C Xy is a subset, we can represent 7 U T* as a subset of ¥n41 by
identifying I € 7* with wy == (I1,I2,...,[j;, N,N,...) € ¥ny1, which then
naturally extends all the notions defined above to 7 U 7*. In particular the
following lemma holds, proof of which is straightforward:

Lemma 2.4. Let m > 0 and T C ¥y be compact. Then {I € TUT*: |I| > m}
is compact in Ypn41.

2.6 Renewal theorems. Assume (7,0) to be a shift of finite type. Let f, g
be a-Hdélder continuous on 7 U 7™ and let f,g be their respective restrictions
to T. Suppose that f. >0 on T U(J;2, T; for some k > 0, and g, > 0, but not
identically 0, satisfying var,(g.) = 0 for some n € Ny. Suppose furthermore that
f is non-lattice. Let G: R — R be a nonnegative monotone function. Define
P(L)CR X (TUT™) by

(2'9) P(L) = {(tvl): S\I\Jrlf*(IL) >12> S]f*(IL)7 Jj< |I|}
and Ng: TUT* = R by

(2.10) Ne(a, L) =Y g.(IL)G(S 131 f+(IL) — a)xp(ry(a, I).
I

The following renewal-type theorem was proved by S. Lalley in [11].

Proposition 2.5 ([11, Corollary 3.2]). Under the conditions above one has

Ng(a,w) ~ e /000 G(t) F(w, dt),
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whenever w € T U|J;2, Ti. Here § is the unique zero of the pressure function
t— p(—tf), and F is of the form

F(w7 t) — C* (w) (66 min(t— fs«(w),0) e—éf* (w)),

where C is a positive continuous function on T U T* depending only on f,
and g.

Note that in [11] the result is stated only with & = 1, but the exact same proof
holds for any k > 1.

3. Ahlfors regular sets and their corresponding s-trees.

This section is devoted to the observation that the s-regular sets can be char-
acterized by the existence of a tree satisfying a simple list of properties. We start
the section by defining this kind of tree, which we will call an s-tree.

Definition 3.1. Let (X,d) be a metric space, N > 2, s € [0,00) and ( #
T C X n. Suppose there exist some constants g, C, D € (0, 00) such that for every
I € T* there are 7 € X and 0 < r7 < oo satisfying the following properties:

(T1) d(xy,xy) > C(ry+ry) forall J € T* such that I and J are incomparable;
(T2) diam ({z75: J € X%, [J € T*}) < Drp;
(T3) for all n > 0 one has

Z 1 =Th

|J|=n
1JeT™
(T4) rr —» 0 as |I| — oo

(T5) rrj 2 0rr, if je Ay and I[j € T*.
Then the triple T = (T,{zr}re7+,{r1}1e7+) will be called s-tree in X. A set
K C X defined by K = {z,: we T, z, exists}, where z,, = lim,, o0 7, , will
be called the s-set generated by the s-tree T. Given some finite word I € T*, we
define Ky ={z, e K: we T, I <w}.

Remark 3.2. From (T4) and (T5) it follows immediately, that 0 < ¢ < 1. From
(T3) it follows, that r;; < ry for all I, J € T* such that IJ € T*. In addition,
we may always assume that rp = 1 and

(3.1) Co < D.

Remark 3.3. Note that the existence of an s-tree can be seen as a natural
counterpart of an open set condition used e.g. in the context of self-similar sets.
Indeed, let K be a self-similar set in R? generated by similarities ¢1, ..., px with
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contraction ratios r;. Let U be a bounded feasible open set in (OSC) for this sys-
tem of mappings. Pick xy € U arbitrary and put D := diam U, C = dist (xg, U°)
and ¢ = min; ;. Define r; and ¢; in the usual way for every I € ¥, and put
xy = pr(xp). Then it is easy to verify that the triple (Xn, {x;}, {rs}) is an s-tree
(with constants C, D and p as above) that generates K is the sense of the above
definition.

It may be also worth noting that there is also some very mild counterpart to
the strong open set condition in the sense that we can additionally assume that
{zr}re> C K. This condition then implies that the overlaps of a two sets K
and Ky with I and J incomparable are small which we will extensively use in
Section 4, see Lemma 4.8.

Note that in the similar case it is no problem to have condition {x;};e7+ C K
satisfied. To do this it is enough to consider U to be feasible for (SOSC) and
then pick 9 € KNU.

Remark 3.4. From now on we will adopt convention that all concatenations
will be assumed to be in 7*. For instance, condition (T3) can then be written
as > jj=n71s = 7 and condition (T5) as r;; > or; (without any additional
assumptions).

Remark 3.5. For I € 7* and n € N define 7* as the collection of all Z,
T C Ug>p Tk, satisfying

o for each w € T there exists a unique J € Z such that J < w;

o there is some J € Z such that I < J.
If ) 7T C Xy is closed, condition (T3) can be replaced by the following more
technical, but also more flexible condition

(T°3) there is a constant 0 < E' < oo such that for all I € T* one has

LS Y v < B
Ijez
for each Z € 7%, n > 0.

First we shall show, that (T3) implies (T’3). We do so by construction a mea-
sure on 7 with the help of (T3). Define A := {0} U{[I]: [ € T*}. It is easy to
see that A is a semi-ring on 7, that is one has

o e A
o A,Be Aimplies ANB € A;
o A, B € A, then there exist finitely many pairwise disjoint C; € A such
that BN A=, C.
As T is compact, each cylinder [I] € A is open and closed in 7. Furthermore we
have that A is a generator of the Borel o-algebra of 7. Next define v(() = 0,
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v([I]) == rj for all I € T*. Clearly by (T3) v is an additive, finite function
on A. As A is a semi-ring, we also have that v is subadditive. To show that
v is o-subadditive, suppose A, A; € A to be such that A C |, A,. As T is
compact, there is a finite covering A C Ule An,, and the o-subadditivity follows
from the subadditivity of v. Now using Carathéodory’s extension theorem, there
exists a unique measure p on T such that p|4 = v. From this it is easy to see
that (T’3) is satisfied with constant E = 1.
If r; satisfy (T’3), then there are 7; such that

1 .
(32) 0< m’f} S 'F] S E1/57"] < o0

for every I € T* and for which conditions (T1) to (T5) hold. Those can be defined

using
s . s . . s
73 = su inf E r = lim inf E r .
4 p <I6Tm IJ> m—»0o0 <Ie7’m 1

mz20 I 1jez I Jjez

Note that above limit actually exists for fixed I, as 7, D ’7'1"”Jrl for m > 0.
The validity of (3.2) is clear from the definition. Conditions (T1), (T2), (T4)
and (T5) follow from (3.2). It remains to verify (T3). First we prove

(3.3) > <

|J|=n

Suppose for contradiction that
|J|=n

for some I, n and a > 0. This implies that for every m > 0 there is an Z"™ € T,

such that
Z Fry = Z rry+ o
|J|=n Ijez™

Now define for each m > |I| +n and J such that IJ € T* and |J| =n
I7={LeZI™: IJ<L}.
By the definition of 7§ ; we have

lim inf E Ty > T
m—r oo
Lezm
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for every J. Hence, for each mg > |I| + n,

lirrlri}glof Z riy :l}}bn_gglof Z Z ry > Z 1irrbn_>iglof Z ry

Ijez™ |J|=n LET |J|=n LeTIT
~S S
> g iy > g riy+a.
|J|=n 1jezmo

Thus
L s - s
it 3 iy zlmint ) vy o
1jexm 1Jjezm
which is not possible, as by (T’3) one has
1 S : : S S
0< ETI S lim inf Z Try S E'f"[ < 00.

m—oo
Ijezm

To prove the equality suppose for the contradiction that

SR, < —a
|J]=n
for some I, n and a > 0. Let k be the cardinality of the set {IJ € T*: |J| =n}.
Due to the definition of 7}; we can find for every m some I'"* € 7/ such that
o
i — — <77
Z L = 5p ST
1JLETT
Consider now

"= | J {1JL e 17},

|J]=n
Then
Z T?J*%: Z ( Z T?JL%) < Z Fry ST — o
IJjexm |J|=n NIJLETT |J|=n
and so

~s « s
T; + 5 < 7’;,
which is a contradiction to 0 < 7§ < oo.

The section consists mainly of two lemmas, namely Lemma 3.6, where we
construct an s-regular set given an s-tree and Lemma 3.7, where we assign an
s-tree to every s-regular set. This latter observation is not really anything new,
similar tree constructions already appeared for instance in [1] and [16]. The idea
of the proof of Lemma 3.6 is essentially the one of [6, 5.3]. In a way, it can be
seen as pushing the strategy of this proof to its boundaries.

However, this kind of equivalence between trees and s-sets seems not to appear
in the literature, and for that reason we want to include the proofs here.
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Lemma 3.6. Let T = (T,{xs}ire7+,{rr}1e7+) be an s-tree in a complete dou-
bling metric space such that T is closed. Let K be the s-set generated by T.
Then K is s-regular, and dimpg K = dimy K.

PRrOOF: First note that (T2) implies
(34) diam (K]) S DT[.

As X is complete, the mapping 7: T — K, 7(w) = 2, = limy, 00 2, is by
(T2) and (T4) well-defined. In addition, 7 is continuous. Let v be the Borel
measure such that v([]) = r§ forall I € T*, see Remark 3.5 for the construction.
Set p:=vom~'. Then

(3.5) (K1) = (1)) =75
First we prove that there is a constant a > 0 such that

pBar)

TS

(3.6)

for every x € K and diam K > r > 0. To do so fix some z = x,, € K. Using (3.4)
and (T4), there is a unique number n > 1 such that

(3.7) diam (K|, ) < r < diam (K,,_,).

[n

Put I :=w|,. Then z € K; and

w(B(z, 7)) (?;7) wu(Kr) (?;5) i (T>5) TN (T>2) o°diam *(Ky, _,)

rs - rs - rs = rs - Dsrs
(3.7) 0° 0°
S — —_
2 s = >0

Next we prove that there is a constant S > 0 such that

w(B(z,r))

(3.8) <

for every z € K and 1 > r > 0. For each w € T let p(w) be the smallest number
satisfying r,,,, <r. Then using (T5) one has for all w € T

(3.9) 0" < 0wy S Talpey < T

Define Z := {w|pw): w € T} € T*. Clearly T is at most countable and [I] N
[J] =0 for I # J € Z. Thus by setting j; = v|;; om~ ! we obtain

u:ZM.

IeT
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Fix x = 2z, € K. Let J be the set of those I € Z such that K; N B(x,r) # 0.
Pick I in J and let @ be such that zo € Ky N B(x,r), then

(3.9)

(T2)
d(zr,zy) < d(zr,zg) + d(zg,x) < Drg +r < (D4 1D)r

lp()
Moreover, if J € J such that I # J then by (T1) and (3.9)
d(zr,xzy) > C(ry +ry) > 2Cor.

Thus {z;: I € J} forms a Cor-separated subset of B(z, (D + 1)r). Using (3.1),
one can choose by [2, Lemma 3.3] some constant 5 € N such that #7 < § and 3
is independent of 7, r and x. Hence

pB,r)) _ pBr,r)0K) #(Ures K1) < 2reg 1K)

/’-AS /ré rrS /ré
> ry (3.9) 4TS
AT Ak # " _T<s
r r
So K is s-regular which in particular implies dimy K = dimy K = s. (I

Lemma 3.7. Let (X,d) be a complete metric space. Suppose K C X to be
a compact s-regular set with respect to a Borel measure |1 with corresponding
constants « and 3. Then there exists an s-tree T generating K.

PRrOOF: Without any restriction we may assume that sptuy = K. Recall for
e > 0 the packing number P(g, K), and denote for simplicity P(e) = P(e, K).
Fix 1/6 > 6 > 0. For each n > 0, let V,, = {af,...,#p;.)} be some maximal
d™-packing of K. We equip V,, with some strict, total order <,,, which means

1‘711 '<n s '<n l‘?z(én)

for all n € N. Fix some arbitrary 2° € K and define V, := {2°}. This in partic-
ular means that for n € N
(1) every V, is 26"-dense;
(2) every V), is §"-separated.
Define V := {J,,~q Vn. We consider V to be the set of vertices of a oriented tree V
with root 20, where the set of edges € is defined in the following way: One has
(z,y) € £ if and only if
ox €V, and y € V,41 for some n € Ny;
o d(z,y) = d(y, Vn);
o if d(z,y) = d(y, V) for some z € V,,, then = <,, z.
The last of the above properties ensure, that two distinct vertices in V,, cannot
have a common successor. Hence, given n > 0, for each y € V,, there exists
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exactly one z € V,,_1 such that (z,y) € £ Now assume x,y € V,, © # v,
z € Vpy1 and (x,2) € £. Then (1) implies

(3.10) d(z,z) < 26",

and (2) implies

(3.11) d(y, z) > %

Next note that the number off offsprings of any x € V is bounded from above.
Indeed, let = € V,, and u; € Vj,41 for j € I' be pairwise different offsprings of x.
Then by (3.10)

(3.12) B(z,(2+6)6™) 2 | B(ui,6™™),
Jjer
and the balls B(u;, ") are pairwise disjoint. Hence we can write
(3.13) B(2+16)°(6")° > p(B(w, (24 6)5")) = Y p(B(ui, ")) > Tas®(5")°,
jer

which implies

(ST

Also, each z € V,, has at least one successor: As V,, 11 is 26"t dense in K, there
has to be at least y € V,, 41 satisfying d(z,y) < 26"TL. Using § < 1/6 this implies
d(x,y) < 6™/3, and by (2) we obtain (z,y) € £. Hence V can be represented by
a subset 7 C Xy with V, corresponding to {z1};e7~ in the following way: If

(% 21,), (i, 28,), . (@] el ) €€

is a path in V, then I := iyiy...4, € T, and 27 = 27 . By (3.10) we have

= 2
(3.14) d(zr, ) <2y 0% = T s =: Dsoll

for every I,.J € T*, which shows that {z,,, }7Z, is a Cauchy sequence. This
allows us to define x,, and K for all w € 7 and I € T* in the usual way.
Furthermore,

S 9slJil
2 1-6

d(zr,x L) > dlar, ) — d(x g, 2 51) >
(3.15)

> (%f = )5“' =: 20561
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when I, JiL € T*, |I| = |J|, and I, J are incomparable. Combining (3.15), the
fact that 2Cs < 1 and (2), we obtain

d(l‘], IJ) > 205(5‘1‘

provided I,J € T*, |I| <|J|, I, J are incomparable. Next put

1/s
rr :u(K[\ U K_;) ::u(M[)l/s,

[I]=]J]|
J<pexI

where <jox denotes the lexicographical order of finite words. It is not difficult to
see that for allm € N and I € T*,

U My; = My,
|J|=n

where the union on the left side is disjoint. Indeed, the disjointness is clear from
the definition, and one can write

o= U (s Y )

[J|=n [J|=n ILI=|T]+n
L<jexIJ

:(UKU)\<H U m)

|J|=n |J|=n|L|=|I|4+n
L<jexIJ

(0 (e )

[7|=n \|L|=|I] |L|=n
L<jex! L<jexJ

:K1\< U KL>:M1.

|L|=|1]
L<jexI

From this, rj =3_;_, r7; foralln € Nand I € T* follows, which implies (T3).
By (3.14) and (3.15) we have
K N B(xy,Cs1"l) € M; € Kt € B(ay, Dsdl')
and therefore
aC; (M1 < w(B(zr, Cs611)) = (K N B(xr, Cso1))
< w(My) < p(B(wr, Dso")) < gDz (s"1)"
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which in particular implies
(3.16) 556‘” <rr< 55(5‘1‘

for some Cs, Dy > 0. Now, equations (3.14) and (3.15) together with (3.16) imply
(T1) and (T2) with appropriate C and D. O

We conclude the section with the following one simple but useful observation
concerning the s-trees.

Lemma 3.8. Let (T,{xr}re7+,{rr}re7+) be an s-tree and suppose that (T3)
is replaced with (T°3). Pick some i(I) € Xy for every I € T* in a way that
Ii(I) € T*. Define for each I € T*

T*(I) == {J € T*: IMi(IM) £ 1J for any M € T*}.

Then
(3.17) > riy < Ei(1- o)
J: JET*(I)
|J|=m

for every I € T* and m € N.

PRrROOF: We will assume that condition (T3) holds, the general case then follows
from Remark 3.5. We will proceed by induction in m.
Pick I. For m = 1 formula (3.17) reduces to

(3.18) Z ri; <ri(l — o).
i: IieT*
ii(1)
To prove this we can write
S\ S S\ S . S S\ S
=X -2 GrEH X G e
i I Tr Tr rr
i [i€T* i LieT* i LieT*

ii(I) i#i(I)

which is the same as (3.18).
For the induction step, suppose that (3.17) holds up to m — 1. Then

S — S — S
E Tryg = E Trig = E TTig

J: JET*(I) iJ: iJeT*(I) i,J: JET*(I4)
|J|=m |J|=m—1, |J|=m—1,i#i(I)
s\ym—1 s s s\m
< (1-20°) E ri; < rp(l—0%)",
i: IieT*
i#£i(1)

which is what we want. O
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4. Measurability

4.1 Setup and main results. In this whole section, N will be a function sat-
isfying (C1)—(C6). Recall that those come with the constants A, B and G from
the conditions (C4), (C5) and (C6), respectively.

Let (X,d) be a complete, doubling metric space and K C X be an s-set.
Recall the conventions from Remark 3.4 and let T = (T,{xs}re7+, {r1}1e7+) be
a corresponding s-tree to K, with constants C, D, and ¢o. We will also assume
(T73) instead of (T3) with the corresponding constant E.

Throughout this section we impose several strong additional assumptions on T,
to prove the main result, which concerns the asymptotic behaviour of the function

e e’N(g, K).

It is well known that both limsup and lim inf of this function are always positive
and finite when K is an s-set, cf. Lemma 2.3. The question whether the actual
limit exists is more delicate. This section heavily uses the techniques developed
in [11], especially the strategy of the proof of the “packing measurability” for the
limits sets of Schottky groups. The only essential difference is the fact that we

have to deal with overlaps, meaning that the unions K; = U‘J‘ K1y are not

necessarily disjoint, cf. Lemma 4.8. First we will assume that -
(M1) (T,o0) is a subshift of finite type;
(M2) {zr}rer C K;
(M3) r; < Rrp for some 0 < R < 1.

Note, that for I,IJ € T* it follows from (M2), that
(4.1) xry € Kj.

The case I = () is clear, as Ky = K. Assume 0 #1 € T*. Aszy;y =x, € K =
UILIZ\I\ K, for some sequence w € T, there is an L € 7|7 such that z;; € K.
If I.J is incomparable to L, then (T1) yields d(z1s,x,),) > Crry for alln > |L|,
which is a contradiction to z, = lim,—c Ty, Thus L < IJ, which means
I=1L.

Observe that when imposing (M1) and (M2) we, in particular, obtain the
following: there is a constant F' > 0 such that

(42) diam KJ Z FT.]

for every J € T* (compare this with (3.4), which holds for any s-tree). To prove
this observation first note that since (7,0) is a subshift of finite type (due to
(M1)), there is some p € N such that for every J € T* there are I, € T*, I #1
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with |I| = |I] = p and JI,JI € T*. Now

(4.1) (T1) (T5)
diam K; > diSt(l‘J],.Z'JI‘) > Cryr > CoPry= Fry.

In particular, this implies that there are constants Y, > 0, m € N, such that for
any I,J € T*

(43) diam (K]J) Z T‘J‘diam (K])
Indeed, we can write

(4.2) (T5) (T2) FolJl
diam K;; > Frry > FQ‘J‘TI > 0

diamKI = T|_]|diamK1.

Next we will suppose that

there are bi-Lipschitz mappings ¢;: X — X and W, §y > 0 such that

(M4) wr(Kj) = Ky and such that (Kj),,was C ¢1(Kgs) for every § < dy.
Here we used the usual notation ¢y == ¢, o--- oy, for I # 0, and gy = id.
In the applications we will usually assume that (7,0) = (Xn,0) is the full shift
with N symbols, and the mappings ¢; are then constructed as ¢;(zy) = Zjw,
weT.
Recall that G is the constant guaranteed for the counting function N by

property (C5). Pick dg > £ > 0 and let nf{, = nf{, (G, &) be the optimal constants
such that

_ T, T;.
(4.4) ni,Jr—j d(z,y) < d(pi(x), pi(y)) < “iﬁr—f d(z,y)

whenever z,y € ¢ (Keqe).
Note that by iterating (4.4) one obtains

_ Tr .
(4.5) Fram s d@y) < dlpr(@), er(y) < vl ;7> d,y)

whenever z,y € ¢;(Kge). Here we denoted

11|
+ . +
(4.6) Krg—= H Rl on(1)J
n=1

In what follows we will assume that

(M5) K}:,J — 1l and as |J| — oo uniformly in I.
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Now put

) and f2(id) :zlog( o ),

Tigk;

f1(@J) :=log (

+
TiJK; g

which yields for I.J € T*, I # 0,

To(I)J To(I)J
4.7)  fi(1J) = log (#) and  fo(IJ) =log (#)
IR o(D)T IR o(D)T

Set f1(0) == f2(@) := 0. Also, by (4.6) we have for all I.J € T*, I # (), (recall the
definition of S, f in (2.5))

(4.8) Smfl(IJ):log< 1 ) and S|1|f2(IJ):log< 1 )

r1IK] TIIKp
Assume additionally

Tiw .
LR 0iw € (0,1) as n — oo, and w — g, continuous on 7 and,
Twl|n
(M6) moreover, there are Hélder continuous extensions f; of fi to TUT*
~ ~ 1
such that f1(w) = fa(w) = log (—) =: f(w).
Ow
Note that f is Hélder continuous and f > 0.
Finally assume

(M7) f is a non-lattice function on 7.

If one has an s-tree which satisfies above conditions, by switching to a higher
power of the underlying dynamics, one obtains another s-tree which generates
the same s-set. The advantage of the new tree are smaller ratios, which is of
importance in the later proofs. Thus before we proceed, we state the following
technical lemma:

Lemma 4.1. Let T be an s-tree and K its generated s-set. Suppose T satisfies
(M1)—(M7). Then for each € > 0 there is an s-tree T’, such that

(1) T’ satisfies (M1)—(MT);

(2) o, 0l R <eforI' e (T)*, w' eT';

(3) T’ generates K as well.

PROOF: For given m > 1, the set 7, of words with length m in 7* can be
seen as an alphabet of the address space Xy _, where N, = #7,,. Define the

m?
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transition matrix 4’ € {0, 1}Vm*Nm such that
/11...Im,J1...Jm =1 < Ap,, =1
In this way we get a new subshift of finite type (77,0’), where

T ={weXy,: A =1 forall n e N}.

Wn ,Wn+1
Note, that (77,0") is topologically conjugated to (7,0™), where

a'm :: o‘ O -«++0 o‘
is the mth power of o. In addition, the following mapping gives rise to a homeo-
morphism ®: T — T':

TOw=wiws.. .WnWmil-- -Wam - - -

= (W W) (Wit 1 - Wam) =W € T

Using this relation, define for each I' = (I1...IL)...(IF...Ik) € T! and
weT

/
Ty =X
I FESON £SO £ DO £

tmettt 1

Ty = LV E 0 N L L.
P = Pri  Ib,..Ik. . Ik
z., = lim ac:),‘ = lim z,,,-

n—00 n n—00 mn
Note that for all I’ € T’ one has r}, < R™. Clearly (T1)—(T5) are satisfied with
C':=C, D' =D and ¢ = ¢™. In particular (T’3) holds with E’ .= E. It is also
immediate that

K={z,: weT, z, exists} C {z/,: ' €T, 2, exists} = K'.

As (X,d) is complete, z,, does exist for each w € T, thus K = K’, which
shows (3). This also gives (M2). The property (M3) is satisfied by R’ := R™.
The property (M4) is trivially satisfied using ¢’,. For (M5) note that for all
' = (1f...0k). ..t ... 1t), J = (Jt...JL)...(JF...JE) € (T')* one has
by (M5)

m’i_], = Ii}t’J -1 as |J]|— oo,

where [ = I{...IL ... IL... I and J == J}...J}

m °

P TR As w i g €
(0,1) is continuous on a compact space, there is an L < 1 such that g, < L for
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all w € T. This yields in a similar way as above

m—1
(4.9) i w/l" — H O (i ... =: 0}, € (0,L™) C (0,1) as m— 0o

w/\n

for all ¥/ = iy...4,, € T{ and w’ € T'. Note that as w > g, and ¢: T — T
are continuous, also w — ggn () is continuous for each n > 0. The continuity of
W=l = HZ:OI 0on () follows then from the continuity of w’ + w.

For (M7) first note that if f,g: T — R are a-Holder continuous, then also
f+g and f oo™ are a-Holder continuous for each n > 0. Next, observe that for
each w € T’

) (4.9) Zl g(ggn w)) :mz_:f(gn
n=0

where f: T — R is the non-lattice a-Ho6lder continuous extension of f; and fa.
Using this we obtain for each £ > 0

fw) = tog (=

Va'rk(f,) < o™ plats varmk (f o O.n)
ok~

thus |f']o <a™ > |foa”|CY < oo. Hence f’ is a-Holder on (7,0™). To show
that f’ is non-lattice on (7,0™), one can proceed like in the proof of Lemma 13.1
n [11]. For convenience of the reader, we present the following elementary proof.

We would like to prove that if f/ is lattice then f is lattice as well. Suppose
that f’ is lattice. This means that there is a discrete subgroup G’ C R and
g1 T' — G such that f’ is cohomologous to ¢g’. Define

9() = —g'()
m

and put G :== G'/m. Clearly g: T — G and G is a discrete subgroup of R. We
need to prove that f is cohomologous to g, which will be a contradiction with the
fact that f is non-lattice.

Choose p € N and suppose that w € T such that cPw = w. Note that
oPa*w = o*w holds for any k € N. Then

(4.10) S,f(o*w) = S, f(w) for every k€ N
which in particular implies
1
(4.11) Sy f(ofw) = =Sy f(o"w) for every k € Ny.
m

We also have
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m—1
1
(4.12) g(otw) = — Z g ((6"c*w))  for every k € Ny
n=0
and
(4.13) (P (o*w) = (P TFw) = (cFw)  for every k € Ny.
Then
(4.10) 1 ! (a11) 1 !
Spf(@) =T — 3 Spf(0Fw) =T — Y Spmf(otw)
k=0 k=0
1 m—1pm—1 m—1p—1m—1 )
= LYY fente) = flo'om o)
k=0 n=0 k=0 j=0 (=0
1 m—1p—1 1 m—1p—
= LY Pty = 25 3 3 Py (k)
k=0 j=0 k=0 j=0
1= (413) 1 i
= LY s 2 S s, (k)
k=0 k=0
1 m—1p—1 1 m—1p—1
Y S P = 25 3 Y ()
k=0 j=0 k=0 5=0
1 pm—1 1 p—1m—1
= LY ) = Y ()
k=0 k=0 j=0
1 '« in( (4.12) i, k
=Zm—2 (07 (0*)) "2 3 g(0tw) = Syale)
k=0 =0 k=0

which proves that f is cohomologous to g.
Now for i/ =41 ...i € T{ and J' € (T')*, by definition one has

m

' Tor(iy...i
fz/(Z/J/) 10g( rJ/i ) Zlog(r etm)J Iizn,a " (4. lm)J)

/J/ i, J ne1 o (i1 i) J

m—1
n=0

This yields in the same way as above, that there are a-Holder continuous
extensions f! to (7" U (T")*,¢') with f/(w') = f'(') for all ' € T’. Thus (1)
holds.

Finally, as m > 0 can be chosen arbitrarily large, (2) follows. O
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As a first application of the above lemma, we show that we may always assume

(4.14) pr1(Kee) € or(Kee)

for any I,J € T*. To prove this we just need
(4.15) p1(Kae) C Kee

for any J € T*. But since @y is /i;@r,]—Lipschitz on Kge, we in fact just need
ﬁjwm <1 for any J € T*, which is always possible due to (M5) and Lemma 4.1.

Now, (M5) in particular implies that there is a constant 1/W < k < oo (here
W > 0 is from condition (M4)) such that

1
(4.16) - <kKf,; <k
K

for every I,J € T*. This yields
r o (4.5)
(4.17) —d(z,y) < kK ;——dx,y) < dler(@),e1(y))
KT g Ty
for z,y € 1(Kge). In particular, applying (4.17) to I := J and J := (), one has

Ty

?' d(z, y) < d((p.] (1'); YJ (y))

for z,y € Kge. Thus

(M4)
(418) (KJ)G&'J/R - CPI(KGE)
That means that o is n}ry.](ru/r(])—Lipschitz on (Kj)ger,/n- Therefore, if 0 <
e < ¢&ry/k, we can apply (C5) and obtain
T

(4.19) N(@J—J e, KU) < N(e, Ky).
I

Next, given some 0 < ¢, L < oo, define Lé := €. Assume 501_1 to be L-Lipschitz
on (Kr1j)gr, and € < 7. We have then

(M4) r s () s
(420) N(E,KJ) = N(LE,(pI (K[])) S N(E,K[.]).

By (4.18) it follows that
(K11)aerr, /e € p11((K)ae) = p1(ps(Kae))-

In addition, ¢, is (m;J(TIJ/rJ))_1—Lipschitz on ¢r(ps(Kge)). Thus (4.20)
holds for L = (n;.](ru/m))fl, if eL™! =& < &rpy/k. This is always satisfied
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for ¢ < &ry/k?. Combining (4.19) and (4.20), that means
r T
(4.21) N(K;Jﬂg,f(u) < N(e,Kj) < N(K;Jﬂa,Ku)
Ty Ty

for all I,J € T*, whenever

ol gollN gl
(4.22) ¢ < min ( 3 ) =5 =Eu
Note that from (4.5) also
4.23 KT H—Jdiam Kj) < diam (K1) < kT m—‘]diam K;
1,7 1,7
Ty Ty

for all I, J € T* follows.
Also, for all I.J € T*, equations (4.21) and (4.23) can be rewritten as

(4.24) N(eSuhI e Kp;) < N(e,K;) < N(e ®n20g ;)
whenever ¢ < €/, and
(4.25) e SInf27) qiam (Kj) < diam (Kj;) < e S qiam (Ky).

Note, that (4.24) and (4.25) are trivially satisfied, if I = ().
Using (4.7), (4.14) and the optimality of the constants Hi[«]’ we immediately
obtain

(4.26) fo(I) > fo(IJ) > fi(IJ) > fi(1)

for every I.J € T*, I # 0.
Now, condition (4.26) in particular implies that there is some mo € N such

that
(4.27) fi(@iJ) >0 whenever |J| > my.

Indeed, assume there exists for each n > 1an I™ € UjZn T, such that fy(iI™) < 0.
Next choose some I" < w™ € T. As T is compact, there exists an w € T and
an increasing subsequence (ny)r>1 such that w™ — w as k — oco. Thus for each
l € N there is an N; > 1 such that w|; = w™|; and ny > for all k > N;. Using

ng < [I™*|, this implies for all [ > 1 and k > N,
_ (4.26)
Wl < I, hence fi(iwh) = filiwl) < AGI™) <0,
As fy is continuous on 7 U T*, it follows that

tog () = filiw) = Jim fu(iel) <.

W

which is a contradiction to (M6).
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As a next application, we show that we can always assume an existence of
a function ¢: 7* — Ny such that

C
(4.28) 19 €T and K € Bz, =)

for every I € T*. Indeed, applying (4.1) and (T1), we have
C C
57"]) NK = B(.I'], 57"]) ﬂK[

Now pick some m € N such that R™D < C/2, and some J = J(I) € Ty, such
that 2y € K. Using (M3) and (3.4) this implies that diam(K;;) < (C/2)r; and
thus

B(xj,

C
Ky C B(l'la —;I ) ~
According to Lemma 4.1, without loss of generality we may assume that m = 1,
which shows (4.28).
We now state the main results of this section:

Proposition 4.2. Let T be an s-tree satisfying conditions (M1)—(M7). Then s
is the unique zero of the pressure function t — p(—tf) (for the definition and
properties of p see [3, Section 2B]), where f is defined as in (MT).

Theorem 4.3. Let T be an s-tree satisfying conditions (M1)—(MT7). Then there
exists 0 < < oo such that

lim e°N(e, K) = 6.
e—=0+

Remark 4.4. Before we proceed with the proofs of both statements, we will first
explain what the conditions (M1)—(M7) mean in the classical case of K being
a self-similar set. This will not only explain their meaning, but will be also useful
in Section 5.

Let K C R? be a self-similar set generated by similarities ¢1,...,¢n with
corresponding contraction ratios rq,...,ry and similarity dimension s. Suppose
that the OSC holds and that the set is non-lattice, namely there exist ¢, j such
that log(r;)/log(r;) & Q.

Let T = (Zn,{z1},{rr}) be some s-tree constructed in the sense of Re-
mark 3.3 with the additional property that {;};e7+ C K. In this case conditions
(M1)—(M3) are clearly satisfied with R := max; r;. For conditions (M4)—(M6) it
is sufficient to consider

. + . .
1= 0 0P, and ki y=r:=1

The mapping f is then defined by f(w) := —log(r,,) and we only need to check
condition (M7). The Holderness of the mapping f is immediate, since f(w)
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depends only on the first coordinate of w and it remains to verify the non-lattice
condition.

To do this pick 4, j such that log(r;)/log(r;) = r ¢ Q and suppose that there
is a function g: 7 — R such that

(4.29) f—g=u—uoo

for some function u on T and such that g takes values in a proper closed (additive)
subgroup of R (i.e. there is a > 0 such that g(w) € aZ for every w € T).

Consider w,7 € T of the form w :=idi..., 7 := jj... and observe that (4.29)
implies g(w) = —log(r;) and ¢g(7) = —log(r;). Hence log(r;),log(r;) € aZ, which
is a contradiction with the choice of i and j.

4.2 Proofs of the main results.

PROOF OF PROPOSITION 4.2: Let 0 < < oo be the unique zero of ¢ — p(—tf).
As —df is a-Holder continuous on 7, there exists a o-invariant Gibbs measure v
with respect to —df on 7. This means there is a constant 0 < ¢ < oo such that
for each admissible word I € 7* and all w € [I] one has

(1) .
exp (=087 @) ~

(4.30) <

1
¢
Our aim is to show that K is é-regular with respect to v o #—!, which implies
6 =s.

As f = fo on T, we can pick by a-Holder continuity of fo some constant
0 < S < oo satisfying

(4.31) IS)11f(w) = Sirifa(wlir)| < 1| varq(f2) < S

for all I € T* and w € [I]. Using (4.30) together with (4.31), (4.25) and (3.4),

one obtains
- cexp(68)D°

v([1]) < WT I
Set 1 := v o~ !. Repeating the proof of the upper bound of Lemma 3.6, one
derives forallz € K and 1 >r >0

p(B(z,r)) < Br,
where 0 < 8 < oo is some constant.
For the lower estimate, recall that as (7,0) is a subshift of finite type with

transition matrix A, there exists an Iy € N such that A is strictly positive for all
1 > lp. Thus, for fixed I € T*, there are J = Jy...J;,, J = Jj. ..Jl’U € T, such

97
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that Jj, # J;, and IJ,1J" € T*. This means by (T2) and (T5)

(T1) ()
d(err,err) = C(reg g, + 1) = 2000

As K; = U|J|:lo Kij, above estimate yields diam K; > 209107“1. With similar
arguments like before, we obtain analogously to (3.5) the estimate

eXp(*(SS) ZCQZO g 5 . 1.8
c (diamK) T

Now repeating the proof of the lower bound in Lemma 3.6, one derives
pBx,r) _ oo®

79 2 DS @
for all x € K and diam K > r > 0. ]
Remark 4.5. In the proof of Proposition 4.2, we did not use (T3) or (T°3). Thus,
a tree which satisfies (T1), (T2), (T4), (T5) and (M1)—(MT), generates a §-regular

set, where J is the root of the pressure function. This also holds, if one drops the
non-lattice condition in (MT7), as it is not needed for the existence of the Gibbs

u(Kr) = v([I]) =

measure. Note however, that the underlying space (X, d) needs to be complete
and doubling.

To prove Theorem 4.3, we need to do some preparations. Fix ¢ > 0. Pick for
m > 1 some positive constants 7,, (their actual value will be determined later —
see (4.49)).

Recall mg to be the constant determined by (4.27). Next consider I € T* and
J € Urom, Te- Then [IJ| > my, and by (4.27) we have

(4.32) Sefi(IJ) >0

for every k =0,...,|I|. Furthermore consider the conditions

(433) Smfl(IJ) > — log(s) —YJ|

(434) Skfl(I‘]hJH-k) < 710g(€)7’yu\7 k:0a7|1|717
(4.35) S|[|,1f1(IJ) < —1og(€) = YJ|-

Note that in the case I = () condition (4.34) is always satisfied. Also, in the case
|I| <1, we have that S|;—1f1(IJ) = 0. We define for m > 1

Q=  Sup (S|[|f2(IJ) - Smfl(IJ)).
IJ: |J|=m

Note that (4.16) immediately implies

log K2 < am < log K2
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for all m > 1 and since

+

(4.7 kg . .
Sinfo(1J) = S frld) "= " log ( ) —0  uniformly in T
Kr.g
by (M5), we obtain even
(4.36) am — 0 as m — oo.

Observe also that (4.35) implies (4.34). For |I| = 1 this is clear. If |I| > 1,

then
(4.
Sir—1f1(1J) > Skfl (IJ) Zﬁ

(4.26)a

> Zﬁ (11 515x)) = SkfrIT])714k)
for k=0,...,]I| — 1. Next, if we define

D ={IJ: |J|=m, (4.33) and (4.34) hold for I.J},
D" = {IJ: |J|=m, (4.33) and (4.35) hold for I1.J},
D(J) :={I: (4.33) and (4.34) hold for I.J},
DL(J) = {I: (4.33) and (4.35) hold for I.J},
and
D(J) =D(J) N D)),

we have

D) UDL(T) = De(J).

Note that for allmn >m > mopand w € T

n—m—1

Snomfi@ln) = > fi(e"(@ln) > (0 —m) inf fi(D),
k=0

where g :== {I € TUT™*: |I| > mg}. One has by Lemma 2.4 that Ky is compact.

Using (4.27) and continuity of f1, this yields

Iien’gufl( ) = m}a AI) > 0.

Thus Sp—_m fi1(w|n) = 00 as n — oo. Since by (4.27) and (4.26)

Sn—mfl (w|n) > Sn—7n—1f1 (w|n—1)

99



100 D. Pokorny, M. Rauch

holds whenever m > myg, we can always obtain the smallest n = n(w,m) > m
such that

Sn—7nf1 (w|n) > — 1Og(€) — Tm
and

Skf1((Wn)myr) < —log(e) — vm, k=0,....n—m—1.
This yields w|, € 7 and consequently

(4.37) Kc |J Ko
LeDm

for all m > mg. Fix m > mg, |[J| = m and I € ©.(J). Recall the definition
of &7, given in (4.22). First we want to show that if we assume + ;| big enough,
we obtain

(4.38) 0 < eeS11) < oS f2(17) §|J|Q‘J‘.

To see this, write

4.26
ceSi (1) ( < ) ceSInT2(1) — coSi-1f2(10) g fa(a! 171 (1))
7]
< geSin-1f2(1J) I < geSin-1f2(1J) ]3 K.
= - = 1
TI\I\JKT\I\J Q‘ I+

Define 717 := (R/I/ol/I*1)k. Then

(4.26)
ET‘J‘eS‘”*lfQ(IJ) < 57-‘(”es\l\flﬁ(l‘jhl\ﬂﬂfl)

< 57‘”eS\I\flfl(Ulu\+w\—1)+au\

< T|J|e77“”eo“‘” .

Here in the last inequality we used that I € ©.(J). Thus (4.38) holds, if
7)71€™!

4.39
(4.39) o

< el

Note, that if (4.38) holds, we have in particular

e (4.38) éu‘glJle*Smfz(IJ) (4.8) éu‘gl.ﬂ - i
(4.40) E < . = p Kr.g < KE|J|-

As there are only finitely many J with |J| = m, this implies that
(4.41) #DT < 0

for all m > my.
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Now assume (4.39) holds for all J such that |J| > mo. We obtain then the
following estimate:

(4.37) (4.24)
N(EK) < Y N Kpy) <Y N(eeSnhtU) K))
I€D(J) Ie®e(J)
|J|=m |J|=m
(4.42) (4.24) S N(ESAID k) 4 S N(eeSn U K )
Ie®’(J) Ie®!(J)
|J|=m |J]=m

(424)
= UM+ Q.

Similarly, one has

N(e,K)= > N(e,K1)— < > N(e,Kr) - N(s,K))

IeDL(J) IeDL(J)

|J|=m |J|=m
(4.43) > Z N(eeSnfiNram gy pm

IeDl(J)

|J|=m

=: L' — R
Here we define
(4.44) RI":= > N, K1) - N(, K).
LeD!m

Note that by (4.41) above sums are always finite.
Now the following two lemmas imply Theorem 4.3:

Lemma 4.6. There are 0 < U,, < oo and 0 < L,,, < oo, m > mg, such that
UM = Up, L — Ly,

as € — 0+ and

(4.45) Uy, — Lin| — 0

as m — oQ.

Lemma 4.7. There are Qp,, R,,, m > mg, such that

(4.46) limsupe®Q < Q, and limsupe®R]* < Ry,
e—0+ e—0+
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and
(4.47) Qm —0 and R, —0

as m — oQ.

PROOF OF THEOREM 4.3: By (4.42) and (4.43) we have for all m > my

(4.46)
Ly — R, < liminfe®L]" — limsupe®R]"
e—=0+ e—0+
(4.47)

< liminfe’N(e, K)
e—0+

(4.47)
< limsupe®N(e, K)
e—0+
(4.47)
< limsupe®U" + limsup Q7"
e—0+ e—0+
(4.46)

Now there exists a subsequence {my,}ren such that limy_ oo L, = 0 € [—00, x0].
Hence by (4.45) we obtain limg_,o0 Up,,, = 6 and

(4.47) (4.47)

0 =" lim Ly, —Rp, < liminfe’N(e, K)
k—o00 e—0+
(4.47) (4.47)
< limsupe®N(e, K) < lim Upy, + Qm, (4.47) 0.
e—0+ k—o0

Using (2.7) this implies lim. 04+ e°N (e, K) = 6 € (0,00), which completes the
proof. O

Lemma 4.8. There are I',,, and &, for each m > mg such that I';,, — 0 as
m — 0o, and

(4.48) R <e™°Ty,
for every 0 < e < &,,.
Proor: Put for all m > my

T,,:= inf e “m+'diam Ky
m LETm+1 ( )

and take 7, such that (4.39) and

2AD
(4.49) e >

Ticrnb
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hold for every ¢ = 1,...,m + 1 (recall that A > 0 is the constant guaranteed
by (C4), and C, D are given by (T1) and (T2)). The constants Y; are defined
in (4.3). Now pick &,, in such a way that

(4.50) f1(J) < —log(em) — ¥m
for all J € T,,. This in particular implies that for all € < &,,
(4.51) [I| >m+1 whenever [ € @;m.

For the rest of the proof, fix m > mgy and ¢,,, > ¢ > 0.
Step 1. Fix I.J € ©™, where |J| = m. First note that

(4.52) diam K > [pet™e.

Indeed, by (4.35) we can write

(4.51)
g’ < e Si-11J) — gamt1o=S1-1f1lJ)—amia < e@m+1o=S11-1f2(1])

(4.25) edm+1 Sy fa (L) 11
= T N -t d K _11-1
diam(KaquJ) ¢ lam( olll IJ)
(4.25) eQm+1
— - di K
diam (K i11-17,) fam (K1)
(4.25) e@m+1 1
= diam (K1) = =— diam (K1)

sup VT~
LeTm+41 diam (KL) m

Hence for all L € 7* one has

(T2) C'diam K57, (4-3) Cdiam Ky (4:52) C’fmemﬂe
— > ——————— > Yy — > Yy—.
g L = 2D = ST = IHTT9p

Due to (4.28) we know that

Crijr ) '

Krjreair) € B(ZEIJL, >

Assuming that L € 7* is incomparable with I.JL, condition (T1) gives
d(xrsr,z55) > CrrgL

for all J € T*. This yields

C (4.49)
5 rrjL > Ae.

(4.53) d(Krsrerir), Ki) >
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Step 2. For I € ®.™ define
TeI)={JeT": |J| =k, IM$(IM) £ 1J for any M € T*}.

Note that 7*(I) = Ukso ’7~7€*(I), where 7*(I) was defined in Lemma 3.8. Observe

that all elements in Z);m are pairwise incomparable. Using this, we can write

R Y2 ST N(e,Kp) - N(e, K)

Ie@lm
(4.25)
< > N(Kp) —N<57 U K1L¢(1L)>
IeDm Ien'm
L|<m
LeT*(I)
4.54
( ) Z NE K[ Z NE KIL¢>(IL))
IG@ m IE@Em
|L]<m
LeT™*(I)
4.25
(:) Z <N(€,K])— Z N(E KILd)IL ) Z Rm
IeDm |L|<m IeDm
LeT™(I)

Here in the second equality, we applied (4.53) to (C4). Fix I € @;m. We claim
that

Z N(e,Krj) — Z N(e,Krrer))

767; (I k<|£,|<7n
LeT*(I
(4.55) T
< Z N(e,Krj) — Z N(e,Krrer)),
JET (D) k+1<|L|<m

LeT*(I)

whenever 0 < k < m. Indeed, we can write
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Z N(e,Krj) — Z N(e,Kirer))

JGTk (I k§|£|§nb
LeT*(I)
< Z ZN e, K1) — Z N(e, Krpgrr))
JeTr(I) k<|L|<m
LET*(I)
< > > NEKii)- Y. N Kipguw)
JET; (1) i#e(1]) k+1<|L|<m
LeT*(I)
= Z N(e, K1) — Z N(e, Krre(rr))-
JET; (D) k+1<|LI<m
LeT*(I)
Using (4.55) m + 1 times we obtain
. (C6) c
(4.56) RIS Y NeKn) < B Y 8(5.Ku)
IGTWL+1(I) ']67—;1,#»1(1)

for all I € D™,

Step 3. At the end of the previous step we essentially reduced the general case
to the situation, where N = S. This does not have any deep meaning, but serves
one important technical purpose. Since the constant G (from (C5)) equals to 0
in the case of function S, we can pick £ > 0 arbitrarily, and so equation (4.21)
holds for any € > 0. This makes some estimates later in the proof slightly easier,
since we do not have to worry about ¢ being small enough. In what follows we
also assume that the constants (mainly /if ; and k) are the ones corresponding to
the counting function S.

As a next step we claim that there is a constant () independent of m such that

€ s
(4.57) BS(E, KU) < QLLS(e. Ky),
I

For this one can write
(4.21)

€ €
S(_7KIJ) < 8(77K)
B Ii}rJy@?“[JB
~ +
L2.3 m R T1JN\
< B gun) (B2 0) 8 (=)
o™ Krgll KyglI

(4.21) s
< R(§)B%S”—g S(e, K1)
0 T

And so we can put Q := BR(£/0)B*k?.
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Step 4. Combining (4.56) and (4.57) and Lemma 3.8 we can write for all
Teom

(4.56) c (4.57) e
R"(I) < Z S(E;KIJ) < Q Z %S(E,K})
TET 1 (D) JET 1 (D) !

L3.8
< QE*(1—0°)""'S(e, K1)

(4.21) €
< QEY(1-o)"'S(—.K)
KI,(]JTI

"2 QE(1 - o) R(gR) (w1 )*S (e, K)

(2.7)
< QE*(1—o*)" T R(ER)Wrie™®
7

@D M(1— o*)™Flpse™s,

In the last inequality the constant W is derived from the lim sup in (2.7). Finally,
we have

(T'3)
STRMI) < MA—o)" e Y rp < ME(1— )" e =g Ty,
Ie®!m Ie@lm
which is what we wanted. (|
Lemma 4.9. There exists a constant A, independent of |J|, such that
N(e "1 K ) < Ae®M7irs,

PROOF: Similarly to the previous lemma we can reduce the general case to N = S.
One can write

C - 4. —
]V@*wﬂJiﬁ(g)BS(e;m,Kj)(%UBS<J11%;rK)

BrmJ 0
(4.16) e Il
< Bs( ,K)
TJjR

Note that by (4.38) and (4.22) one has e "I /r;k < & 5/0’lk < & Applying
Lemma 2.3,

s(S k) "2 RO s k).

Tk e #7JI
This implies the statement of the lemma. (I

From now on, the proof is identical to the one in [11]. For the convenience of
the reader, we rewrite the main points here.
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Lemma 4.10. There is = > 0 independent of J € Uz’;mO Tr and €,,, m € N,
such that

(4.58) #DL(J) < e *Ee Miayy,
for every 0 < e < ¢y

ProoF: This is exactly like the proof of [11, Lemma 13.6]. O

PROOF OF LEMMA 4.7: For I € ©7(J), |J| = m > mg, we have

(C1)
N(Ees‘”fl(l']),K.]) < N(e*%}\’KJ).

Thus by Lemma 4.9 we obtain for all m > my

L4.9
QI S e Y ry <etAem Y i #D!())

IE@/E/(J) |J|:m
[J|=m
(58 , , (T'3)
S ¥ NI Ee_é’yma'rn E T:S] S AE OémE = Q"”'
|J|=m

This is enough since by (4.36) we have that a,,, — 0 as m — co. The statements
involving R" follow directly from Lemma 4.8. (]

ProOF OF LEMMA 4.6: Pick J € Uz(;mo T. and consider the functions G, éJ:
R — R defined by

(4.59) Gj(t) = N(et_’y“”,KJ) and éj(t) = GJ(t—l—qu‘).

Then for € < |, where €| is chosen according to (4.50),

Z N(Eeswz\fl(U)’KJ) (4.51) Z Z N(Ees\1\+1f1(n‘l)7KJ)
1€®L(J) i Iie®L(J)

- Z Z G.](S\1\+1f1(1i<]) - (* log(e) — V\J\))

i IieD.(J)

= ZZGJ(S\J\Hﬁ(UJ) — (—1og(e) = 1)) xpen (= log(e) =y, 1)
= ZNGJ —log(e) — vy, iJ).

Note that and similarly

(4.60) > N(eeSnhUNven ) ZN —log(e) = y1,iJ).
IeD’(J)
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Here we denoted

P(L) = {(t,1): Sjp411(IL) >t > S; f1(IL), j < ||}
and
Ng(a, L) = ZG(S\IHlfl(IL) - G)XP(L)(GJ),
I

for G: R — R, like in (2.9) and (2.10). Then, using (4.27), by Proposition 2.5
one has for all m > my

UM =¢* Z NGJ( — 10g(€) - 'Y\J\vij)
i,|J|=m

= Y e / Gy(t)F(iJ, dt) = U,
0

i,|J|=m

and

e’ LT = Z Ng —log(e) — fy|J|,iJ)
i, J|=

— Z e ‘57‘”/GJ F(iJ, dt) =

i,|J|=

as € — 0. Note that all the integrals above (and so also Uy, and L,,) are finite,
since we integrate a bounded function with respect to a measure with a compact
support. Next observe, that by (C1) one has

N(eﬂfl lloo +1 =11 KJ)
0< <1,
- N(e="1, Ky) -

thus

Gulilet) G0
G,(0) a

By [11, Corollary 3.3] we obtain that for any § > 0 there exists an a.(d) > 0 such

that for all 0 < @ < a(6) one has

‘/ G’HO‘ (L,dt)/ooog;(((t))) (L, dt)' <5

for all L € U;imo Ti. This can be rephrased as

‘/ (t) (L, dt) - /OOO gj((é))F(La dt)’ <05
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for all L € (g3, Tk, where 6|5 = 0 as |J| — oo. This gives

|U7rL - L7rL| < e—s’ymé‘m Z GJ(O)

i,|J|=m

L4.9 (T'3)
=8, Y N WKy < §uA Y 1y < 6,ANE.

i,|J|=m i,|J|=m

Here N is the cardinality of the alphabet of 7. Hence |U,, — L,,| — 0 as
m — 00. O

4.3 Minkowski measurability. The framework in Section 4.1 unfortunately
does not cover arguably the most interesting case, which is the question of Minkow-
ski measurability. In this section we restrict our interest only to the sets K C R<.
Recall that the counting function we consider in order to study Minkowski mea-

surability is of the form
| K|
gd ’

M(e,K) =

As mentioned in Section 2.2.3 we can no longer use (C5) which needs to be replaced
by (C’5). By (4.18) we know that ¢y is (n;.]ru/m) — (n}i.]ru/m)—Lipschitz on
(KJ1)Ger, - For e <&rj/k, property (C’5) yields

K7 \d
(4.61) M(e, K ) > (#) M(s’lil_JE,Ku).
Kr.g Ty

Now define ¢ := EIHI_,JT[.]/T.]. By (4.40) we have then

1J| r
- J
g = geSinndd) < &y _€i2 < €I|i l'

That means equation (4.61) can be written as

K1V Ty
(4.62) M(e, K1) < (T) M(s T K,)
Kr.g TrJky g
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This leads to replacing (4.42) and (4.43) by

M(e, K) < > Ml(e,Kry)

I€e®De(J)
|J|=m
+
K d
1,7 Ty
< L) M(-—— K, )
1eo.n LT "Lk
|J|=m
< edam Z M(Ees‘f‘fZ(I‘]),KJ)
IeDc(J)
(4 63) |J]=m
do, IJ
<e™ Z M(Ees‘”fl( ),KJ)
IeDc(J)
|J|=m
do, IJ
= e Z M(ses‘”fl( ),KJ)
Ie®!l(J)
|J|=m

+ edom Z M(ses‘”fl(”), K_])

reo (1)

|J|=m
and similarly obtained
(4.64) M(e, K) > e dam Z M(eSmh(IJ),KJ) ~ Ry, ..
IleTg(J)
Jl=m

Here we denoted
Mo = Y, M(e,KL) — M, K).
LeDm

Next observe that the proofs of Lemma 4.7 and Lemma 4.8 still go through,
if we replace (C5) by (C’5) and use 4.62 (with the corresponding lower estimate)
instead of 4.21.

Finally, to deal with main terms is now even easier since we have the same
term on both sides and therefore it suffices to use the Renewal theorem just once,
and of course we use the fact that a,, — 0 as m — oo to obtain that etdem — 1
as m — 0o.

5. «-almost similar images

5.1 Setup and main result. In the previous section we found some conditions
on a tree for the limit e°N(e, K) to exist. We are now interested whether this
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behaviour transfers to images ®(K) with some reasonable class of mappings ®.
We start by stating what the term reasonable mapping might mean in this context.

Definition 5.1. Let 0 < a < 1, (X,dx), (Y, dy) metric spaces and S > 0. A bi-
Lipschitz mapping ®: X — Y is said to be a-almost similar with parameter S,
if there is a constant A > 0 such that for every compact ) # K C X there exists
a constant C'i satisfying

(5.1) Cre(1 + Adiam o K)~1 < 2 (2@): 2W))

< < COg(l1+ Adiam*K

for all x # y € Kgdiam K -

Note that if S = 0, the mapping ® in the above definition carries only infor-
mation about the intrinsic structure of K. Therefore in that case we can expect
conclusions for the behaviour of € — ¢*N (e, ®(K)) only for N satisfying G = 0,
cf. the assumptions of Theorem 5.3.

Remark 5.2. Suppose that the constant C'k is chosen optimal for every K and
suppose that ® is bi-Lipschitz with a constant L > 0. Then

1<1—|—Ad1am KSCK< I

(5.2) L <
' L~ L ~ 1+ Adiam*K —
Suppose additionally that K and K’ are two compacts in X, then

Cykr < Ck
1+ Adiam*K’ — 1+ Adiam*K

provided K C K’. This implies

< Ckg(1+Adiam*K) < Ck/(1+ Adiam *K")

(53) 1+ Adiam*K < Ck < 1+ Adiam*K’
’ 1+ Adiam*K’ = Cg — 1+ Adiam*K

for K C K'.

Suppose that ®: X — Y is a-almost similar for some a € (0,1] and that
T = (T, {xzr}re7+,{rr}re7+) is an s-tree in X satisfying conditions (M1)—(M7)
with the corresponding s-regular set K.

In this section we will carry out the setup from Section 4. This includes con-
stants C, D and E from the definition of the s-tree (including assuming only
(T’3) to hold), constants A, B, and G corresponding to the counting function N.
We will assume that N is a counting function on Y with the set of corresponding
constants 121, E, and G.

Theorem 5.3. Let T be an s-tree in X satisfying conditions (M1)—(M7) and
suppose that ®: X — Y is an a-almost similar mapping with parameter S such
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that if G > 0 then G,S > 0. Then there exists 0 < 6 < co such that

81_1}1&5 N(e,®(K)) = 0.
PRroOOF: Without any loss of generality we may assume that ® is onto Y. We will
construct an s-tree T := (T, {&;}rer, {Fr}re7+) in Y corresponding to ®(K).
The statement follows then from Theorem 4.3. First define Z; := ®(z;), I € T*.
Next let the constants Ck be optimal and let L be the bi-Lipschitz constant of .
By Lemma 4.1 we will assume that

(5.4) m,gw,R<%, IeT, weT.
For I € T* put C; = Ck, and define 71 := Crr;. Now observe that with
this choice, T is an s-tree. Indeed, using (5.2) we obtain that (T1) holds with
C = C/L?, (T2) holds with D := L2D, (173) holds with E := L2*E and (T5)
holds with g := Q/LQ, validity of condition (T4) is clear. The tree T generates
a set K note that K = ®(K). To prove this suppose x € K, then there is an w
such that 2 = z,, = lim, ,,,,, thus lim, Z,,, = lim, ®(z,,,) = ®(z) € K. This
proves that K D ®(K). The opposite inclusion can be proven similarly, in fact
the same argument proves also K= O(Ky), JeT™

In the next step we will prove that T satisfies also conditions (M1)—(M7).

Conditions (M1) and (M2) are immediate. Moreover, (5.2) and (5.4) allow us
to write

i _ Crirn

- = <L*R=R<1
f[ C] rr

which is enough to prove (M3).
Next recall (2.2) and note that as ® is bi-Lipschitz with constant L, we have

(5.5) (M), C B(My) C B(M)y
forall § > 0 and M C X. In the same way
(5.6) D1 (M)syr, € 07 (My) C &1 (M) 1s

forall § > 0and M C Y hold. For the condition (M4) we consider the bi-Lipschitz
mappings

(5.7) i =Popod Y 5 V.

That implies ¢y = ® 0 ¢ 0 ®~ !, and by K; = ®(K ;) we obtain ’lp](I?J) =
’(/)]( ( )) (I)((p](KJ)) (I)(K]J) K]J forall I,J € T*.

To prove the last part of (M4) consider W= W/l L2. If G = 0 there is nothing
to prove and we can pick any (50 > 0. In the case G > 0 we have G > 0 and we
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can put 5o = 50GL/6¥ > 0. Then we can write

_ ~ (5.5
vi(Kg;) =®oer O‘I)_l(Ké&) = (I)O‘PI(K&S/L)
(M4) (5.5)

> (KD, wasy) 2 (¥(KD) = (K1)

TIW§6/L2 7'1W(~;6

whenever § < 50.
Pick some £ > 0 such that

G¢ SF)

(5.8) GE < min (T’ —

where F is the constant from (4.2). Note that this is possible due to the assump-
tions on G, G, and S. Pick ¢ and J such that iJ € T*.
First, by (5.5) one has

Vi (Kgg) =1 (2(K)gg) = Do s o ®™ (D(K)gg) € ®ops(Kgpe)-
By (4.5) the mapping ¢ is m'}er-Lipschitz. Hence using (4.16) we obtain

©J (KéLé) < (‘DJ(K)éLR7']£7
if KéLé C K, that is, if the condition
~.  G¢
G¢E< —=
= L
holds. But this is true by (5.8). Thus for all ,y € ¥ (f(ég) one has

o H(z), @ (y) € 01(Kare) C0r(K)gnm,e = Bgpem,e © (Kr)sdam K,
if the condition

Lx ryr
is satisfied, but this follows from (4.2) and (5.8). Furthermore, we obtain for all
T,y €Yy (Kég) in the same way as above

pi(®7(2)), i (@7 (y)) € wi 0 ws(Kgpe) = is (KgLe)
€ 0is(K)ap.,,e © (Kis)sdiam k-

To summarize, one has for all z,y € 1/).](K§g)
1. 2,y € ®((KJ)s diam k), which leads to the Lipschitz constant O}?i(l +
Adiam “ K y);
2. &7 1(z), @7 (y) € ¢s(Kge), which leads to the Lipschitz constant

+ .
"%ﬁ]ri,(l/r(l;
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3. (@71 (x)), i (@ 1(y)) € (Kis)sdiam k., Which leads to the Lipschitz
constant Cg,; (1 + Adiam “K;7).

To prove (M5) define first & nz  as optimal constants in (4.4) for 1; on ¥ ( GE)
Then with the above observation

dy (i(x),%i(y)) = dy (P o ;0@ ! (z), D0 p; 0 D' (y))
< Ok

< G0+ Adiam® i_])(l+Adiam“K_;)%nZ{,dX(z,y)
J

< g;;l (1_i_A(DRliJ‘)a)(l—i—A(DR‘J‘)Q)%K:JdX(x’y)
J

for z,y € Vs (I?ég) Hence one has

~ 7:1] CKl TiJ Jlha\2
n;ﬁ, CKJ' . (1+ADRN*) kt,,
thus

5.9) 7 < (14 A(DRN) kit
i,J i,J

Now, by 0 < R < 1 and using logt <t —1 for t > 0, we have for all I,J € T*
that

1] 11|
o™ a2
fﬁJ = H mn,gn(z)J < H Iiz,an(I)J(l +A(DR| IJ\) )

n=1
||
_ K}FJ H (1 +ADa(Ra)\I\—n+\J\)2

n=1

K;i.] H (1 _’_ADa(Ra)n-HJ\)Q
n=0

= /@;FJ exp (2 log H (1+ AD“(R‘“)"'H‘”))
n=0

IN

IN

H;r,.] exp <2ADa Z(Ra)n+|J|>

n=0
2ADa(Ra)\J\)

SKIJexp( 1 fe

Using (M5) for k7 ;, the last term converges to 1 uniformly in I, as |.J| — co. That
means lim 7o E}"J < 1. In the same manner it follows that lim ;o 7 ; > 1.
As R;; <K}, we have that lim 7500 Ef] =1.
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Applying (5.3) to K’ = K; and K = Kj; and using (T2), (M3), (T5)
and (4.2), we obtain that there are constants 0 < ¢, Q < oo such that

L+ge)™™ 7 _1+qp;, _ Cr _14+Qrf _ 1+ QRN

5.10 L .
(>:10) 1+ QR = 14+Qry = Cry — 1+qry; — 14 q(o)/11+1V]

For w € T define Cy, = lim, ;o C,),
by (5.10). Indeed, one can rewrite it into

ale™)TH7 — Q)
1+ Q(R)H]

Since Cj are bounded for all I € T*, both left hand side and right hand side
converge to 0 as |I| — oo uniformly in J. Using

. We show that the limit always exists

QR — g(o) /1]
1+ q(ga)|l|+\J\

Cry < (CC—II] — 1)CIJ <

Cry.

(% - 1)C'IJ =(C; - Cyy,

it follows that (C,,, )n>0 is a Cauchy sequence for each w € T.
Next, observe that (5.10) also implies

1
T < C1 o1y qre

(5.11) 1T 0RO D) Cr

for lweT =TU T*, hence

(5.12)

for Iw,IT € T. Define a function § on 7 by g(w) = log(Cy,) for w € T and
g(I) =log(Cy) for I € T*. Let g = g|7. We will prove that g is in fact a-Holder
(and so ¢ is in particular continuous). Indeed, applying log on both sides of both
(5.11) and (5.12) we obtain that there is a constant 0 < W < oo such that

9(I7) = g(Iw)| < W (R
whenever Iw, IT € T.
For condition (M6) first observe that, as g is continuous, also w — C,, is
continuous. Furthermore, for all w € T one has
fiwln Ciw

o Oiw
Tw In Cw

as n — oo. Also by (5.4) we obtain that g, € (0,1) for every w € T. This
gives (M6), here w — 9, is continuous since both w — g, and w — C,, are. The
existence of Holder extension f(w) = log(1/0,) is immediate from the Holderness

115



116

D. Pokorny, M. Rauch

of the function g. For (MT7), we prove that f is cohomologous to f. To do this
we can write

) = fw) = log (=) ~ 1oz (=)

1
=log (in) —log (Q%) + log(Cyy) — log(C,,)

— (goo— g)w).
This completes the proof. Il

5.2 C'** images of self-similar sets. Mappings that are a-almost similar are
closely related to conformal C1T diffeomorphisms (see the statement of the fol-
lowing proposition for the exact definition).

Proposition 5.4. Let M C R? be an open set and ®: M — R? a conformal
C'*e diffeomorphism, that is, ®, ®~! are C! with a-Hélder continuous derivative,
and the Jacobian matrix of D®(x) is a scalar times a rotation matrix for each
x € M. Fix a compact subset ) # F C M. Then there is an S > 0 such that
®|p is an a-almost similarity with parameter S.

PROOF: As ® is a diffeomorphism and F' is compact, we can pick an S > 0 small
enough, such that Fsgqiamr C M and ®(F)sdiamr € ®(M). Since P is locally
bi-Lipschitz, there is now an 0 < L < oo such that

1 _ [9(z) - 2(y)|

- < <L
L~ |z—yl

for all z,y € Fsdiam - Now let () 2 K C F be compact. Without any restriction
we may assume that diam F' > 0.

Set ¢ = Sdiam F. Then ¢ > 0. For x € M, define f,: M — R, z —
|®(2) — ®(z)|. Then

Df.(z) =

for all z € M ~ {z}, where (‘Z‘f? )jj_l denotes the Jacobian matrix with respect
J =

to the standard coordinates in R?. Again, we may only consider compact K C F'
such that diam K > 0. Fix € F N Kgdiamk- Then y € B(z,e) C M for all
Yy € FNKgdiamk- Now fix x #y € FN Kgdiamk and set v :=y—z/|y—z|. By
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the mean value theorem, there exists a ¢ € [0, 1] such that

[D(y) — ®(x)] _ fa(y) = fa(=) = (Dfy(cx + (1 = c)y),v)

ly — x| ly — x|
(0@ @) o
= (Bl 2+ -om)

<10y @(cx + (1 — c)y)|.

Here in the last step we used the Cauchy—Schwarz inequality. Denote £ = cx +
(1—c)y and recall that D® and D®~! are a-Hélder with some Hélder constants
H(®) and H(®1). Define

H :=max(H(®),H(® 1)), P:= inf [0,2(¢)|, Q= sup [0,P(&)|
lv|=1,6€F lv|=1,6€F

Note, as D® € C!, one has 0 < P < Q < oo. Hence

P(y) — d(x
BU=20 < o,0(0) < o0 + 10,20 - 2,9(0)
< 10u®(z)| + H|§ — =|*
< |0, ®()] (1 + I diama(KSdiamK))
- 10, ()|
< |0,®(2)|(1 + HP™'(1 + 28)* diam “K)
for all compact K C F such that 0 < diam K, and for all z,y € FF N Kgdiam k-
Define B = (1 4+ 25)* and assume diam Kggiamx < €/L. Then diam® x
(Ksdiam k) < Ldiam Kggiamx < €. As ®(F). C ®(M), we obtain in the same
way as above
[~ 1(s) — @' (r)|

| — s

< |6w<1>_1(7°)|(1 + L®Bdiam ‘“K),

H
|0 @~ (1)
where z,y € F N Kgdiamk, r = ®(x), s = ®(y) and w = s —r/|s — r|.
Note that, by conformality of ®, there exist for each z € M some A, # 0 and
rotation matrix O, € R?*¢ such that 9,®(z) = A\, Ou for all u € R%. Thus
|0.®(2)] = |A\;| for all u € R? satisfying |u| = 1. Using the inverse function
theorem, this means
0u@7(r)] = |0,2(2)| " = A7,

where v =y — /|y — z|. Thus

[@(y) — (=) _ |s = |
ly — | [@=1(r) = @ (s)|
> 0,®(2)|(1 + HQL*Bdiam “K) ™.

> 10,®(z)|(1 + H|0,®(x)|L* Bdiam “K )~ !

117



118 D. Pokorny, M. Rauch

Therefore we obtain for all compact K C F such that diam Kggiamx < €/L
and all x #y € FFN Kggjam K

[2(y) — (=)

o] (1 + HQL*Bdiam “K)~* < =
y—x

< [Ae|(1 + HP~'Bdiam “K).

Define
€
v := inf {diamK: K C F compact, diam Kg giam x > —}.

If there are compact K C F' such that diam Kg giam xk > €/L, then 0 < v < o0,
else v = inf ) = co. Finally define A == max(HQL*B,HP !B,y %(L — 1))
and fix an zx € K for each compact ) # K C F. Then setting Cx = |Azf|
if diam Kgdiamx < €/L, and Ck = 1 if diam Kggiam k > €/L, completes the
proof. O

Remark 5.5. Above statement still holds, if one assumes the Jacobian matrix
of D®(z) to be scalar times orthogonal matrix for each € M.
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