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Abstract. We introduce the notion of a g-atomic subspace for a bounded linear operator
and construct several useful resolutions of the identity operator on a Hilbert space using
the theory of g-fusion frames. Also, we shall describe the concept of frame operator for a
pair of g-fusion Bessel sequences and some of their properties.
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1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer in 1952 to

study some fundamental problems in non-harmonic Fourier series (see [7]). Later on,

after some decades, frame theory was popularized by Daubechies, Grossman, Meyer

(see [5]). At present, frame theory has been widely used in signal and image pro-

cessing, filter bank theory, coding and communications, system modeling and so on.

Several generalizations of frames, namelyK-frames, g-frames, fusion frames etc. have

been introduced in recent times.

K-frames were introduced by Gavruta (see [8]) to study the atomic system with

respect to a bounded linear operator. Using frame theory techiques, the author

also studied the atomic decompositions for operators on reproducing kernel Hilbert

spaces, see [9]. Sun in [15] introduced a g-frame and a g-Riesz basis in complex

Hilbert spaces and discussed several properties of them. Huang in [12] began to

study K-g-frame by combining K-frame and g-frame. Casazza (see [3]) was first to

introduce the notion of fusion frames or frames of subspaces and gave various ways

to obtain a resolution of the identity operator from a fuison frame. The concept of
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an atomic subspace with respect to a bounded linear operator were introduced by

Bhandari and Mukherjee in [2]. Construction of K-g-fusion frames and their dual

were presented by Sadri and Rahimi (see [1]) to generalize the theory of K-frame,

fusion frame and g-frame. Ghosh and Samanta in [11] studied the stability of dual

g-fusion frames in Hilbert spaces.

In this paper, we present some useful results about resolution of the identity

operator on a Hilbert space using the theory of g-fusion frames. We give the notion

of g-atomic subspace with respect to a bounded linear operator. The frame operator

for a pair of g-fusion Bessel sequences are discussed and some properties are going

to be established.

The paper is organized as follows: in Section 2, we briefly recall the basic defini-

tions and results. Various ways of obtaining resolution of the identity operator on

a Hilbert space in g-fusion frame are studied in Section 3. g-atomic subspaces are

introduced and discussed in Section 4. In Section 5, frame operators for a pair of

g-fusion Bessel sequences are given and various properties are established.

Throughout this paper, H is considered to be a separable Hilbert space with asso-

ciated inner product 〈·, ·〉 and {Hj}j∈J are the collection of Hilbert spaces, where J

is a subset of integers Z. IH is the identity operator on H . B(H1, H2) is a collection

of all bounded linear operators fromH1 to H2. In particular, B(H) denotes the space

of all bounded linear operators on H . For T ∈ B(H), we denote N (T ) and R(T )

for null space and range of T , respectively. Also, PV ∈ B(H) is the orthonormal

projection onto a closed subspace V ⊂ H . Define the space

l2({Hj}j∈J) =

{

{fj}j∈J : fj ∈ Hj ,
∑

j∈J

‖fj‖2 < ∞
}

with inner product given by

〈{fj}j∈J , {gj}j∈J〉 =
∑

j∈J

〈fj , gj〉Hj .

Clearly l2({Hj}j∈J) is a Hilbert space with the pointwise operations (see [1]).

2. Preliminaries

Theorem 2.1 ([6], Douglas’ factorization theorem). Let U, V ∈ B(H). Then the

following conditions are equivalent:

(1) R(U) ⊆ R(V ).

(2) UU∗ 6 λ2V V ∗ for some λ > 0.

(3) U = VW for some bounded linear operator W on H .
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Theorem 2.2 ([13]). The set S(H) of all self-adjoint operators onH is a partially

ordered set with respect to the partial order 6 which is defined as for T, S ∈ S(H)

T 6 S ⇔ 〈Tf, f〉 6 〈Sf, f〉 ∀ f ∈ H.

Theorem 2.3 ([10]). Let V ⊂ H be a closed subspace and T ∈ B(H). Then

PV T
∗ = PV T

∗PTV . If T is a unitary operator (i.e. T
∗T = IH), then PTV T = TPV .

Definition 2.4 ([4]). A sequence {fj}j∈J of elements in H is a frame for H if

there exist constants A,B > 0 such that

A‖f‖2 6
∑

j∈J

|〈f, fj〉|2 6 B‖f‖2 ∀ f ∈ H.

The constants A and B are called frame bounds.

Definition 2.5 ([3]). Let {Wj}j∈J be a collection of closed subspaces of H and

{vj}j∈J be a collection of positive weights. A family of weighted closed subspaces

{(Wj , vj) : j ∈ J} is called a fusion frame for H if there exist constants 0 < A 6

B < ∞ such that

A‖f‖2 6
∑

j∈J

v2j ‖PWj (f)‖2 6 B‖f‖2 ∀ f ∈ H.

The constants A, B are called fusion frame bounds. If A = B, then the fusion frame

is called a tight fusion frame, if A = B = 1, then it is called a Parseval fusion frame.

Definition 2.6 ([2]). Let {Wj}j∈J be a family of closed subspaces of H and

{vj}j∈J be a family of positive weights and K ∈ B(H). Then {(Wj , vj) : j ∈ J} is
said to be an atomic subspace ofH with respect to K if the following conditions hold:

(I)
∑

j∈J

vjfj is convergent for all {fj}j∈J ∈
(

∑

j∈J

⊕Wj

)

l2
.

(II) For every f ∈ H there exists {fj}j∈J ∈
(

∑

j∈J

⊕Wj

)

l2
such that

K(f) =
∑

j∈J

vjfj and ‖{fj}‖(∑

j∈J

⊕Wj

)

l2

6 C‖f‖H

for some C > 0, where

(

∑

j∈J

⊕Wj

)

l2
=

{

{fj}j∈J : fj ∈ Wj ,
∑

j∈J

‖fj‖2 < ∞
}

with inner product given by 〈{fj}j∈J , {gj}j∈J 〉 =
∑

j∈J

〈fj , gj〉H .
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Definition 2.7 ([15]). A sequence {Λj ∈ B(H,Hj) : j ∈ J} is called a generalized
frame or g-frame for H with respect to {Hj}j∈J if there are two positive constants A

and B such that

A‖f‖2 6
∑

j∈J

‖Λjf‖2 6 B‖f‖2 ∀ f ∈ H.

The constants A and B are called the lower and upper frame bounds, respectively.

Definition 2.8 ([14], [1]). Let {Wj}j∈J be a collection of closed subspaces of H

and {vj}j∈J be a collection of positive weights and let Λj ∈ B(H,Hj) for each j ∈ J .

Then the family Λ = {(Wj ,Λj, vj)}j∈J is called a generalized fusion frame or a g-

fusion frame for H with respect to {Hj}j∈J if there exist constants 0 < A 6 B < ∞
such that

(2.1) A‖f‖2 6
∑

j∈J

v2j ‖ΛjPWj (f)‖2 6 B‖f‖2 ∀ f ∈ H.

The constants A and B are called the lower and upper bounds of g-fusion frame,

respectively. If A = B, then Λ is called tight g-fusion frame and if A = B = 1, then

we say Λ is a Parseval g-fusion frame. If Λ satisfies only the condition

∑

j∈J

v2j ‖ΛjPWj (f)‖2 6 B‖f‖2 ∀ f ∈ H,

then it is called a g-fusion Bessel sequence with bound B in H .

Definition 2.9 ([1]). Let Λ = {(Wj ,Λj, vj)}j∈J be a g-fusion Bessel sequence

in H with a bound B. The synthesis operator TΛ of Λ is defined as

TΛ : l2({Hj}j∈J) → H, TΛ({fj}j∈J ) =
∑

j∈J

vjPWjΛ
∗
jfj ∀ {fj}j∈J ∈ l2({Hj}j∈J)

and the analysis operator is given by

T ∗
Λ : H → l2({Hj}j∈J), T ∗

Λ(f) = {vjΛjPWj (f)}j∈J ∀ f ∈ H.

The g-fusion frame operator SΛ : H → H is defined as

SΛ(f) = TΛT
∗
Λ(f) =

∑

j∈J

v2jPWjΛ
∗
jΛjPWj (f)

and it can be easily verified that

〈SΛ(f), f〉 =
∑

j∈J

v2j ‖ΛjPWj (f)‖2 ∀ f ∈ H.
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Furthermore, if Λ is a g-fusion frame with bounds A and B, then from (2.1),

〈Af, f〉 6 〈SΛ(f), f〉 6 〈Bf, f〉 ∀ f ∈ H.

The operator SΛ is bounded, self-adjoint, positive and invertible. Now, according to

Theorem 2.2, we can write AIH 6 SΛ 6 BIH and this gives

B−1IH 6 S−1
Λ 6 A−1IH .

Definition 2.10 ([1]). Let {Wj}j∈J be a collection of closed subspaces of H and

{vj}j∈J be a collection of positive weights and let Λj ∈ B(H,Hj) for each j ∈ J

and K ∈ B(H). Then the family Λ = {(Wj ,Λj , vj)}j∈J is called a K-g-fusion frame

for H if there exist constants 0 < A 6 B < ∞ such that

(2.2) A‖K∗f‖2 6
∑

j∈J

v2j ‖ΛjPWj (f)‖2 6 B‖f‖2 ∀ f ∈ H.

Theorem 2.11 ([1]). Let Λ be a g-fusion Bessel sequence in H . Then Λ is a

K-g-fusion frame for H if and only if there exists A > 0 such that SΛ > AKK∗.

Definition 2.12 ([3]). A family of bounded operators {Tj}j∈J on H is called

a resolution of identity operator onH if for all f ∈ H we have f =
∑

j∈J

Tj(f), provided

the series converges unconditionally for all f ∈ H .

3. Resolution of the identity operator in g-fusion frame

In this section, we present several useful results of resolution of the identity oper-

ator on a Hilbert space using the theory of g-fusion frames.

Theorem 3.1. Let Λ = {(Wj ,Λj , vj)}j∈J be a g-fusion frame for H with frame

bounds C, D and SΛ be its associated g-fusion frame operator. Then the fam-

ily {v2jPWjΛ
∗
jTj}j∈J is the resolution of the identity operator on H , where Tj =

ΛjPWjS
−1
Λ , j ∈ J . Furthermore, for all f ∈ H we have

C

D2
‖f‖2 6

∑

j∈J

v2j ‖Tj(f)‖2 6
D

C2
‖f‖2.
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P r o o f. For any f ∈ H we have the reconstruction formula for g-fusion frame:

f = SΛS
−1
Λ (f) =

∑

j∈J

v2jPWjΛ
∗
jΛjPWjS

−1
Λ (f) =

∑

j∈J

v2jPWjΛ
∗
jTj(f).

Thus, {v2jPWjΛ
∗
jTj}j∈J is a resolution of the identity operator on H . Since Λ is

a g-fusion frame with bounds C and D, for each f ∈ H we have
∑

j∈J

v2j ‖Tj(f)‖2 =
∑

j∈J

v2j ‖ΛjPWjS
−1
Λ (f)‖2 6 D‖S−1

Λ (f)‖2 6 D‖S−1
Λ ‖2‖f‖2

6
D

C2
‖f‖2 (since D−1IH 6 S−1

Λ 6 C−1IH).

On the other hand,

∑

j∈J

v2j ‖Tj(f)‖2 =
∑

j∈J

v2j ‖ΛjPWjS
−1
Λ (f)‖2 > C‖S−1

Λ (f)‖2 >
C

D2
‖f‖2.

Therefore
C

D2
‖f‖2 6

∑

j∈J

v2j ‖Tj(f)‖2 6
D

C2
‖f‖2 ∀ f ∈ H.

�

Theorem 3.2. Let Λ = {(Wj ,Λj , vj)}j∈J be a g-fusion frame for H with frame

bounds C, D and let Tj : H → Hj be a bounded operator such that {v2jPWjΛ
∗
jTj}j∈J

is a resolution of the identity operator on H . Then

1

D

∥

∥

∥

∥

∑

j∈J

v2jPWjΛ
∗
jTj(f)

∥

∥

∥

∥

2

6
∑

j∈J

v2j ‖Tj(f)‖2 ∀ f ∈ H.

P r o o f. Assume I ⊂ J with |I| < ∞. If our inequality holds for all finite subsets,
then it would hold for all subsets. Let f ∈ H and set g =

∑

j∈I

v2jPWjΛ
∗
jTj(f). Then

‖g‖4 = 〈g, g〉2 =

〈

g,
∑

j∈I

v2jPWjΛ
∗
jTj(f)

〉2

=

(

∑

j∈I

vj〈ΛjPWj (g), vjTj(f)〉
)2

6

(

∑

j∈I

vj‖ΛjPWj (g)‖‖vjTj(f)‖
)2

6
∑

j∈I

v2j ‖ΛjPWj (g)‖2
∑

j∈I

‖vjTj(f)‖2

6 D‖g‖2
∑

j∈I

‖vjTj(f)‖2 (since Λ is a g-fusion frame)

⇒ 1

D
‖g‖2 6

∑

j∈I

‖vjTj(f)‖2

⇒ 1

D

∥

∥

∥

∥

∑

j∈I

v2jPWjΛ
∗
jTj(f)

∥

∥

∥

∥

2

6
∑

j∈I

v2j ‖Tj(f)‖2 ∀ f ∈ H.
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Since the inequality holds for any finite subset I ⊂ J , we have

1

D

∥

∥

∥

∥

∑

j∈J

v2jPWjΛ
∗
jTj(f)

∥

∥

∥

∥

2

6
∑

j∈J

v2j ‖Tj(f)‖2 ∀ f ∈ H.

This completes the proof. �

Theorem 3.3. Let Λ = {(Wj ,Λj , vj)}j∈J be a g-fusion frame for H with frame

bounds C, D and let Tj : H → Hj be a bounded operator such that {v2jPWjΛ
∗
jTj}j∈J

is a resolution of the identity operator on H . If T ∗
j ΛjPWj = Tj, then

1

D
‖f‖2 6

∑

j∈J

v2j ‖Tj(f)‖2 6 DE‖f‖2 ∀ f ∈ H,

where E = sup
j

‖Tj‖2 < ∞.

P r o o f. Since {v2jPWjΛ
∗
jTj}j∈J is a resolution of the identity on H ,

f =
∑

j∈J

v2jPWjΛ
∗
jTj(f), f ∈ H.

Now, for each f ∈ H , using Theorem 3.2, we get

1

D
‖f‖2 = 1

D

∥

∥

∥

∥

∑

j∈J

v2jPWjΛ
∗
jTj(f)

∥

∥

∥

∥

2

6
∑

j∈J

v2j ‖Tj(f)‖2

=
∑

j∈J

v2j ‖T ∗
j ΛjPWj (f)‖2 (since T ∗

j ΛjPWj = Tj)

6
∑

j∈J

v2j ‖Tj‖2‖ΛjPWj (f)‖2

6 E
∑

j∈J

v2j ‖ΛjPWj (f)‖2 (using E = sup
j

‖Tj‖2)

6 DE‖f‖2 (since Λis a g-fusion frame).

This completes the proof. �

Theorem 3.4. Let {Wj}j∈J be a family of closed subspaces ofH and {vj}j∈J be a

family of bounded weights and let Λj ∈ B(H,Hj), j ∈ J . Then Λ = {(Wj ,Λj, vj)}j∈J

is a g-fusion frame for H if the following conditions hold:

(I) For all f ∈ H there exists A > 0 such that

∑

j∈J

‖ΛjPWj (f)‖2 6
1

A
‖f‖2.

(II) {vjPWjΛ
∗
jΛjPWj}j∈J is a resolution of the identity operator on H .
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P r o o f. Since {vjPWjΛ
∗
jΛjPWj}j∈J is a resolution of the identity operator onH ,

for f ∈ H we have

f =
∑

j∈J

vjPWjΛ
∗
jΛjPWj (f).

By Cauchy-Schwarz inequality, we have

‖f‖4 = 〈f, f〉2 =

〈

∑

j∈J

vjPWjΛ
∗
jΛjPWj (f), f

〉2

=

(

∑

j∈J

vj〈ΛjPWj (f),ΛjPWj (f)〉
)2

=

(

∑

j∈J

vj‖ΛjPWj (f)‖2
)2

6
∑

j∈J

‖ΛjPWj (f)‖2
∑

j∈J

v2j ‖ΛjPWj (f)‖2

6
1

A
‖f‖2

∑

j∈J

v2j ‖ΛjPWj (f)‖2 (using given condition (I))

⇒ A‖f‖2 6
∑

j∈J

v2j ‖ΛjPWj (f)‖2.

On the other hand,
∑

j∈J

v2j ‖ΛjPWj (f)‖2 6 B
∑

j∈J

‖ΛjPWj (f)‖2 (where B = sup
j∈J

{v2j })

6
B

A
‖f‖2 (using given condition (I))

and hence, Λ is a g-fusion frame. �

4. g-atomic subspace

In this section, we define a generalized atomic subspace or a g-atomic subspace of

a Hilbert space with respect to a bounded linear operator.

Definition 4.1. Let K ∈ B(H) and {Wj}j∈J be a collection of closed subspaces

ofH , let {vj}j∈J be a collection of positive weights and Λj ∈ B(H,Hj) for each j ∈ J .

Then the family Λ = {(Wj ,Λj , vj)}j∈J is said to be a generalized atomic subspace

or g-atomic subspace of H with respect to K if the following statements hold:

(I) Λ is a g-fusion Bessel sequence in H .

(II) For every f ∈ H there exists {fj}j∈J ∈ l2({Hj}j∈J ) such that

K(f) =
∑

j∈J

vjPWjΛ
∗
jfj and ‖{fj}j∈J‖l2({Hj}j∈J ) 6 C‖f‖H

for some C > 0.
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Theorem 4.2. Let K ∈ B(H) and {Wj}j∈J be a collection of closed subspaces

of H , let {vj}j∈J be a collection of positive weights and Λj ∈ B(H,Hj) for each

j ∈ J . Then the following statements are equivalent:

(I) Λ = {(Wj ,Λj , vj)}j∈J is a g-atomic subspace of H with respect to K.

(II) Λ is a K-g-fusion frame for H .

P r o o f. (I) ⇒ (II): Suppose Λ is a g-atomic subspace of H with respect to K.
Then Λ is a g-fusion Bessel sequence, so there exists B > 0 such that

∑

j∈J

v2j ‖ΛjPWj (f)‖2 6 B‖f‖2 ∀ f ∈ H.

Now, for any f ∈ H we have

‖K∗f‖ = sup
‖g‖=1

|〈K∗f, g〉| = sup
‖g‖=1

|〈f,Kg〉|,

by Definition 4.1, for g ∈ H there exists {fj}j∈J ∈ l2({Hj}j∈J ) such that

K(g) =
∑

j∈J

vjPWjΛ
∗
jfj and ‖{fj}j∈J‖l2({Hj}j∈J ) 6 C‖g‖H

for some C > 0. Thus

‖K∗f‖ = sup
‖g‖=1

∣

∣

∣

∣

〈

f,
∑

j∈J

vjPWjΛ
∗
jfj

〉
∣

∣

∣

∣

= sup
‖g‖=1

∣

∣

∣

∣

∑

j∈J

vj〈ΛjPWj (f), fj〉
∣

∣

∣

∣

6 sup
‖g‖=1

(

∑

j∈J

v2j ‖ΛjPWj (f)‖2
)1/2(

∑

j∈J

‖fj‖2
)1/2

6 C sup
‖g‖=1

(

∑

j∈J

v2j ‖ΛjPWj (f)‖2
)1/2

‖g‖

⇒ 1

C2
‖K∗f‖2 6

∑

j∈J

v2j ‖ΛjPWj (f)‖2.

Therefore Λ is a K-g-fusion frame for H with bounds 1/C2 and B.

(II)⇒ (I): Suppose that Λ is a K-g-fusion frame with the corresponding synthesis
operator TΛ. Then obviously Λ is a g-fusion Bessel sequence in H . Now, for each

f ∈ H ,

A‖K∗f‖2 6
∑

j∈J

v2j ‖ΛjPWj (f)‖2 = ‖T ∗
Λf‖2
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gives AKK∗ 6 TΛT
∗
Λ and by Theorem 2.1, exists L ∈ B(H, l2({Hj}j∈J)) such that

K = TΛL. Define L(f) = {fj}j∈J for every f ∈ H . Then for each f ∈ H we have

K(f) = TΛL(f) = TΛ({fj}j∈J ) =
∑

j∈J

vjPWjΛ
∗
jfj

and

‖{fj}j∈J‖l2({Hj}j∈J ) = ‖L(f)‖l2({Hj}j∈J ) 6 C‖f‖,
where C = ‖L‖. Hence, Λ is a g-atomic subspace of H with respect to K. �

Theorem 4.3. Let Λ = {(Wj ,Λj , vj)}j∈J be a g-fusion frame for H . Then Λ is

a g-atomic subspace of H with respect to its g-fusion frame operator SΛ.

P r o o f. Since Λ is a g-fusion frame in H , there exist A,B > 0 such that

A‖f‖2 6
∑

j∈J

v2j ‖ΛjPWj (f)‖2 6 B‖f‖2 ∀ f ∈ H.

Since R(TΛ) = H = R(SΛ), by Theorem 2.1, there exists α > 0 such that αSΛS
∗
Λ 6

TΛT
∗
Λ and therefore for each f ∈ H we have

α‖S∗
Λf‖2 6 ‖T ∗

Λf‖2 =
∑

j∈J

v2j ‖ΛjPWj (f)‖2 6 B‖f‖2.

Thus, Λ is a SΛ-g-fusion frame and hence by Theorem 4.2, Λ is a g-atomic subspace

of H with respect to SΛ. �

Theorem 4.4. Let Λ = {(Wj ,Λj, vj)}j∈J and Γ = {(Wj ,Γj, vj)}j∈J be two g-

atomic subspaces of H with respect to K ∈ B(H) with the corresponding synthesis

operators TΛ and TΓ, respectively. If TΛT
∗
Γ = θH (θH is a null operator on H) and

U, V ∈ B(H) such that U+V is invertible operator onH withK(U+V ) = (U+V )K,

then

{((U + V )Wj , (Λj + Γj)PWj (U + V )∗, vj)}j∈J

is a g-atomic subspace of H with respect to K.

P r o o f. Since Λ and Γ are g-atomic subspaces with respect to K, by Theo-

rem 4.2, they are K-g-fusion frames for H . So, for each f ∈ H there exist positive

constants (A1, B1) and (A2, B2) such that

A1‖K∗f‖2 6
∑

j∈J

v2j ‖ΛjPWj (f)‖2 6 B1‖f‖2

and

A2‖K∗f‖2 6
∑

j∈J

v2j ‖ΓjPWj (f)‖2 6 B2‖f‖2.
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Since TΛT
∗
Γ = θH , for any f ∈ H we have

(4.1) TΛ{vjΓjPWj (f)}j∈J =
∑

j∈J

v2jPWjΛ
∗
jΓjPWj (f) = 0.

Also, U + V is invertible, so

(4.2) ‖K∗f‖2 = ‖((U + V )−1)∗(U + V )∗K∗f‖2 6 ‖(U + V )−1‖2‖(U + V )∗K∗f‖2.

Now, for any f ∈ H we have

∑

j∈J

v2j ‖(Λj + Γj)PWj (U + V )∗P(U+V )Wj
(f)‖2

=
∑

j∈J

v2j ‖(Λj + Γj)PWj (U + V )∗(f)‖2 (using Theorem 2.3)

=
∑

j∈J

v2j 〈(Λj + Γj)PWj (T
∗f), (Λj + Γj)PWj (T

∗f)〉 (taking T = U + V )

=
∑

j∈J

v2j (‖ΛjPWj (T
∗f)‖2 + ‖ΓjPWj (T

∗f)‖2 + 2Re〈TPWjΛ
∗
jΓjPWj (T

∗f), f〉)

=
∑

j∈J

v2j ‖ΛjPWj (T
∗f)‖2 +

∑

j∈J

v2j ‖ΓjPWj (T
∗f)‖2 (using (4.1))

6 B1‖T ∗f‖2 +B2‖T ∗f‖2 (since Λ,Γ are K-g-fusion frames)

= (B1 +B2)‖(U + V )∗f‖2 (sinceT = U + V )

6 (B1 +B2)‖U + V ‖2‖f‖2 (as U + V is bounded).

On the other hand,

∑

j∈J

v2j ‖(Λj + Γj)PWj (U + V )∗P(U+V )Wj
(f)‖2

=
∑

j∈J

v2j ‖ΛjPWj (U + V )∗f‖2 +
∑

j∈J

v2j ‖ΓjPWj (U + V )∗f‖2

>
∑

j∈J

v2j ‖ΛjPWj (U + V )∗f‖2

> A1‖K∗(U + V )∗f‖2 (since Λ is K-g-fusion frame)

= A1‖(U + V )∗K∗f‖2 (using K(U + V ) = (U + V )K)

> A1‖(U + V )−1‖−2‖K∗f‖2 (using (4.2)).

Therefore {((U + V )Wj , (Λj + Γj)PWj (U + V )∗, vj)}j∈J is a K-g-fusion frame and

by Theorem 4.2, it is a g-atomic subspace of H with respect to K. �

335



Corollary 4.5. Let Λ = {(Wj ,Λj, vj)}j∈J and Γ = {(Wj ,Γj , vj)}j∈J be two g-

atomic subspaces of H with respect to K ∈ B(H) with the corresponding synthesis

operators TΛ and TΓ. If TΛT
∗
Γ = θH and U ∈ B(H) is an invertible operator with

KU = UK, then {(UWj, (Λj +Γj)PWjU
∗, vj)}j∈J is a g-atomic subspace of H with

respect to K.

P r o o f. The proof of this Corollary directly follows from Theorem 4.4 by putting

V = θH . �

Theorem 4.6. Let Λ = {(Wj ,Λj , vj)}j∈J is a g-atomic subspace for K ∈ B(H)

and SΛ be the frame operator of Λ. If U ∈ B(H) is a positive and invertible operator

on H , then Λ′ = {((IH + U)Wj ,ΛjPWj (IH + U)∗, vj)}j∈J is a g-atomic subspace

of H with respect to K. Moreover, for any natural number n, Λ′′ = {((IH +Un)Wj ,

ΛjPWj (IH + Un)∗, vj)}j∈J is a g-atomic subspace of H with respect to K.

P r o o f. Since Λ is a g-atomic subspace with respect to K, by Theorem 4.2, it

is a K-g-fusion frame for H . Then according to Theorem 2.11, there exists A > 0

such that SΛ > AKK∗. Now, for each f ∈ H we have

∑

j∈J

v2j ‖ΛjPWj (IH + U)∗P(IH+U)Wj
(f)‖2

=
∑

j∈J

v2j ‖ΛjPWj (IH + U)∗(f)‖2 (using Theorem 2.3)

6 B‖(IH + U)∗(f)‖2 (since Λ is a K-g-fusion frame)

6 B‖IH + U‖2‖f‖2 (since (IH + U) ∈ B(H)).

Thus, Λ′ is a g-fusion Bessel sequence in H . Also, for each f ∈ H we have

∑

j∈J

v2jP(IH+U)Wj
(ΛjPWj (IH + U)∗)∗ΛjPWj (IH + U)∗P(IH+U)Wj

(f)

=
∑

j∈J

v2jP(IH+U)Wj
(IH + U)PWjΛ

∗
jΛjPWj (IH + U)∗P(IH+U)Wj

(f)

=
∑

j∈J

v2j (PWj (IH + U)∗P(IH+U)Wj
)∗Λ∗

jΛj(PWj (IH + U)∗P(IH+U)Wj
(f))

=
∑

j∈J

v2j (PWj (IH + U)∗)∗Λ∗
jΛjPWj (IH + U)∗(f) (using Theorem 2.3)

=
∑

j∈J

v2j (IH + U)PWjΛ
∗
jΛjPWj (IH + U)∗(f)

= (IH + U)
∑

j∈J

v2jPWjΛ
∗
jΛjPWj (IH + U)∗(f) = (IH + U)SΛ(IH + U)∗(f).
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This shows that the frame operator of Λ′ is (IH + U)SΛ(IH + U)∗. Now,

(IH + U)SΛ(IH + U)∗ > SΛ > AKK∗ (since U, SΛ are positive).

Then by Theorem 2.11, we can conclude that Λ′ is a K-g-fusion frame and therefore

by Theorem 4.2, Λ′ is a g-atomic subspace of H with respect to K. According

to the preceding procedure, for any natural number n, the frame operator of Λ′′ is

(IH+Un)SΛ(IH+Un)∗ and similarly, it can be shown that Λ′′ is a g-atomic subspace

of H with respect to K. �

5. Frame operator for a pair of g-fusion Bessel sequences

In this section, we shall discuss the frame operator for a pair of g-fusion Bessel

sequences and establish some properties relative to frame operator. At the end of

this section, we shall construct a new g-fusion frame for the Hilbert space H ⊕ X ,

using the g-fusion frames of the Hilbert spaces H and X .

Definition 5.1. Let Λ = {(Wj ,Λj , wj)}j∈J and Γ = {(Vj ,Γj, vj)}j∈J be

two g-fusion Bessel sequences in H with bounds D1 and D2. Then the opera-

tor SΓΛ : H → H , defined by

SΓΛ(f) =
∑

j∈J

vjwjPVjΓ
∗
jΛjPWj (f) ∀ f ∈ H,

is called the frame operator for the pair of g-fusion Bessel sequences Λ and Γ.

Theorem 5.2. The frame operator SΓΛ for the pair of g-fusion Bessel sequences Λ

and Γ is bounded and S∗
ΓΛ = SΛΓ.

P r o o f. For each f, g ∈ H we have

(5.1) 〈SΓΛ(f), g〉 =
〈

∑

j∈J

vjwjPVjΓ
∗
jΛjPWj (f), g

〉

=
∑

j∈J

vjwj〈ΛjPWj (f),ΓjPVj (g)〉.

By the Cauchy-Schwarz inequality, we obtain

(5.2) |〈SΓΛ(f), g〉| 6
(

∑

j∈J

v2j ‖ΓjPVj (g)‖2
)1/2(

∑

j∈J

w2
j ‖ΛjPWj (f)‖2

)1/2

6
√

D2‖g‖
√

D1‖f‖.
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This shows that SΓΛ is a bounded operator with ‖SΓΛ‖ 6
√
D1D2. Now,

(5.3) ‖SΓΛf‖ = sup
‖g‖=1

|〈SΓΛ(f), g〉|

6 sup
‖g‖=1

√

D2‖g‖
(

∑

j∈J

w2
j ‖ΛjPWj (f)‖2

)1/2

(using (5.2))

6
√

D2

(

∑

j∈J

w2
j ‖ΛjPWj (f)‖2

)1/2

and similarly, it can be shown that

(5.4) ‖S∗
ΓΛg‖ 6

√

D1

(

∑

j∈J

v2j ‖ΓjPVj (g)‖2
)1/2

.

Also, for each f, g ∈ H we have

〈SΓΛ(f), g〉 =
〈

∑

j∈J

vjwjPVjΓ
∗
jΛjPWj (f), g

〉

=
∑

j∈J

vjwj〈f, PWjΛ
∗
jΓjPVj (g)〉

=

〈

f,
∑

j∈J

wjvjPWjΛ
∗
jΓjPVj (g)

〉

= 〈f, SΛΓ(g)〉

and hence S∗
ΓΛ = SΛΓ. �

Theorem 5.3. Let SΓΛ be the frame operator for a pair of g-fusion Bessel se-

quences Λ and Γ with boundsD1 andD2, respectively. Then the following statements

are equivalent:

(I) SΓΛ is bounded below.

(II) There exists K ∈ B(H) such that {Tj}j∈J is a resolution of the identity operator

on H , where Tj = vjwjKPVjΓ
∗
jΛjPWj , j ∈ J .

If one of the given conditions holds, then Λ is a g-fusion frame.

P r o o f. (I) ⇒ (II): Suppose that SΓΛ is bounded below. Then for each f ∈ H

there exists A > 0 such that

‖f‖2 6 A‖SΓΛf‖2 ⇒ 〈IHf, f〉 6 A〈S∗
ΓΛSΓΛf, f〉 ⇒ I∗HIH 6 AS∗

ΓΛSΓΛ.

So, by Theorem 2.1, there exists K ∈ B(H) such that KSΓΛ = IH . Therefore for

each f ∈ H we have

f =KSΓΛ(f) =K
∑

j∈J

vjwjPVjΓ
∗
jΛjPWj (f) =

∑

j∈J

vjwjKPVjΓ
∗
jΛjPWj (f) =

∑

j∈J

Tj(f)

and hence {Tj}j∈J is a resolution of the identity operator on H , where Tj =

vjwjKPVjΓ
∗
jΛjPWj .
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(II) ⇒ (I): Since {Tj}j∈J is a resolution of the identity operator on H , for any

f ∈ H we have

f =
∑

j∈J

Tj(f) =
∑

j∈J

vjwjKPVjΓ
∗
jΛjPWj (f) =K

∑

j∈J

vjwjPVjΓ
∗
jΛjPWj (f) =KSΓΛ(f).

Thus, IH = KSΓΛ. So, by Theorem 2.1, there exists α > 0 such that IHI∗H 6

αSΓΛS
∗
ΓΛ and hence SΓΛ is bounded below.

Last part: First we suppose that SΓΛ is bounded below. Then for all f ∈ H there

exists M > 0 such that ‖SΓΛf‖ > M‖f‖ and this implies that

M2‖f‖2 6 ‖SΓΛf‖2 6 D2

∑

j∈J

w2
j ‖ΛjPWj (f)‖2 (using (5.3))

⇒ M2

D2
‖f‖2 6

∑

j∈J

w2
j ‖ΛjPWj (f)‖2.

Hence, Λ is a g-fusion frame for H with bounds M2/D2 and D1.

Next, we suppose that the given condition (II) holds. Then for any f ∈ H we have

f =
∑

j∈J

vjwjKPVjΓ
∗
jΛjPWj (f), K ∈ B(H).

By Cauchy-Schwarz inequality, for each f ∈ H we have

‖f‖2 = 〈f, f〉=
〈

∑

j∈J

vjwjKPVjΓ
∗
jΛjPWj (f), f

〉

=
∑

j∈J

vjwj〈ΛjPWj (f),ΓjPVj (K
∗f)〉

6

(

∑

j∈J

w2
j ‖ΛjPWj (f)‖2

)1/2(
∑

j∈J

v2j ‖ΓjPVj (K
∗f)‖2

)1/2

6
√

D2‖K∗f‖
(

∑

j∈J

w2
j ‖ΛjPWj (f)‖2

)1/2

6
√

D2‖K‖‖f‖
(

∑

j∈J

w2
j ‖ΛjPWj (f)‖2

)1/2

⇒ 1

D2‖K‖2‖f‖
2 6

∑

j∈J

w2
j ‖ΛjPWj (f)‖2.

Therefore, in this case Λ is also a g-fusion frame for H . �

Theorem 5.4. Let SΓΛ be the frame operator for a pair of g-fusion Bessel se-

quences Λ and Γ with boundsD1 andD2, respectively. Suppose λ1 < 1, λ2 > −1 such

that for each f ∈ H , ‖f − SΓΛf‖ 6 λ1‖f‖+ λ2‖SΓΛf‖. Then Λ is a g-fusion frame

for H .
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P r o o f. For each f ∈ H we have

‖f‖ − ‖SΓΛf‖ 6 ‖f − SΓΛf‖ 6 λ1‖f‖+ λ2‖SΓΛf‖
⇒ (1− λ1)‖f‖ 6 (1 + λ2)‖SΓΛf

⇒
(1− λ1

1 + λ2

)

‖f‖ 6
√

D2

(

∑

j∈J

w2
j ‖ΛjPWj (f)‖2

)1/2

(using (5.3))

⇒ 1

D2

(1− λ1

1 + λ2

)2

‖f‖2 6
∑

j∈J

w2
j ‖ΛjPWj (f)‖2.(5.5)

Thus, Λ is a g-fusion frame for H with bounds (1− λ1)
2(1 + λ2)

−2D−1
2 and D1. �

Theorem 5.5. Let SΓΛ be the frame operator for a pair of g-fusion Bessel se-

quences Λ and Γ of bounds D1 and D2, respectively. Assume λ ∈ [0, 1) such that

‖f − SΓΛf‖ 6 λ‖f‖ ∀ f ∈ H.

Then Λ and Γ are g-fusion frames for H .

P r o o f. By putting λ1 = λ and λ2 = 0 in (5.5), we get

(1− λ)2

D2
‖f‖2 6

∑

j∈J

w2
j ‖ΛjPWj (f)‖2

and therefore Λ is a g-fusion frame. Now, for each f ∈ H we have

‖f − S∗
ΓΛf‖ = ‖(IH − SΓΛ)

∗f‖ 6 ‖(IH − SΓΛ)‖‖f‖ 6 λ‖f‖

⇒ (1− λ)‖f‖ 6 ‖S∗
ΓΛf‖ 6

√

D1

(

∑

j∈J

v2j ‖ΓjPVj (f)‖2
)1/2

(using (5.4))

⇒
∑

j∈J

v2j ‖ΓjPVj (f)‖2 >
(1− λ)2

D1
‖f‖2 ∀ f ∈ H.

Hence, Γ is a g-fusion frame with bounds (1− λ)2/D1 and D2. �

Definition 5.6. Let H and X be two Hilbert spaces. Define

H ⊕X = {(f, g) : f ∈ H, g ∈ X}.

Then H ⊕X forms a Hilbert space with respect to point-wise operations and inner

product defined by

〈(f, g), (f ′, g′)〉 = 〈f, f ′〉H + 〈g, g′〉X ∀ f, f ′ ∈ H and ∀ g, g′ ∈ X.

Now, if U ∈ B(H,Z), V ∈ B(X,Y ), then for all f ∈ H , g ∈ X we define

U ⊕ V ∈ B(H ⊕X,Z ⊕ Y ) by (U ⊕ V )(f, g) = (Uf, V g),
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and (U ⊕ V )∗ = U∗ ⊕ V ∗, where Z, Y are Hilbert spaces and also we define

PM⊕N (f, g) = (PMf, PNg), where PM , PN and PM⊕N are orthonormal projections

onto the closed subspaces M ⊂ H , N ⊂ X and M ⊕N ⊂ H ⊕X , respectively.

From here we assume that for each j ∈ J , Wj ⊕ Vj are the closed subspaces of

H ⊕ X and Γj ∈ B(X,Xj), where {Xj}j∈J is the collection of Hilbert spaces and

Λj ⊕ Γj ∈ B(H ⊕X,Hj ⊕Xj).

Theorem 5.7. Let Λ = {(Wj ,Λj , vj)}j∈J be a g-fusion frame for H with bounds

A, B and Γ = {(Vj ,Γj , vj)}j∈J be a g-fusion frame for X with bounds C, D. Then

Λ ⊕ Γ = {(Wj ⊕ Vj ,Λj ⊕ Γj , vj)}j∈J is a g-fusion frame for H ⊕ X with bounds

min{A,C}, max{B,D}. Furthermore, if SΛ, SΓ and SΛ⊕Γ are g-fusion frame oper-

ators for Λ, Γ and Λ⊕ Γ, respectively, then we have SΛ⊕Γ = SΛ ⊕ SΓ.

P r o o f. Let (f, g) ∈ H ⊕X be an arbitrary element. Then

∑

j∈J

v2j ‖(Λj ⊕ Γj)PWj⊕Vj (f, g)‖2

=
∑

j∈J

v2j 〈(Λj ⊕ Γj)PWj⊕Vj (f, g), (Λj ⊕ Γj)PWj⊕Vj (f, g)〉

=
∑

j∈J

v2j 〈Λj ⊕ Γj(PWj (f), PVj (g)),Λj ⊕ Γj(PWj (f), PVj (g))〉

=
∑

j∈J

v2j 〈(ΛjPWj (f),ΓjPVj (g)), (ΛjPWj (f),ΓjPVj (g))〉

=
∑

j∈J

v2j (〈ΛjPWj (f),ΛjPWj (f)〉H + 〈ΓjPVj (g),ΓjPVj (g)〉X)

=
∑

j∈J

v2j (‖ΛjPWj (f)‖2H + ‖ΓjPVj (g)‖2X)

=
∑

j∈J

v2j ‖ΛjPWj (f)‖2H +
∑

j∈J

v2j ‖ΓjPVj (g)‖2X

6 B‖f‖2H +D‖g‖2X (since Λ, Γ are g-fusion frames)

6 max{B,D}(‖f‖2H + ‖g‖2X) = max{B,D}‖(f, g)‖2.

Similarly, it can be shown that

min{A,C}‖(f, g)‖2 6
∑

j∈J

v2j ‖(Λj ⊕ Γj)PWj⊕Vj (f, g)‖2.

Therefore, for all (f, g) ∈ H ⊕X we have

A1‖(f, g)‖2 6
∑

j∈J

v2j ‖(Λj ⊕ Γj)PWj⊕Vj (f, g)‖2 6 B1‖(f, g)‖2
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and hence Λ ⊕ Γ is a g-fusion frame for H ⊕ X with bounds A1 = min{A,C} and
B1 = max{B,D}. Furthermore, for (f, g) ∈ H ⊕X we have

SΛ⊕Γ(f, g) =
∑

j∈J

v2jPWj⊕Vj (Λj ⊕ Γj)
∗(Λj ⊕ Γj)PWj⊕Vj (f, g)

=
∑

j∈J

v2jPWj⊕Vj (Λj ⊕ Γj)
∗(Λj ⊕ Γj)(PWj (f), PVj (g))

=
∑

j∈J

v2jPWj⊕Vj (Λj ⊕ Γj)
∗(ΛjPWj (f),ΓjPVj (g))

=
∑

j∈J

v2jPWj⊕Vj (Λ
∗
j ⊕ Γ∗

j )(ΛjPWj (f),ΓjPVj (g))

=
∑

j∈J

v2jPWj⊕Vj (Λ
∗
jΛjPWj (f),Γ

∗
jΓjPVj (g))

=
∑

j∈J

v2j (PWjΛ
∗
jΛjPWj (f), PVjΓ

∗
jΓjPVj (g))

=

(

∑

j∈J

v2jPWjΛ
∗
jΛjPWj (f),

∑

j∈J

v2jPVjΓ
∗
jΓjPVj (g)

)

= (SΛ(f), SΓ(g))

= (SΛ ⊕ SΓ)(f, g) ∀ (f, g) ∈ H ⊕X.

Hence, SΛ⊕Γ = SΛ ⊕ SΓ. This completes the proof. �

Theorem 5.8. Let Λ ⊕ Γ = {(Wj ⊕ Vj ,Λj ⊕ Γj , vj)}j∈J be a g-fusion frame for

H ⊕X with frame operator SΛ⊕Γ. Then

∆′ = {(S−1/2
Λ⊕Γ (Wj ⊕ Vj), (Λj ⊕ Γj)PWj⊕VjS

−1/2
Λ⊕Γ , vj)}j∈J

is a Parseval g-fusion frame for H ⊕X .

P r o o f. Since SΛ⊕Γ is a positive operator, there exists a unique positive square

root S
1/2
Λ⊕Γ (or S

−1/2
Λ⊕Γ ) and they commute with SΛ⊕Γ and S−1

Λ⊕Γ. Therefore, each

(f, g) ∈ H ⊕X can be written as

(f, g) = S
−1/2
Λ⊕Γ SΛ⊕ΓS

−1/2
Λ⊕Γ (f, g)

=
∑

j∈J

v2jS
−1/2
Λ⊕Γ PWj⊕Vj (Λj ⊕ Γj)

∗(Λj ⊕ Γj)PWj⊕VjS
−1/2
Λ⊕Γ (f, g).
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Now, for each (f, g) ∈ H ⊕X we have

‖(f, g)‖2 = 〈(f, g), (f, g)〉

=

〈

∑

j∈J

v2jS
−1/2
Λ⊕Γ PWj⊕Vj (Λj ⊕ Γj)

∗(Λj ⊕ Γj)PWj⊕VjS
−1/2
Λ⊕Γ (f, g), (f, g)

〉

=
∑

j∈J

v2j 〈(Λj ⊕ Γj)PWj⊕VjS
−1/2
Λ⊕Γ (f, g), (Λj ⊕ Γj)PWj⊕VjS

−1/2
Λ⊕Γ (f, g)〉

=
∑

j∈J

v2j ‖(Λj ⊕ Γj)PWj⊕VjS
−1/2
Λ⊕Γ (f, g)‖2

=
∑

j∈J

v2j ‖(Λj ⊕ Γj)PWj⊕VjS
−1/2
Λ⊕Γ P

(S
−1/2
Λ⊕Γ

(Wj⊕Vj))
(f, g)‖2

(by Theorem 2.3).

This shows that ∆′ is a Parseval g-fusion frame for H ⊕X . �

Theorem 5.9. Let Λ ⊕ Γ = {(Wj ⊕ Vj ,Λj ⊕ Γj , vj)}j∈J be a g-fusion frame for

H ⊕X with bounds A1, B1 and SΛ⊕Γ be the corresponding frame operator. Then

∆ = {(S−1
Λ⊕Γ(Wj ⊕ Vj), (Λj ⊕ Γj)PWj⊕VjS

−1
Λ⊕Γ, vj)}j∈J

is a g-fusion frame for H ⊕X with frame operator S−1
Λ⊕Γ.

P r o o f. For any (f, g) ∈ H ⊕X we have

(5.6) (f, g) = SΛ⊕ΓS
−1
Λ⊕Γ(f, g)

=
∑

j∈J

v2jPWj⊕Vj (Λj ⊕ Γj)
∗(Λj ⊕ Γj)PWj⊕VjS

−1
Λ⊕Γ(f, g).

By Theorem 2.3, for any (f, g) ∈ H ⊕X we have

(5.7)
∑

j∈J

v2j ‖(Λj ⊕ Γj)PWj⊕VjS
−1
Λ⊕ΓPS−1

Λ⊕Γ
(Wj⊕Vj)

(f, g)‖2

=
∑

j∈J

v2j ‖(Λj ⊕ Γj)PWj⊕VjS
−1
Λ⊕Γ(f, g)‖2

6 B1‖S−1
Λ⊕Γ‖2‖(f, g)‖2 (since Λ ⊕ Γ is g-fusion frame).
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On the other hand, using (5.6), we get

‖(f, g)‖4 = |〈(f, g), (f, g)〉|2

=

∣

∣

∣

∣

〈

∑

j∈J

v2jPWj⊕Vj (Λj ⊕ Γj)
∗(Λj ⊕ Γj)PWj⊕VjS

−1
Λ⊕Γ(f, g), (f, g)

〉
∣

∣

∣

∣

2

=

∣

∣

∣

∣

∑

j∈J

v2j 〈(Λj ⊕ Γj)PWj⊕VjS
−1
Λ⊕Γ(f, g), (Λj ⊕ Γj)PWj⊕Vj (f, g)〉

∣

∣

∣

∣

2

6
∑

j∈J

v2j ‖(Λj ⊕ Γj)PWj⊕VjS
−1
Λ⊕Γ(f, g)‖2

∑

j∈J

v2j ‖(Λj ⊕ Γj)PWj⊕Vj (f, g)‖2

6
∑

j∈J

v2j ‖(Λj ⊕ Γj)PWj⊕VjS
−1
Λ⊕Γ(f, g)‖2B1‖(f, g)‖2

(as Λ⊕ Γ is g-fusion frame)

= B1‖(f, g)‖2
∑

j∈J

v2j ‖(Λj ⊕ Γj)PWj⊕VjS
−1
Λ⊕ΓPS−1

Λ⊕Γ
(Wj⊕Vj)

(f, g)‖2

(from (5.7)).

Therefore

B−1
1 ‖(f, g)‖2 6

∑

j∈J

v2j ‖(Λj ⊕ Γj)PWj⊕VjS
−1
Λ⊕ΓPS−1

Λ⊕Γ
(Wj⊕Vj)

(f, g)‖2.

Hence, ∆ is a g-fusion frame for H⊕X . Let S∆ be the g-fusion frame operator for ∆

and take ∆j = Λj ⊕ Γj . Now, for each

(f, g) ∈ H ⊕X,S∆(f, g)

=
∑

j∈J

v2jPS−1

Λ⊕Γ
(Wj⊕Vj)

(∆jPWj⊕VjS
−1
Λ⊕Γ)

∗(∆jPWj⊕VjS
−1
Λ⊕Γ)PS−1

Λ⊕Γ
(Wj⊕Vj)

(f, g)

=
∑

j∈J

v2j (PWj⊕VjS
−1
Λ⊕ΓPS−1

Λ⊕Γ
(Wj⊕Vj)

)∗∆∗
j∆j(PWj⊕VjS

−1
Λ⊕ΓPS−1

Λ⊕Γ
(Wj⊕Vj)

)(f, g)

=
∑

j∈J

v2j (PWj⊕VjS
−1
Λ⊕Γ)

∗∆∗
j∆j(PWj⊕VjS

−1
Λ⊕Γ)(f, g) (using Theorem 2.3)

=
∑

j∈J

v2jS
−1
Λ⊕ΓPWj⊕Vj (Λj ⊕ Γj)

∗(Λj ⊕ Γj)(PWj⊕VjS
−1
Λ⊕Γ)(f, g)

= S−1
Λ⊕Γ

(

∑

j∈J

v2jPWj⊕Vj (Λj ⊕ Γj)
∗(Λj ⊕ Γj)PWj⊕Vj (S

−1
Λ⊕Γ(f, g))

)

= S−1
Λ⊕ΓSΛ⊕Γ(S

−1
Λ⊕Γ(f, g)) (by definition of SΛ⊕Γ)

= S−1
Λ⊕Γ(f, g).

Thus, S∆ = S−1
Λ⊕Γ. This completes the proof. �
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Note 5.10. Form Theorem 5.9 we can conclude that if Λ⊕ Γ is a g-fusion frame

for H ⊕ K, then ∆ is also a g-fusion frame for H ⊕ K. The g-fusion frame ∆ is

a called the canonical dual g-fusion frame of Λ⊕ Γ.
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