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PREDICTOR CONTROL FOR WAVE PDE/NONLINEAR
ODE CASCADED SYSTEM WITH BOUNDARY VALUE-
DEPENDENT PROPAGATION SPEED

Xiushan Cai, Yuhang Lin, Junfeng Zhang, and Cong Lin

This paper investigates predictor control for wave partial differential equation (PDE) and
nonlinear ordinary differential equation (ODE) cascaded system with boundary value-dependent
propagation speed. A predictor control is designed first. A two-step backstepping transforma-
tion and a new time variable are employed to derive a target system whose stability is established
using Lyapunov arguments. The equivalence between stability of the target and the original
system is provided using the invertibility of the backstepping transformations. Stability of the
closed-loop system is established by Lyapunov arguments.

Keywords: cascaded system, wave dynamics, boundary value-dependent, predictor con-
trol, backstepping transformation

Classification: 93Cxx, 93Dxx

1. INTRODUCTION

We consider the cascaded system of wave PDE/nonlinear ODE given by

Ẋ(t) = f(X(t), u(0, t)) (1)

∂ttu(x, t) = v(u(0, t))∂xxu(x, t) (2)

∂xu(0, t) = 0 (3)

∂xu(L, t) = U(t), (4)

where 0 ≤ x ≤ L, t ≥ 0, and X(·, ·) ∈ Rn, u(·) ∈ R, U(·) ∈ R are ODE state, PDE
state, and control input, respectively, and f : Rn × R → Rn, with f(0, 0) = 0 is locally
Lipschitz continuous in X and u, and v : R→ (0,+∞) is a propagation velocity of wave
PDE. Equation (2) is the actuation path for system (1), located at the boundary x = 0,
with an actuation device acting at the boundary x = L. It is clear that u(0, t) cannot be
directly controlled, so it is more difficult to control this cascade system compared with
[8] and [12].

The initial condition along the actuation path (2) is

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), (5)
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Fig. 1. The Cascaded System of Wave PDE/Nonlinear ODE.

for x ∈ [0, L]. The cascaded system (1) – (4) is depicted as Fig.1.

We design a predictor control that globally stabilizes the cascaded system (1) – (4) by
assuming that the propagation velocity is continuously differentiable, strictly positive,
and bounded, namely, there are %i > 0, i = 1, 2, such that

%2 ≥ v(u(0, t)) ≥ %1, (6)

for any u(0, t) ∈ R.
First, the cascaded system is transferred to a coupled 2 × 2 hyperbolic PDE/ODE

cascaded system using some coordinate changes. Secondly, the first-step backstepping
transformation is applied such that the coupled 2×2 hyperbolic PDE/ODE cascaded sys-
tem is transferred to a decoupled 2×2 hyperbolic PDE/ODE cascaded system. Further,
using a new time variable, the cascaded system is changed as a pair of transport PDEs
and nonlinear ODE cascaded system. Finally, the second-step backstepping transforma-
tion is used to design a compensator for the cascaded system. Stability of the closed-loop
system is established by Lyapunov arguments.

Wave PDE/nonlinear ODE cascaded system can be used to describe stick-slip oscil-
lation in oil drilling [1] – [5], [10], [13] – [17]. Predictor control of wave PDE/nonlinear
ODE is first presented in [1]. In oil drilling model, the ODE is used for modeling friction-
dominated drill bit dynamics and wave PDE is used to simulate torsional dynamics of
drill string, and the position of the drill bit is a state variable in the ODE, predictor
control is studied for the cascaded system with a controlled moving boundary in [6].

In oil drilling model, the domain length of wave PDE varies with time and also
depends on the bit speed, a predictor control is presented for wave PDE/nonlinear
ODE with a uncontrolled moving boundary in [7]. The propagation velocity of drill
string torsional dynamics varies with different pipes, so wave PDE/nonlinear ODE with
spatially-varying propagation speed is investigated in [8]. Predictor control for a class
of nonlinear ODE/wave PDE cascaded systems with time-varying propagation speed is
also studied in [12]. This paper considers predictor control design of system (1) – (4),
which is similar but not equivalent to stabilize stick-slip oscillation in drilling systems.

Detailed comparisons with [1, 6, 7, 8, 9, 12] are given in Table 1, including the
studied system, propagation velocity constraint, boundary dependent property, whether
feasibility conditions are required, and convergence range.
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studied propaga- boundary feasibility converg
tion depend -ence

system velocity -ence condition range
constraint

(1)
∂ttu(x, t) = ∂xxu(x, t)
(3) no no no global
(4) in [1]

(1) a moving |∂L(t,X)
∂X

∂ttu(x, t) = ∂xxu(x, t) controlled ×f(X,u(0, t))

∂xu(L(t,X), t) = U(t) no boundary +∂L(t,X)
∂t | local

(4) in [6] L(t,X) ≤ d < 1

Ẋ(t) =

f(X,u(δ(X, t), t)) a moving 0 ≤ ∂δ(X,t)
∂X ×

∂ttu(x, t) = ∂xxu(x, t) no uncontrolled f(X,u(δ(X, t))) local

∂xu(δ(X, t), t) = 0 boundary +∂δ(X,t)
∂t

(4) in [7] δ(X, t) ≤ c < 1
(1)
∂ttu(x, t) = v(x) > 0, no no global
v(x)∂xxu(x, t) x ∈ [0, L]
(3),(4) in [8]
(1) ∃%i > 0,
∂ttu(x, t) = i = 1, 2, 3 no no global
v(t)∂xxu(x, t) %1 ≤ v(t) ≤ %2
(3),(4) in [12] |v̇(t)| ≤ %3
(1)
∂tu(x, t) = ∃%1 > 0, no no global
v(u(0, t))∂xu(x, t) v(u(0, t))
u(L, t) = U(t) > %1
in [9]

∃%i > 0,
i = 1, 2,

(1)–(4) %2 ≥
Current v(u(0, t))
paper ≥ %1 no no global

Tab. 1. Comparison of Related Results of PDE/nonlinear ODE

Cascaded System.

From Table 1, compared with [9], the same propagation speed v(u(0, t)) is studied,
we study wave PDE actuator dynamics, but [9] investigates transport PDE actuator
dynamics. The constraint on v(u(0, t)) is similar to that in [9], a global stability result
of the closed-loop system is established in this paper.



Predictor control of wave PDE/nonlinear ODE 403

Compared with [12], we investigate boundary-value-dependent propagation speed not
just time-varying propagation speed v(t) in [11]. Our contribution stands as the first
one in which wave actual compensation of a delayed-input-dependent input delay is
achieved. A global stability result of the closed-loop system is established. Compared
with [12], our main contributions are as follows:

1) The constraint on v(u(0, t)) is relaxed, see Table 1.

2) Predictors (77), (78) and (79), (80) are simpler than those in [12].

3) By introducing a new time variable, the target system (84) – (88) is simpler than
[12].

This paper is organized as follows: Assumptions and control design are in Section 2.
Some preliminary transformations are in Section 3. Stability analysis of the proposed
control law is established in Section 4. Simulation is in Section 5. Finally, the conclusion
is in Section 6.

Notation. | · | is Euclidean norm, and u : [0, L] × R → R, the norm ‖u(t)‖L∞[0,L] =

lim
n→∞

(
∫ L
0
|u(x, t)|n dx)1/n is the spatial L∞ norm, written more compactly as ‖u(t)‖∞.

For u : [−L,L]× R→ R, denote ‖u(t)‖∞,1 = lim
n→∞

(
∫ L
−L |u(x, t)|n dx)1/n. For p : [0, L]×

R→ Rn, we use a spatial L∞-norm ‖p(t)‖∞ = sup
0≤x≤L

(p21(x, t) + · · ·+ p2n(x, t))1/2.

2. ASSUMPTIONS AND CONTROL DESIGN

Definitions of class K, K∞, KL functions and input-to-state stable (ISS) are from [11]
and [18].

A function γ : R≥0 → R≥0 is said to be of class K if it is continuous strictly increasing
and satisfies γ(0) = 0; it is of class K∞, if in addition γ(s) → ∞ as s → ∞. Note that
if γ is of class K∞, then the inverse function γ−1 is well defined and is again of class
K∞. A function β : R≥0 × R≥0 → R≥0 is said to be of class KL if for each fixed t the
mapping β(·, t) is of class K and for each fixed s it is decreasing to zero on t as t→∞.

The system Ẋ(t) = f(X,u), where f locally Lipschitz in X and u, is input-to-state
stable (ISS) if there is a function β of class KL and a function γ of class K such that for
each measurable essentially bounded control u(·) and each initial state X(0) the solution
exists for all t ≥ 0 and satisfies

|X(t)| ≤ β(|X(0)|, t) + γ

(
sup

0≤σ≤t
|u(σ)|

)
. (7)

This paper needs Assumptions 1– 3, which are from [1].

Assumption 2.1. Assume that κ : Rn → R, κ(0) = 0 is continuously differentiable

with locally Lipschitz derivative ∂κ(X)
∂X , and system Ẋ = f(X,κ(X) + υ) is ISS with

respect to υ.
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Remark 2.2. Assumption (2.1) means that there exists a control law κ(X) such that
ODE (1) is ISS to υ.

For the following ODE

Ẏ (t) = h(Y (t),W (0, t)) (8)

∂tW (0, t) = ς(t), (9)

where h : Rn × R→ Rn, Y (·) ∈ Rn, W (0, ·) ∈ R, ς(·) ∈ R, if we denote

Z(t) =

[
Y (t)
W (0, t)

]
, ϕ(Z(t), ς(t)) =

[
h(Y (t),W (0, t))

ς(t)

]
, (10)

then (8) – (9) can be expressed as

Ż(t) = ϕ(Z(t), ς(t)). (11)

Assumption 2.3. For system (11), there are smooth positive definite functions Ri, i =
1, 2 and class K∞ functions αj , j = 1 · · · , 6 such that

α1(|Z|) ≤ R1(Z) ≤ α2(|Z|) (12)

∂R1(Z)

∂Z
ϕ(Z, ς) ≤ R1(Z) + α3(|ς|) (13)

α4(|Z|) ≤ R2(Z) ≤ α5(|Z|) (14)

−∂R2(Z)

∂Z
ϕ(Z, ς) ≤ R2(Z) + α6(|ς|), (15)

for all Z ∈ Rn+1 and ς ∈ R.

Remark 2.4. Conditions (12), (13) (or (14), (15)) imply that for every initial condition
and every locally bounded input signal the corresponding solution of (11) is defined for
all t ≥ 0 (or t ≤ 0).

Let

µ1(Z) = −c1(Z2 − κ(Z1)) +
∂κ(Z1)

∂Z1
f(Z1, Z2), (16)

with Z = [Z1, Z2] ∈ Rn × R, and c1 > 0.

Assumption 2.5. For system Ż = ϕ(Z, µ1(Z) + ς), there exist a smooth positive defi-
nite function R3 and class K∞ functions αj , j = 7, 8, 9 such that

α7(|Z|) ≤ R3(Z) ≤ α8(|Z|) (17)

−∂R3(Z)

∂Z
ϕ(Z, µ1(Z) + ς) ≤ R3(Z) + α9(|ς|), (18)

for Z ∈ Rn+1 and ς ∈ R.
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Remark 2.6. Assumption (2.5) means that for every initial condition and every locally
bounded input signal the corresponding solution of Ż = ϕ(Z, µ1(Z) + ς) is defined for
all t ≤ 0.

For subsystem Ẋ(t) = f(X(t), u(0, t)), if there exists u(0, t) = κ(X(t)) such that
Ẋ(t) = f(X(t), κ(X(t))) is globally asymptotically stable, the predictor control for
system (1) – (4) is designed as

U(t) = − ∂tu(L, t)

2
√
v(u(0, t))

+
1

2
∂xu(L, t)

−
∫ L
0
K11(L, s, t)s1(s, t) ds

2
√
v(u(0, t))

−
∫ L
0
K12(L, s, t)s2(s, t) ds

2
√
v(u(0, t))

− c1
2

(
p2(L, φ(t))− κ(p1(L, φ(t)))

)
+
∂κ(p1(L, φ(t)))

∂p1

f(p1(L, φ(t)), p2(L, φ(t)))

2
√
v(p2(y, φ(t)))

,

(19)

where p1 ∈ Rn, p2 ∈ R are defined as

p1(x, φ(t)) = X(t) +

∫ x

0

f(p1(y, φ(t)), p2(y, φ(t)))√
v(p2(y, φ(t)))

dy (20)

p2(x, φ(t)) = u(0, t) +

∫ x

0

s1(y, t)
4
√
v(p2(y, φ(t)))v(u(0, t))

dy

−
∫ x

0

∫ x

y

s1(y, t)K11(σ, y, t)
4
√
v(p2(σ, φ(t)))v(u(0, t))

dσdy

−
∫ x

0

∫ x

y

s2(y, t)K12(σ, y, t)
4
√
v(p2(σ, φ(t)))v(u(0, t))

dσdy (21)

with φ(t) =
∫ t
0

√
v(u(0, σ))dσ and

s1(y, t) = ∂tu(y, t) +
√
v(u(0, t)) ∂yu(y, t) (22)

and

s2(y, t) = ∂tu(y, t)−
√
v(u(0, t)) ∂yu(y, t), (23)

for all 0 ≤ x ≤ L, t ≥ 0. The initial conditions of p1 and p2 are defined as

p1(x, 0) = X(0) +

∫ x

0

f(p1(y, 0), p2(y, 0))√
v(p2(y, 0))

dy (24)

p2(x, 0) = u0(0) +

∫ x

0

s1(y, 0)
4
√
v(p2(y, 0))v(u0(0))

dy

−
∫ x

0

∫ x

y

s1(y, 0)K11(σ, y, 0)
4
√
v(p2(σ, 0))v(u0(0))

dσdy

−
∫ x

0

∫ x

y

s2(y, 0)K12(σ, y, 0)
4
√
v(p2(σ, 0))v(u0(0))

dσdy (25)



406 X. CAI, Y. LIN, J. ZHANG, C. LIN

for all 0 ≤ x ≤ L. The gain c1 > 0, and the functions K11 and K12 are solutions to the
kernel PDEs

∂tK(x, s, t)− ∂sK(x, s, t)A(u)−A(u)∂xK(x, s, t) = −K(x, s, t)B(u) (26)

A(u)K(x, x, t)−K(x, x, t)A(u) = B(u) (27)

K11(x, 0, t) = K12(x, 0, t) (28)

K21(x, 0, t) = K22(x, 0, t), (29)

where (26) – (29) is defined on {(x, s, t) : 0 ≤ s ≤ x ≤ L, t ≥ 0}. The boundary value-
dependent matrices are given by

A(u) =

[ √
v(u(0, t)) 0

0 −
√
v(u(0, t))

]
, (30)

B(u) =

[
0 − v̇(u(0,t))

4v(u(0,t))

− v̇(u(0,t))
4v(u(0,t)) 0

]
, (31)

where v̇(u(0, t)) = ∂v(u(0,t))
∂u ∂tu(0, t).

3. SOME PRELIMINARY TRANSFORMATIONS

Denote

ζ(x, t) = ∂tu(x, t) +
√
v(u(0, t)) ∂xu(x, t), (32)

η(x, t) = ∂tu(x, t)−
√
v(u(0, t)) ∂xu(x, t). (33)

From (32), (33), we have

∂tu(x, t) =
ζ(x, t) + η(x, t)

2
, (34)√

v(u(0, t))∂xu(x, t) =
ζ(x, t)− η(x, t)

2
, (35)

system (1) – (4) can be expressed as

Ẋ(t) = f(X(t), u(0, t)) (36)

∂tu(0, t) = ζ(0, t) (37)

∂tζ(x, t) =
√
v(u(0, t)) ∂xζ(x, t)

+
v̇(u(0, t))

4v(u(0, t))
(ζ(x, t)− η(x, t)) (38)

∂tη(x, t) = −
√
v(u(0, t)) ∂xη(x, t)

− v̇(u(0, t))

4v(u(0, t))
(ζ(x, t)− η(x, t)) (39)

η(0, t) = ζ(0, t) (40)

ζ(L, t) = η(L, t) + 2
√
v(u(0, t))U(t). (41)
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Denote ξ(x, t) = [ζ(x, t), η(x, t)]T , using the state transformation

ξ(x, t) = 4

√
v(u0(0))

v(u(0, t))
ξ(x, t), (42)

with ξ(x, t) = [ζ(x, t), η(x, t)]T , system (36) – (41) is rewritten as

Ẋ(t) = f(X(t), u(0, t)) (43)

∂tu(0, t) = 4

√
v(u(0, t))

v(u0(0))
ζ(0, t) (44)

∂tξ(x, t) = A(u(0, t))∂xξ(x, t) + B(u(0, t))ξ(x, t) (45)

η(0, t) = ζ(0, t) (46)

ζ(L, t) = η(L, t) + 2 4
√
v(u0(0))v(u(0, t))U(t), (47)

where A(u), B(u) are defined in (30) and (31), respectively. In order to remove the
internal coupling terms in (45), the backstepping transformation is employed

ω(x, t) = ξ(x, t)−
∫ x

0

K(x, s, t)ξ(s, t)ds, (48)

with ω(x, t) = [ω1(x, t), ω2(x, t)]T , for all 0 ≤ x ≤ L, t ≥ 0, where K(x, s, t) =
[Kij(x, s, t)] ∈ R2×2 is solution to equations (26) – (29). Differentiating (48) to time
t and space x, system (43) – (47) is transformed to the decoupled PDE/ODE cascaded
system

Ẋ(t) = f(X(t), u(0, t)) (49)

∂tu(0, t) = 4

√
v(u(0, t))

v(u0(0))
ω1(0, t) (50)

∂tω(x, t) = A(u(0, t)) ∂xω(x, t) (51)

ω2(0, t) = ω1(0, t) (52)

ω1(L, t) = η(L, t) + 2 4
√
v(u0(0))v(u(0, t))U(t)

−
∫ L

0

K11(L, s, t)ζ(s, t)ds

−
∫ L

0

K12(L, s, t)η(s, t)ds, (53)

for 0 ≤ x ≤ L, t ≥ 0, if K11,K12 satisfy (26) – (29).
Cascaded system (49) – (53) is transferred to system (43) – (47) by the inverse back-

stepping transformation

ξ(x, t) = ω(x, t) +

∫ x

0

L(x, s, t)ω(s, t)ds, (54)
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where L(x, s, t) = [Lij(x, s, t)] ∈ R2×2 is solution to the kernel equations

∂tL(x, s, t)− ∂sL(x, s, t)A(u)−A(u)∂xL(x, s, t) = B(u)L(x, s, t) (55)

L(x, x, t)A(u)−A(u)L(x, x, t) = B(u) (56)

L11(x, 0, t) = L12(x, 0, t) (57)

L21(x, 0, t) = L22(x, 0, t), (58)

where (55) – (58) is defined on {(x, s, t) : 0 ≤ s ≤ x ≤ L, t ≥ 0}.
Let us redefine time as

τ = φ(t) =

∫ t

0

√
v(u(0, σ))dσ. (59)

Since v(u(0, σ)) > 0, for any u(0, σ) ∈ R, the inverse function of φ(t) exists, namely,
t = φ−1(τ). By (59), system (49) – (53) can be expressed as

dX(φ−1(τ))

dτ
=
f(X(φ−1(τ)), u(0, φ−1(τ)))√

v(u(0, φ−1(τ)))
(60)

∂τu(0, φ−1(τ)) =
ω1(0, φ−1(τ))

4
√
v(u(0, φ−1(τ)))v(u0(0))

(61)

∂τω1(x, φ−1(τ)) = ∂xω1(x, φ−1(τ)) (62)

∂τω2(x, φ−1(τ)) = −∂xω2(x, φ−1(τ)) (63)

ω2(0, φ−1(τ)) = ω1(0, φ−1(τ)) (64)

ω1(L, φ−1(τ)) = η(L, φ−1(τ)) + 2 4
√
v(u(0, 0))v(u(0, φ−1(τ)))U(φ−1(τ))

−
∫ L

0

K11(L, s, φ−1(τ))ζ(s, φ−1(τ))ds

−
∫ L

0

K12(L, s, φ−1(τ))η(s, φ−1(τ))ds, (65)

for 0 ≤ x ≤ L, τ ≥ 0, if K11,K12 satisfy (26) – (29).

Remark 3.1. From (59), one has

φ
′
(φ−1(τ)) =

√
v(u(0, φ−1(τ))). (66)

Noting that (60) is achieved from (49) and (66).

Denote

X(τ) = X(φ−1(τ)), U(τ) = U(φ−1(τ)), u(x, τ) = u(x, φ−1(τ)), (67)

ω1(x, τ) = ω1(x, φ−1(τ)), ω2(x, τ) = ω2(x, φ−1(τ)), (68)

system (60) – (65) is rewritten as



Predictor control of wave PDE/nonlinear ODE 409

Ẋ(τ) =
f(X(τ), u(0, τ))√

v(u(0, τ))
(69)

∂τu(0, τ) =
ω1(0, τ)

4
√
v(u(0, τ))v(u(0, 0))

(70)

∂τω1(x, τ) = ∂xω1(x, τ) (71)

∂τω2(x, τ) = −∂xω2(x, τ) (72)

ω2(0, τ) = ω1(0, τ) (73)

ω1(L, τ) = η(L, φ−1(τ)) + 2 4
√
v(u(0, 0))v(u(0, τ))U(τ)

−
∫ L

0

K11(L, s, φ−1(τ))ζ(s, φ−1(τ))ds

−
∫ L

0

K12(L, s, φ−1(τ))η(s, φ−1(τ))ds, (74)

for 0 ≤ x ≤ L, τ ≥ 0, if K11,K12 satisfy (26) – (29).

4. STABILITY ANALYSIS OF THE PROPOSED CONTROL LAW

4.1. Equivalent nominal controller for the target system’s ODE

From Assumption 2.1, the control law u(0, t) = κ(X(t)) globally stabilizes system Ẋ(t) =
f(X(t), u(0, t)). Equivalently, the control law u(0, φ−1(τ)) = κ(X(φ−1(τ))) globally sta-

bilizes system dX(φ−1(τ))
dτ = f(X(φ−1(τ)),u(0,φ−1(τ)))√

v(u(0,φ−1(τ)))
. So the control law u(0, τ) = κ(X(τ))

globally stabilizes system (69).

It is easy to check that the feedback law

µ(χ) = 4
√
v(u(0, τ))v(u(0, 0))µ1(χ), (75)

where χ = [χ1, χ2] ∈ Rn × R and µ1 is given by (16), is a nominal stabilizing controller
for the ODE

χ̇ = ϕ

(
χ,

1
4
√
v(u(0, τ))v(u(0, 0))

µ

)
, (76)

where ϕ is given by (10).

The predictor signal that compensates the PDE actuator dynamics for the target
system (69) – (74) is defined by the following vector functions p(x, τ) and q(x, τ):

p(x, τ) = Z(τ) +

∫ x

0

ϕ

(
p(y, τ),

ω1(y, τ)
4
√
v(p2(y, τ))v(u(0, 0))

)
dy, (77)
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where p(x, τ) = [p1(x, τ), p2(x, τ)]T with the initial condition

p(x, 0) = Z(0) +

∫ x

0

ϕ

(
p(y, 0),

ω1(y, 0)
4
√
v(p2(y, 0))v(u(0, 0))

)
dy, (78)

and

Z(τ) =

[
X(τ)
u(0, τ)

]
,

ϕ

(
p(y, τ),

ω1(y, τ)
4
√
v(p2(y, τ))v(u(0, 0))

)
=

 f(p1(y,τ),p2(y,τ))√
v(p2(y,τ))
ω1(y,τ)

4
√
v(p2(y,τ))v(u(0,0))

 ,
and

q(x, τ) = Z(τ)−
∫ x

0

ϕ

(
q(y, τ),

ω2(y, τ)
4
√
v(q2(y, τ))v(u(0, 0))

)
dy, (79)

where q(x, τ) = [q1(x, τ), q2(x, τ)]T , with the initial condition

q(x, 0) = Z(0)−
∫ x

0

ϕ

(
q(y, 0),

ω2(y, 0)
4
√
v(q2(y, 0))v(u(0, 0))

)
dy, (80)

where

ϕ

(
q(y, τ),

ω2(y, τ)
4
√
v(q2(y, τ))v(u(0, 0))

)
=

 f(q1(y,τ),q2(y,τ))√
v(q2(y,τ))
ω2(y,τ)

4
√
v(q2(y,τ))v(u(0,0))

 .
4.2. A second-step backstepping transformation towards stability analysis

A second-step backstepping transformation is designed in order to map (69) – (74) into
the final target system whose stability will be established. We state the following Lemma.

Lemma 4.1. (Second-Step Backstepping Transform) Let

$(x, τ) = ω1(x, τ)− µ(p(x, τ)), (81)

λ(x, τ) = ω2(x, τ)− µ(q(x, τ)), (82)

where µ is defined in (75), and p(x, τ), q(x, τ) are given as (77), (79), respectively, and
U(τ) is

U(τ) = − 1

2 4
√
v(u(0, τ))v(u(0, 0))

(η(L, φ−1(τ))

−
∫ L

0

(K11(L, s, φ−1(τ))ζ(s, φ−1(τ)) +K12(L, s, φ−1(τ))η(s, φ−1(τ)))ds

− µ(p(L, τ))), (83)
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map system (69) – (74) into the target system

Ż(τ) = ϕ

(
Z(τ),

$(0, τ) + µ(Z(τ))
4
√
v(u(0, τ))v(u(0, 0))

)
(84)

∂τ$(x, τ) = ∂x$(x, τ) (85)

∂τλ(x, τ) = −∂xλ(x, τ) (86)

λ(0, τ) = $(0, τ) (87)

$(L, τ) = 0. (88)

The proof of Lemma 4.1 is provided in Appendix A.1.

Remark 4.2. Using (16), (32), (33), (42), (75), it can be deduced that the control law
(83) is just (19). In addition, from (10), (32), (33), (48), it is not difficult to find that
p(x, φ(t)) defined as (77) is just [p1(x, φ(t)), p2(x, φ(t))]T given as (20), (21).

Inverse Backstepping Transforms: Define the vector functions π(x, τ) and ι(x, τ)
as

π(x, τ) = Z(τ) +

∫ x

0

ϕ

(
π(y, τ),

$(y, τ) + µ(π(y, τ))
4
√
v(π2(y, τ))v(u(0, 0))

)
dy, (89)

where π(x, τ) = [π1(x, τ), π2(x, τ)]T , with the initial condition

π(x, 0) = Z(0) +

∫ x

0

ϕ

(
π(y, 0),

$(y, 0) + µ(π(y, 0))
4
√
v(π2(y, 0))v(u(0, 0))

)
dy, (90)

and

ι(x, τ) = Z(τ)−
∫ x

0

ϕ

(
ι(y, τ),

λ(y, τ) + µ(ι(y, τ))
4
√
v(ι2(y, τ))v(u(0, 0))

)
dy, (91)

where ι(x, τ) = [ι1(x, τ), ι2(x, τ)]T with the initial condition

ι(x, 0) = Z(0)−
∫ x

0

ϕ

(
ι(y, 0),

λ(y, 0) + µ(ι(y, 0))
4
√
v(ι2(y, 0))v(u(0, 0))

)
dy, (92)

where $,λ, µ are defined in (81), (82), (75), respectively.
The inverse backstepping transformations of $,λ are defined as

ω1(x, τ) = $(x, τ) + µ(π(x, τ)), (93)

ω2(x, τ) = λ(x, τ) + µ(ι(x, τ)), (94)

where π(x, τ), ι(x, τ), 0 ≤ x ≤ L, τ ≥ 0, are given as (89), (91), respectively.
The inverse backstepping transformation (93), (94), and the control law (83), trans-

form the target system (84) – (88) into system (69) – (74), it can be deduced from straight-
forward computations.
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4.3. Some Lemmas and A Theorem

Under Assumptions 2.1 – 2.5, and condition (6), we prove stability of the closed-loop
system (1) – (4) together with (19) – (21) by using the following Lemmas (Lemmas 4.4 –
4.10).

Theorem 4.3. Consider system (1) – (4) with (19) – (21), if Assumptions 2.1 – 2.5 and
condition (6) hold, for any initial condition u0(x) ∈ C1[0, L], u1(x) ∈ C[0, L], which
is compatible with the feedback law (19) – (21) and such that ux(0, 0) = 0, then the
closed-loop system has a unique solution X(t) ∈ C1([0,∞),Rn), (u(·, t), ut(·, t)) ∈
C([0,∞), C1[0, L]× C[0, L]), moreover, there is a KL function β such that

Ω(t) ≤ β(Ω(0), t) (95)

where
Ω(t) = |X(t)|+ ‖u(t)‖∞ + ‖ut(t)‖∞ + ‖ux(t)‖∞,

for t ≥ 0.

Lemma 4.4. (Stability Estimate for Target System) Consider system (84) – (88),
if Assumption 2.1 and condition (6) hold, there is a class KL function β, such that

|Z(τ)|+ ‖$(τ)‖∞ + ‖λ(τ)‖∞
≤ β(|Z(0)|+ ‖$(0)‖∞ + ‖λ(0)‖∞, τ)

(96)

for all τ ≥ 0.

The proof of Lemma 4.4 is provided in Appendix A.2.

Lemma 4.5. (Bound on Forward Predictor) Under Assumption 2.3 and condition
(6), there exists a class K∞ function ρ1 such that the following holds:

sup
0≤x≤L

|p(x, τ)| ≤ ρ1(|Z(τ)|+ ‖ω1(τ)‖∞). (97)

The proof of Lemma 4.5 is provided in Appendix A.3.

Lemma 4.6. (Bound on Backward Predictor) Under Assumption 2.3 and condi-
tion (6), there exists a class K∞ function ρ2 such that the following holds:

sup
0≤x≤L

|q(x, τ)| ≤ ρ2(|Z(τ)|+ ‖ω2(τ)‖∞). (98)

The proof of Lemma 4.6 is provided in Appendix A.4.

Lemma 4.7. (Bound on Extended Forward State Predictor) Under Assumption
2.1 and condition (6), there exists a class K∞ function ρ3 such that the following holds

sup
0≤x≤L

|π(x, τ)| ≤ ρ3(|Z(τ)|+ ‖$(τ)‖∞). (99)

The proof of Lemma 4.7 is provided in Appendix A.5.
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Lemma 4.8. (Bound on Extended Backward State Predictor) Under Assump-
tion 2.5 and condition (6), there exists a class K∞ function ρ4 such that the following
holds

sup
0≤x≤L

|λ(x, τ)| ≤ ρ4(|Z(τ)|+ ‖λ(τ)‖∞). (100)

The proof of Lemma 4.8 is provided in Appendix A.6.

Lemma 4.9. Consider system (84) – (88), and output maps are (93), (94), if Assump-
tions 2.1, and 2.5 and condition (6) hold, there is a class K∞ function γ2 such that

|Z(τ)|+ ‖ω1(τ)‖∞ + ‖ω2(τ)‖∞
≤ γ2(|Z(τ)|+ ‖$(τ)‖∞ + ‖λ(τ)‖∞).

(101)

The proof is omitted since it is easy to achieve.

Lemma 4.10. Consider system (69) – (74), and output maps are (81), (82), if Assump-
tions 2.1, and 2.3 and condition (6) hold, then there is a class K∞ function γ3 such
that

|Z(τ)|+ ‖$(τ)‖∞ + ‖λ(τ)‖∞
≤ γ3(|Z(τ)|+ ‖ω1(τ)‖∞ + ‖ω2(τ)‖∞).

(102)

The proof is omitted since it is easy to achieve.

P r o o f of Theorem 1. Combining Lemma 4.4, Lemma 4.9, Lemma 4.10, one has

|Z(τ)|+ ‖ω1(τ)‖∞ + ‖ω2(τ)‖∞
≤ γ2(|Z(τ)|+ ‖$(τ)‖∞ + ‖λ(τ)‖∞)

≤ γ2(β(|Z(0)|+ ‖$(0)‖∞ + ‖λ(0)‖∞, τ))

≤ γ2(β(γ3(|Z(0)|+ ‖ω1(0)‖∞ + ‖ω2(0)‖∞), τ)), (103)

for all τ ≥ 0. By (67), (68), and (59), from (103), we get

|Z(t)|+ ‖ω1(t)‖∞ + ‖ω2(t)‖∞
≤ γ2(β(γ3(|Z(0)|+ ‖ω1(0)‖∞ + ‖ω2(0)‖∞), t)) (104)

for all t ≥ 0. With the help of (48), (54), from (104) we have

|Z(t)|+ ‖ξ(t)‖∞
≤ (1 + L)γ2(β(γ3(

√
2(1 +K)(|Z(0)|+ ‖ξ(0)‖∞)), t)), (105)

for all t ≥ 0, and L = sup
(x,y,t)∈[0,L]×[0,L]×[0,∞)

|L(x, y, t)|, K = sup
(x,y,t)∈[0,L]×[0,L]×[0,∞)

|K(x, y, t)|.
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Using (32), (33), (34), (35), (42), (105), we derive the estimates below

|X(t)|+ |u(0, t)|+ ‖∂tu(t)‖∞ + ‖∂xu(t)‖∞

≤
√

2|Z(t)|+
√

2

2

(
1 +

1
√
%1

)
4

√
%2
%1
‖ξ(t)‖∞

≤ max

{
√

2,

√
2

2

(
1 +

1
√
%1

)
4

√
%2
%1

}
(|Z(t)|+ ‖ξ(t)‖∞)

≤ (1 + L)max

{
√

2,

√
2

2

(
1 +

1
√
%1

)
4

√
%2
%1

}
× γ2(β(γ3(

√
2(1 +K)(|Z(0)|+ ‖ξ(0)‖∞)), t))

≤ (1 + L)max

{
√

2,

√
2

2

(
1 +

1
√
%1

)
4

√
%2
%1

}
× γ2(β(γ3(

√
2
(
1 +K

)
(|X(0)|+ ‖u(0)‖∞

+ 2 4

√
%2
%1

(1 +
√
%2)(‖∂tu(0)‖∞ + ‖∂xu(0)‖∞)), t)). (106)

In addition,

u(x, t) = u(0, t) +

∫ x

0

us(s, t) ds, (107)

so, it holds

|X(t)|+ ‖u(t)‖∞ + ‖∂tu(t)‖∞ + ‖∂xu(t)‖∞
≤ |X(t)|+ |u(0, t)|+ ‖∂tu(t)‖∞ + 2‖∂xu(t)‖∞. (108)

Hence, defining the class K∞ function

β(s, t) = 2(1 + L)max{
√

2,
√
2
2

(
1 + 1√

%1

)
4

√
%2
%1
}

×γ2(β(γ3(
√

2(1 +K) + 2 4

√
%2
%1

(1 +
√
%2)s), t)),

we obtain (95).
It can be deduced that under Assumptions 2.1 – 2.5, and condition (6), for u0(x) ∈

C1[0, L], u1(x) ∈ C[0, L], which is compatible with the feedback law (19) – (21), the
closed-loop system has a unique solution X(t) ∈ C1([0,∞), Rn), (u(·, t), ut(·, t)) ∈
C([0,∞), C1[0, L]× C[0, L]). �

5. SIMULATION

For a third-order system

Ẋ1(t) = X2(t) +X2
3 (t) (109)

Ẋ2(t) = X3(t) +X3(t)u(0, t) (110)

Ẋ3(t) = u(0, t), (111)
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Fig. 2. Responses of the ODE state X and PDE state u(x, t) under

the proposed control (solid line) and the nominal control (dotted line).

the nominal feedback law for (109) – (111) is

u(0, t) = −X1(t)− 3X2(t)− 3X3(t)− 3

8
X2(t)2

+
3

4
X2(t)

(
−X1(t)− 2X2(t) +

1

2
X3(t) +

X2(t)X3(t)

2

+
5

8
X3(t)2 − 1

4
X3(t)3 − 3

8

(
X2(t)− X3(t)2

2

)2
)
. (112)

Now system (109) – (111) cascading with (2) – (4) with

v(u(0, t)) =

(
1 +

1

1 + u(0, t)2

)2

, (113)

is controlled by (19) – (21).

In simulation, L = 1, c1 = 5, X1(0) = 3, X2(0) = −2, X3(0) = 1 and u0(x) =
0, u1(x) = 0 for x ∈ [0, 1], responses of the ODE states X1, X2, X3 and wave PDE
state u(x, t) under the proposed control are given in Figure 2. Response of the predictor
control (19) – (21), and the uncompensated control (112) are given in Figure 3. The
proposed control stabilizes the cascaded system while the uncompensated control (112)
leads to instability.



416 X. CAI, Y. LIN, J. ZHANG, C. LIN

0 2 4 6 8 10

-2

-1.5

-1

-0.5

0

0.5

1

0 2 4 6 8

-4

-3

-2

-1

0
10

304

Fig. 3. Responses of the proposed control (left) and the nominal

control (right).

6. CONCLUSION

Predictor control is investigated for wave PDE/nonlinear ODE cascaded system with
boundary value-dependent propagation speed. The controller design and stability anal-
ysis are based on a two-step backstepping transformation and introducing a new time
variable. A novel two-step backstepping transformation is employed to derive a target
system whose stability is established using Lyapunov arguments. The resulting bound-
ary controller is a predictor-feedback control law, which compensates the wave actuator
dynamics and guarantees globally asymptotic stability of the closed-loop system.

A. PROOF OF THE LEMMAS

A.1. Proof of Lemma 4.1

First, from (77), p(0, τ) = Z(τ) and using (81), (69), we derive (84). Second, from (81),
(82), (73), it is easy to deduce (87). In addition, with the help (74), (81), (75), it can
be deduced (88). Finally, we will prove (85), and (86). The transformation (77) can be
expressed as follows:

p1(x, τ) = X(τ) +

∫ x

0

f(p1(y, τ), p2(y, τ))√
v(p2(y, τ))

dy, (A.1)

p2(x, τ) = u(0, τ) +

∫ x

0

ω1(y, τ)
4
√
v(u(0, 0))v(p2(y, τ))

dy. (A.2)

Differentiating (A.1) with respect to τ and x, we have

∂τp1(x, τ)

=
f(X(τ), u(0, τ))√

v(u(0, τ))
+

∫ x

0

∂p1f(p1(y, τ), p2(y, τ))∂τp1(y, τ)√
v(p2(y, τ))

dy

+

∫ x

0

∂p2f(p1(y, τ), p2(y, τ))∂τp2(y, τ)√
v(p2(y, τ))

dy

−
∫ x

0

f(p1(y, τ), p2(y, τ))∂p2v(p2(y, τ))∂τp2(y, τ)

2(v(p2(y, τ)))3/2
dy, (A.3)
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and

∂xp1(x, τ)

=
f(X(τ), u(0, τ))√

v(u(0, τ))
+

∫ x

0

∂p1f(p1(y, τ), p2(y, τ))∂yp1(y, τ)√
v(p2(y, τ))

dy

+

∫ x

0

∂p2f(p1(y, τ), p2(y, τ))∂yp2(y, τ)√
v(p2(y, τ))

dy

−
∫ x

0

f(p1(y, τ), p2(y, τ))∂p2v(p2(y, τ))∂yp2(y, τ)

2(v(p2(y, τ)))3/2
dy. (A.4)

Defining

H1(x, τ) = ∂τp1(x, τ)− ∂xp1(x, τ), (A.5)

H2(x, τ) = ∂τp2(x, τ)− ∂xp2(x, τ), (A.6)

and combining (A.3) and (A.4), we arrive at

H1(x, τ)

=

∫ x

0

∂p1f(p1(y, τ), p2(y, τ))H1(y, τ)√
v(p2(y, τ))

dy

+

∫ x

0

∂p2f(p1(y, τ), p2(y, τ))H2(y, τ)√
v(p2(y, τ))

dy

−
∫ x

0

f(p1(y, τ), p2(y, τ))∂p2v(p2(y, τ))H2(y, τ)

2(v(p2(y, τ)))3/2
dy. (A.7)

Differentiating (A.2) with respect to τ , one has

∂τp2(x, τ)

= ∂τu(0, τ) +

∫ x

0

∂τω1(y, τ)
4
√
v(u(0, 0))v(p2(y, τ))

dy

−
∫ x

0

ω1(y, τ)∂p2v(p2(y, τ))∂τp2(y, τ)

4 4
√
v(u(0, 0))(v(p2(y, τ)))5

dy. (A.8)

Differentiating (A.2) with respect to x, it holds

∂xp2(x, τ) =
ω1(x, τ)

4
√
v(u(0, 0))v(p2(x, τ))

=
ω1(0, τ)

4
√
v(u(0, 0))v(u(0, τ))

+

∫ x

0

∂yω1(y, τ)
4
√
v(u(0, 0))v(p2(y, τ))

dy

−
∫ x

0

ω1(y, τ)∂p2v(p2(y, τ))∂yp2(y, τ)
4
√
v(u(0, 0))(v(p2(y, τ)))5

dy. (A.9)

Combining (A.8) and (A.9), and using (70), we get

H2(x, τ) = −
∫ x

0

ω1(y, τ)∂p2v(p2(y, τ))H2(y, τ)
4
√
v(u(0, 0))(v(p2(y, τ)))5

dy. (A.10)
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Differentiating (A.7) with respect to x, the following ODE in x is deduced

∂xH1(x, τ) =
∂p1f(p1(x, τ), p2(x, τ))H1(x, τ)√

v(p2(x, τ))

+
∂p2f(p1(x, τ), p2(x, τ))H2(x, τ)√

v(p2(x, τ))

− f(p1(x, τ), p2(x, τ))∂p2v(p2(x, τ))H2(x, τ)

2(v(p2(x, τ)))3/2
, (A.11)

and

H1(0, τ) = 0. (A.12)

Differentiating (A.10) with respect to x, the ODE in x is acquired

∂xH2(x, τ) = −ω1(x, τ)∂p2v(p2(x, τ))H2(x, τ)
4
√
v(u(0, 0))(v(p2(x, τ)))5

, (A.13)

and

H2(0, τ) = 0. (A.14)

From (A.11), (A.12), and (A.13), (A.14), it is easy to deduce

H1(x, τ) = 0, H2(x, τ) = 0, (A.15)

for all x ∈ [0, L], t ≥ 0. Knowing (A.15), it is clear that

∂τp(x, τ) = ∂xp(x, τ). (A.16)

Taking the time and the spatial derivative of the backstepping transformation (81), and
using (A.16), relation (85) is deduced. Relation (86) can be derived similarly. �

A.2. Proof of Lemma 4.3

Let us introduce a new variable z(x, τ), x ∈ [−L,L] such that

z(x, τ) =

{
$(x, τ), for all x ∈ [0, L],
λ(−x, τ), for all x ∈ [−L, 0].

(B.1)

From (85), (86) and (88), we get

∂τz(x, τ) = ∂xz(x, τ), (B.2)

for all x ∈ [−L,L], and z(L, τ) = 0. Now, defining the functional Γg,n(τ) as follows

Γg,n(τ) =

∫ L

−L
e2ng(L+x)z(x, τ)2ndx, (B.3)
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where g > 0 and n is a positive integer, and using integration by parts, the derivative
of Γg, n(τ) is given by

Γ̇g,n(τ)

=

∫ L

−L
2ne2ng(L+x)z(x, τ)2n−1∂τz(x, τ) dx

≤ −2ng

∫ L

−L
e2ng(L+x)z(x, τ)2ndx. (B.4)

From (B.3), we derive the following estimate∫ L

−L
z(x, τ)2ndx ≤ Γg, n(τ) ≤ e4ngL

∫ L

−L
z(x, τ)2ndx. (B.5)

Integrating (B.4) and using (B.5), we obtain∫ L

−L
z(x, τ)2ndx ≤ e−2ng(τ−s)e4ngL

∫ L

−L
z(x, s)2ndx. (B.6)

Further, it can be established that(∫ L

−L
z(x, τ)2ndx

) 1
2n

≤ e−g(τ−s)e2gL
(∫ L

−L
z(x, s)2ndx

) 1
2n

. (B.7)

Taking the limit of (B.7) as n goes to infinity, the following inequality holds

‖z(τ)‖∞,1 ≤ e−g(τ−s)e2gL‖z(s)‖∞,1, (B.8)

for all τ ≥ s ≥ 0. Using (B.1), from (B.8), it can be deduced that

1

2
(‖$(τ)‖∞ + ‖λ(τ)‖∞)

≤ ‖z(τ)‖∞,1
≤ e−g(τ−s)e2gL(‖$(s)‖∞ + ‖λ(s)‖∞), (B.9)

for all τ ≥ s ≥ 0. Noting that $(0, s) = λ(0, s), from (B.9), we get

sup
s∈[0,τ ]

|$(0, s)| ≤ e2gL(‖$(0)‖∞ + ‖λ(0)‖∞). (B.10)

Under Assumption 2.1, there exist a class KL function β1 and a class K∞ function γ1,
such that the solutions to (84) satisfy

|Z(τ)| ≤ β1(|Z(s)|, τ − s) +γ1

(
sup
σ∈[s,τ ]

(
1

4
√
v(u(0, σ))v(u(0, 0))

|$(0, σ)|

))
, (B.11)
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for all τ ≥ s ≥ 0, using (6), we get

|Z(τ)| ≤ β1(|Z(s)|, τ − s) + γ1

(
1
√
%1

sup
σ∈[s,τ ]

|$(0, σ)|

)
, (B.12)

for all τ ≥ s ≥ 0. Finally, combining (B.12), (B.10), one has

|Z(τ)| ≤ β1(|Z(0)|, τ) + γ1

(
e2gL
√
%1

(‖$(0)‖∞ + ‖λ(0)‖∞)

)
(B.13)

for all τ ≥ 0. Now defining

β(s, τ) = β1(s, τ) + γ1

(
e2gL
√
%1
s

)
+ 2e2gLs,

with g > 0, from (B.9), (B.13), we deduce (96). �

A.3. Proof of Lemma 4.4

Differentiating (77) with respect to x, we get

∂xp(x, τ) = ϕ

(
p(x, τ),

ω1(x, τ)
4
√
v(p2(x, τ))v(u(0, 0))

)
, (C.1)

p(0, τ) = Z(τ), (C.2)

for all 0 ≤ x ≤ L, τ ≥ 0. With the help of (13), we obtain the following relation:

∂R1(p(x, τ))

∂p
ϕ

(
p(x, τ),

ω1(x, τ)
4
√
v(p2(x, τ))v(u(0, 0))

)

≤ R1(p(x, τ)) + α3

(
|ω1(x, τ)|

4
√
v(p2(x, τ))v(u(0, 0))

)
. (C.3)

Using (C.1), from (C.3), with the help of (6), we have

∂R1(p(x, τ))

∂x
≤ R1(p(x, τ)) + α3

(
|ω1(x, τ)|
√
%1

)
. (C.4)

Using (14), from (C.4), we deduced that

α1(|p(x, τ)|) ≤ R1(p(x, τ))

≤ exα2(|Z(τ)|) + (ex − 1)α3

(
1
√
%1
‖ω1(τ)‖∞

)
, (C.5)

for all 0 ≤ x ≤ L, τ ≥ 0. Defining the function

ρ1(s) = α−11

(
eLα2(s) + (eL − 1)α3

(
1
√
%1
s

))
,

we obtain (97), which completes the proof. �
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A.4. Proof of Lemma 4.5

Differentiating (79) with respect to x, we get

∂xq(x, τ) = −ϕ

(
q(x, τ),

ω2(x, τ)
4
√
v(q2(x, τ))v(u(0, 0))

)
, (D.1)

q(0, τ) = Z(τ), (D.2)

for all 0 ≤ x ≤ L, τ ≥ 0. With the help of (15), we obtain the following relation:

− ∂R2(q(x, τ))

∂q
ϕ

(
q(x, τ),

ω2(x, τ)
4
√
v(q2(x, τ))v(u(0, 0))

)

≤ R2(q(x, τ)) + α6

(∣∣∣∣∣ ω2(x, τ)
4
√
v(q2(x, τ))v(u(0, 0))

∣∣∣∣∣
)
. (D.3)

Using (D.1), from (D.3), we have

∂R2(q(x, τ))

∂x
≤ R2(q(x, τ)) + α6

(∣∣∣∣∣ ω2(x, τ)
4
√
v(q2(x, τ))v(u(0, 0))

∣∣∣∣∣
)
. (D.4)

With the help of (6), inequality (D.4) holds

∂R2(q(x, τ))

∂x
≤ R2(q(x, τ)) + α6

(
1
√
%1
|ω2(x, τ)|

)
, (D.5)

so we have

R2(q(x, τ)) (D.6)

≤ exR2(Z(τ)) + (ex − 1)α6

(
1
√
%1
|ω2(x, τ)|

)
.

Using (14), from (D.6), we arrive at

α4(|q(x, τ)|) ≤ R2(q(x, τ)) (D.7)

≤ exα5(|Z(τ)|) + (ex − 1)α6

(
1
√
%1
‖ω2(τ)‖∞

)
,

for all 0 ≤ x ≤ L, τ ≥ 0. Defining

ρ2(s) = α−14

(
eLα5(s) + (eL − 1)α6

(
1
√
%1
s

))
,

we derive (98), which completes the proof. �
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A.5. Proof of Lemma 4.6

Under Assumption 1, it can be deduced that the control law µ1 given in (16) is such
that the following system

Ż = ϕ(Z, µ1(Z) + ς) =

[
f(X, ξ)
µ1(Z) + ς

]
(E.1)

with Z = [XT , ξ]T is input-to-state stable with respect to ς. Thus, there exist a smooth
positive definite function R4 and class K∞ functions α10, α11, α12 such that

α10(|Z|) ≤ R4(Z) ≤ α11(|Z|), (E.2)

∂R4(Z)

∂Z
ϕ(Z, µ1(Z) + ς) ≤ R4(Z) + α12(|ς|), (E.3)

for Z ∈ Rn+1 and ς ∈ R.
Differentiating (89) with respect to x, we get

∂xπ(x, τ) = ϕ

(
π(x, τ),

µ(π(x, τ)) +$(x, τ)
4
√
v(π2(x, τ))v(u(0, 0))

)
, (E.4)

π(0, τ) = Z(τ), (E.5)

for all 0 ≤ x ≤ L, τ ≥ 0. From (E.3), we can deduce that

∂R4(π(x, τ))

∂π
ϕ

(
π(x, τ),

µ(π(x, τ)) +$(x, τ)
4
√
v(π2(x, τ))v(u(0, 0))

)

≤ R4(π(x, τ)) + α12

(∣∣∣∣∣ $(x, τ)
4
√
v(π2(x, τ))v(u(0, 0))

∣∣∣∣∣
)
, (E.6)

for all 0 ≤ x ≤ L, τ ≥ 0. With the help of (6), (E.4), we have

∂R4(π(x, τ))

∂x
≤ R4(π(x, τ)) + α12

(∣∣∣∣$(x, τ)
√
%1

∣∣∣∣) , (E.7)

for all 0 ≤ x ≤ L, τ ≥ 0. Hence, the following relation holds:

R4(π(x, τ)) ≤ eLR4(π(0, τ)) + (eL − 1) sup
0≤x≤L

α12

(
1
√
%1
|$(x, τ)|

)
, (E.8)

for all 0 ≤ x ≤ L, τ ≥ 0. Using (E.2), from (E.8), we get

|π(x, τ)| ≤ α−110

(
eLα11(|Z(τ)|) + (eL − 1)α12

(
1
√
%1
‖$(τ)‖∞

))
, (E.9)

for all 0 ≤ x ≤ L, τ ≥ 0. Defining

ρ3(s) = α−110

(
eLα11(s) + (eL − 1)α12

(
s
√
%1

))
,

(99) is obtained, which completes the proof. �
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A.6. Proof of Lemma 4.7

Differentiating (91) with respect to x, we get

∂xι(x, τ) = −ϕ

(
ι(x, τ),

λ(x, τ) + µ(ι(x, τ))√
v(ι2(x, τ))v(u(0, 0))

)
, (F.1)

ι(0, τ) = Z(τ), (F.2)

for all 0 ≤ x ≤ L, τ ≥ 0. Introducing the following change of variable:

y =

∫ x

0

ds√
v(ι2(s, τ))

, (F.3)

for 0 ≤ x ≤ L. Since the transport velocity v is assumed to be strictly positive, the
function y is monotonically increasing with respect to x. Thus, it admits an inverse
function as x = χ(y) and system (F.1), (F.2) can be rewritten as

∂yι(χ(y), τ) = −ϕ

(
ι(χ(y), τ),

λ(χ(y), τ) + µ(ι(χ(y), τ))√
v(ι2(χ(y), τ))v(u(0, 0))

)
, (F.4)

ι(0, τ) = Z(τ), (F.5)

for all 0 ≤ y ≤
∫ L
0

ds√
v(ι2(s,τ))

, τ ≥ 0. Noting that

µ1(ι(χ(y), τ)) =
µ(ι(χ(y), τ))√

v(ι2(χ(y), τ))v(u(0, 0))
, (F.6)

and using (18), we have

− ∂R3(ι(χ(y), τ))

∂ι
ϕ

(
ι(χ(y), τ),

λ(χ(y), τ) + µ(ι(χ(y), τ))√
v(ι2(χ(y), τ))v(u(0, 0))

)

≤ R3(ι(χ(y), τ)) + α9

(∣∣∣∣ λ(χ(y), t)

v(ι2(χ(y), τ))v(u(0, 0))

∣∣∣∣) , (F.7)

for ι(χ(y), τ) ∈ Rn and λ(χ(y), τ) ∈ R. With the help of (F.4), we deduce that

∂R3(ι(χ(y), τ))

∂y
(F.7)

≤ R3(ι(χ(y), τ)) + α9

(∣∣∣∣ λ(χ(y), τ)

v(ι2(χ(y), τ))v(u(0, 0))

∣∣∣∣) ,
for 0 ≤ y ≤

∫ L
0

ds√
v(ι2(s,τ))

, τ ≥ 0. Hence, the following relation holds:

R3(ι(χ(y), τ))

≤ eyR3(ι(χ(0), τ)) + (ey − 1) sup
0≤s≤y

α9

(∣∣∣∣ λ(χ(s), τ)

v(ι2(χ(s), τ))v(u(0, 0))

∣∣∣∣) , (F.8)
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for all 0 ≤ y ≤
∫ L
0

ds√
v(ι1(s,τ))

, τ ≥ 0. With the help of (6), (F.3), the following holds

R3(ι(x, τ)) ≤ eLR3(ι(0, τ)) + (eL − 1) sup
0≤x≤L

α9

(∣∣∣∣λ(x, τ)
√
%1

∣∣∣∣) , (F.9)

for all 0 ≤ x ≤ L, τ ≥ 0. Finally, using (17), from (F.9), defining

ρ4(s) = α−17

(
eLα8(s) + (eL − 1)α9

(
s
√
%1

))
,

(100) is obtained, which completes the proof. �
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