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Abstract. We prove the existence of weak solutions for steady flows of electrorheological
fluids with homogeneous Navier-slip type boundary conditions provided p(x) > 2n/(n+2).
To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz
truncation functions preserving the zero normal component in variable exponent Sobolev
spaces.
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1. Introduction

In this paper, we are concerned with the problem

− divS(x,Du) + (u · ∇)u+∇π = divF in Ω,

div u = 0 in Ω,

u · ν = 0, (S(x,Du)ν)τ + αuτ = 0 on ∂Ω,

where u is the velocity, π the pressure, F prescribed functions and Du the symmetric

part of ∇u, uτ = u− (u · ν)ν (where ν is the unit outer normal on ∂Ω), α > 0 and

(S(x,Du)ν)τ := S(x,Du)ν − (S(x,Du)ν · ν)ν.
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We assume that S(x, ζ) is a Carathéodory function satisfying the following hypothe-

ses:

∃ c∗ > 0, S(x, ζ) : ζ > c−1
∗ (|ζ|p(x) − 1),(1.1)

|S(x, ζ)| 6 c∗(1 + |ζ|)p(x)−1,(1.2)

(S(x, ζ) − S(x, ξ)) : (ζ − ξ) > 0 ∀ ζ, ξ ∈ Msym (ζ 6= ξ),(1.3)

where p(x) > 1 is a prescribed function and Msym the set of all symmetric n × n

matrices.

The system (1.1)–(1.2) models the steady motion of incompressible generalized

Newtonian fluids, in particular, that of electrorheological fluids with shear-dependent

viscosities, which are viscous fluids characterized by remarkable changes in their

viscosity when an electromagnetic field is applied. In recent years the study of

electrorheological fluids and of PDEs with nonstandard growth has been a very

increasing research field (see [1], [5], [10], [11], [14], [33], [35]–[39]).

The existence of a weak solution to the system (1.1)–(1.2) with a homogeneous

Dirichlet boundary condition was first proved for p = const > 3n/(n+ 2) by La-

dyzhenskaya (see [27]) and Lions (see [29]) by means of the monotone operator

theory and the compactness method. In [21], [34] the authors independently proved

it for p = const > 2n/(n+ 1) by using the so-called L∞-truncation method. This

bound p > 2n/(n+ 1) was improved to p > 2n/(n+ 2) in [22] by so-called Lipschitz

truncation method. In the case of p 6= const, the existence of weak solutions was

shown in [35] for p(x) > 3n/(n+ 2) and in [15] for p(x) > 2n/(n+ 2). For further

results, we refer to [16], [37].

It is well-known that the Navier-slip type boundary conditions (1.3) are an ap-

propriate model for flow problems with free boundaries, for flows past chemically

reacting walls, and for many other important flows in the real world, see [3] and the

references therein. The boundary condition (1.3) with α = 0 is sometimes called

the perfect slip one. It is worth noting that homogeneous Dirichlet and perfect

slip boundary conditions are the limit cases of Navier-slip boundary conditions. The

Navier-Stokes system under the Navier-slip type boundary conditions was studied by

many mathematicians (see [26], [28], [32], [40] and the references therein, etc.). There

are some papers about the generalized Newtonian fluid described by the p-power law,

see [4], [9], [19], [25], [30]. In particular, the authors established in [8] the existence

of a weak solution for unsteady flows of the generalized Newtonian fluid provided

p = const > 2n/(n+ 2), based on the parabolic Lipschitz truncation method. But

there seems to be no paper concerning fluids described by the p(x)-power law under

the Navier-slip type boundary conditions.
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We show the existence of weak solutions to the problem (1.1)–(1.3) for the critical

restriction p(x) > 2n/(n+ 2) in any dimension n > 2 and for α > 0.

To prove this, we first prove the Poincaré- and Korn-type inequalities in vector-

valued variable exponent Sobolev spaces W
1,p(x)
ν (Ω) with a vanishing normal com-

ponent on the boundary, which are new in the generality given.

The Poincaré and Korn inequalities

‖u‖p 6 c diam(Ω)‖∇u‖p ∀u ∈ W 1,p
0 (Ω),

‖∇u‖p 6 c‖Du‖p ∀u ∈ [W 1,p
0 (Ω)]n

are well-known and have been widely used in the mathematical study of PDEs,

where Du := 1
2 (∇u + (∇u)T ). Note that the Korn inequality has an impor-

tant application not only in elasticity and hydrodynamics but also in statistical

physics, more precisely, in the study of relaxation to equilibrium of rarefied gases

modeled by Boltzmann’s equation, see [12]. These inequalities continue to hold

for variable exponent Sobolev spaces W
1,p(x)
0 (Ω) provided that p(x) is log-Hölder

continuous on Ω, see [14], Theorems 8.2.4 and 14.3.21, see also [17]. It is also

well-known that these inequalities hold for vector-valued usual Sobolev spaces with

a vanishing normal component on the boundary, see [2], [12], [13], [24] and [23],

Exercise II 5.6.

To prove the existence of weak solutions to the problem (1.1)–(1.3), we next con-

struct Lipschitz truncations such that they can preserve the zero normal component

by using the reflection method. This appears to be a new even for a constant p. This

leads us to the proof of the existence of weak solutions to the problem (1.1)–(1.3)

under the critical restriction p(x) > 2n/(n+ 2). It seems to be still possible to

apply the argument from [8] using the parabolic Lipschitz truncation method for

the proof of the existence of weak solutions to our problem. But in our view-

point, our method enables us to give a shorter proof than that from [8] since we do

not need the introduction of a cut-off function. As pointed out in [15], Lipschitz

truncations of Sobolev functions are used in the existence and regularity theories

of PDEs and Calculus of Variations. Note that the Lipschitz truncation method

in W 1,p
0 (Ω) or W

1,p(x)
0 (Ω) is well-known, see [15], [22]. For more detail, we refer

to [6], [7], [18].

The paper is organized as follows. In Section 2, we give preliminaries and state

the main result. In Section 3, we prove the Poincaré- and Korn-type inequalities and

show the Lipschitz truncation method in W
1,p(x)
ν (Ω). Section 4 is devoted to the

proof of the existence of weak solution to the problem (1.1)–(1.3).
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2. Preliminaries and main result

Let Ω ⊂ R
n be a domain and p ∈ L∞(Ω), p > 1. As in [14] we introduce

the following variable exponent Lebesgue space, equipped with the corresponding

Luxemburg norms

Lp(x)(Ω) :=

{
u : Ω → R : u is measurable and ̺p(x)(u) :=

∫

Ω

|u|p(x) dx < ∞

}
,

‖u‖p(x),Ω = ‖u‖Lp(x)(Ω) := inf
{
λ > 0: ̺p(x)

(u
λ

)
6 1

}

and the variable exponent Sobolev space

W k,p(x)(Ω) := {u : ∇αu ∈ Lp(x)(Ω) ∀ |α| 6 k},

‖u‖k,p(x),Ω = ‖u‖Wk,p(x)(Ω) :=
∑

|α|6k

‖∇αu‖p(x).

We denote ‖u‖p(x),Ω, ‖u‖k,p(x),Ω simply by ‖u‖p(x), ‖u‖k,p(x), respectively, whenever

it is clear from the context. The properties of Lp(x) and W k,p(x) can be found in the

book [14]. Let us define W
k,p(x)
0 (Ω) as the closure of C∞

0 (Ω) in W k,p(x)(Ω). We use

the same notation for functional spaces and norms for both scalar and vector fields.

For our purpose, we put

W 1,p(x)
ν (Ω) := {u ∈ W 1,p(x)(Ω): u · ν|∂Ω = 0},

C∞
ν,σ(Ω) := {u ∈ C∞(Ω): div u = 0, u · ν|∂Ω = 0},

Vp(x)
ν (Ω) := {u ∈ W 1,p(x)(Ω): div u = 0, u · ν|∂Ω = 0}.

By p′(x) we denote the conjugate function of p(x). As usual, we denote the Sobolev

conjugate exponent by

p∗(x) :=






np(x)

n− p(x)
, p(x) < n,

∞, p(x) > n.

Let us put p− := ess inf p(x) and p+ := ess sup p(x).

We say that a function p : Ω → R is globally log-Hölder continuous on Ω if there

exists a constant Clog > 0 such that

|p(x) − p(y)| 6
Clog

ln(e + |x− y|−1)
∀x, y ∈ Ω,

and write p ∈ P log(Ω).
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For (n× n)-matrices F and H , let us put F : H =
n∑

i,j=1

FijHij , |F | ≡ (F : F )1/2,

and for vectors a and b, a⊗b = (aibj)n×n. The constants can change even in a single

string of estimates. The dependence of a constant on certain parameters is expressed,

for example, by the notation c = c(n, p).

Definition 2.1. Assume that p− > 2n/(n + 2), F ∈ Lp′(x)(Ω). We say that

a function u is a weak solution to the problem (1.1)–(1.3) if u ∈ V
p(x)
ν and it satisfies

∫

Ω

S(x,Du) : Dφdx+

∫

Ω

(u·∇)u·φdx = −

∫

Ω

F : ∇φdx−

∫

∂Ω

αu·φdσ ∀φ ∈ C∞
ν,σ(Ω).

The main result follows.

Theorem 2.1. Let p ∈ P log(Ω) and Ω be a bounded domain with C1,1-boundary.

Assume that F ∈ Lp′(x)(Ω), p(x) > 2n/(n+ 2), n > 2, and the extra stress S(x,Du)

satisfies (1.4)–(1.6) and, in addition, Ω is a non-axisymmetric if α = 0.

Then there exists at least one weak solution u ∈ V
p(x)
ν (Ω) to the problem

(1.1)–(1.3) which satisfies

(2.1) ‖u‖1,p(x) 6 K,

where the constant K depends only on n, Ω, p−, p+, Clog and ‖F‖Lp′(x)(Ω).

3. Auxiliary results

3.1. Poincaré-type inequality.

Lemma 3.1. The set W
1,p(x)
ν (Ω) is a closed subspace of W 1,p(x)(Ω).

P r o o f. It is obvious that W
1,p(x)
ν (Ω) is a linear subspace of W 1,p(x)(Ω). To

complete the proof, we must prove closeness. We assume that a sequence {uk} ⊂

W
1,p(x)
ν (Ω) converges to u in W 1,p(x)(Ω). Since W 1,p(x)(Ω) →֒ W 1,1(Ω) →֒ L1(∂Ω)

we have
∫

∂Ω

|u · ν| dσ =

∫

∂Ω

|(uk − u) · ν| dσ 6

∫

∂Ω

|uk − u| dσ 6 c‖uk − u‖1,p(x),Ω → 0

as k → ∞. Thus
∫
∂Ω |u · ν| dσ = 0 and, in turn, u · ν|∂Ω = 0. �

Theorem 3.1. Let Ω be a C0,1 bounded domain of Rn, n > 2, and p(x) ∈ P log(Ω),

1 6 p(x) < ∞. Then there exists a positive constant c, depending only on Ω, p−, p+

and Clog, such that for all u ∈ W
1,p(x)
ν (Ω) there holds

(3.1) ‖u‖p(x) 6 c‖∇u‖p(x).
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P r o o f. The inequality (3.1) is equivalent to the following one:

(3.2) ‖u‖1,p(x) 6 c‖∇u‖p(x).

For contradiction, we assume that the inequality (3.2) does not hold. Hence for

any k ∈ N there exists a function uk ∈ W
1,p(x)
ν (Ω) satisfying

‖uk‖1,p(x) > k‖∇uk‖p(x).

Setting vk := uk/‖uk‖1,p(x), we have ‖v
k‖1,p(x) = 1 and

1 > k‖∇vk‖p(x).

Hence ‖∇vk‖p(x) → 0 as k → ∞. On the other hand, by ‖vk‖1,p(x) = 1 and

Lemma 3.1, there exists a function v ∈ W
1,p(x)
ν (Ω) such that vk ⇀ v in W

1,p(x)
ν (Ω).

By [14], Theorem 8.2.4, we have

‖vk − (vk)Ω‖p(x) 6 c diam(Ω)‖∇vk‖p(x)

and furthermore

‖vk‖p(x) + ‖∇vk‖p(x) 6 c‖∇vk‖p(x) + c‖(vk)Ω‖p(x).

Since vk → v in Lp(x)(Ω) by compact embedding, it follows that {vk} is a Cauchy

sequence in Lp(x)(Ω) and so is {(vk)Ω} in R. These together with the previous

inequality yield that {vk} is a Cauchy sequence in W
1,p(x)
ν (Ω). By uniqueness of

limit, we have vk → v in W
1,p(x)
ν (Ω) and thus ∇v ≡ 0. Consequently we have

v = const 6= 0 since ‖v‖p(x) = 1.

On the other hand, by Poincaré’s inequality in W 1,p
ν (Ω) with a constant p (for

example [23], Exercise II 5.6) we obtain

‖v‖1 6 c‖∇v‖1

since v ∈ W
1,p(x)
ν (Ω) ⊂ W 1,1

ν (Ω). This implies that ‖v‖1 = 0, that is v ≡ 0 since

∇v ≡ 0. This contradicts to v = const 6= 0. �

R em a r k 3.1. It is not clear whether the constant c in Theorem 3.1 is directly

proportional to diam(Ω) because its proof is based on the contradiction argument.

If we use the identity as in [23], Exercise II 5.6,

n∑

i,j=1

(∂i(uixjuj |u|
p(x)−2)− (∂iui)xjuj|u|

p(x)−2 − |u|p(x) − uixj∂i(uj |u|
p(x)−2)) = 0

and follow the same argument as in the proof of [20], Theorem 2.1, then it can be

possible to get a constant cp proportional to diam(Ω). But in the case we need at

least the Lipschitz continuity of p(x).
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3.2. Korn-type inequality.

Theorem 3.2. Let Ω be a C0,1 bounded domain of Rn, n> 2, and p(x) ∈ P log(Ω),

p(x) > 1. Then there exists a positive constant c, depending only on Ω, p−, p+

and Clog, such that for all u ∈ W 1,p(x)(Ω) with the trace u ∈ Lr(∂Ω) for r ∈ (1,∞)

the inequality

(3.3) ‖u‖1,p(x) 6 c(‖Du‖p(x) + ‖u‖Lr(∂Ω))

holds.

P r o o f. We follow the argument from [9]. At first, we define the space

E(Ω) := {u ∈ Lp(x)(Ω): Du ∈ Lp(x)(Ω)}

endowed with the norm ‖u‖E(Ω) = ‖u‖p(x)+‖Du‖p(x). Then E(Ω) is a Banach space.

Now we prove thatW 1,p(x)(Ω) coincides with E(Ω). It is obvious thatW 1,p(x)(Ω)⊂

E(Ω). Let us prove that E(Ω) ⊂ W 1,p(x)(Ω). For u ∈ E(Ω), it is well-known that

for all i, j, l = 1, . . . , n,

(3.4)
∂2ui

∂xj∂xl
=

∂

∂xj
(Dilu) +

∂

∂xl
(Diju)−

∂

∂xi
(Djlu)

in the sense of distributions, see [35], Appendix, (1.7). Since Du ∈ Lp(x)(Ω), it

follows from (3.4) that ∂2ui/(∂xj∂xl) ∈ W−1,p(x)(Ω). On the other hand, it follows

from u ∈ Lp(x)(Ω) that ∂ui/∂xj ∈ W−1,p(x)(Ω). So by the negative norm theorem

(for example [14], Theorem 14.3.18) we have ∇u ∈ Lp(x)(Ω), thus u ∈ W 1,p(x)(Ω).

Therefore E(Ω) ⊂ W 1,p(x)(Ω) and finally, the space W 1,p(x)(Ω) coincides with E(Ω)

and there holds

(3.5) ‖u‖1,p(x) 6 c(p,Ω)(‖u‖p(x) + ‖Du‖p(x)).

So in order to prove the inequality (3.3), it suffices to show that

‖u‖p(x) 6 c(p,Ω)(‖u‖Lr(∂Ω) + ‖Du‖p(x)).

For contradiction we take a sequence {uk}∞k=1 such that ‖u
k‖p(x) = 1 and

‖uk‖Lr(∂Ω) + ‖Duk‖p(x) < 1/k.

It is clear that

(3.6) ‖uk‖Lr(∂Ω) → 0, ‖Duk‖p(x) → 0.
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From (3.5) it follows that ‖uk‖1,p(x) 6 C′ < ∞. This implies the existence of

u ∈ W 1,p(x)(Ω) and a subsequence, which is denoted again by uk, such that

uk ⇀ u in W 1,p(x)(Ω).

By compact embedding we have

uk → u in Lp(x)(Ω)

and conclude that ‖u‖p(x) = 1.

On the other hand, we have u ∈ W
1,p(x)
0 (Ω) and Du ≡ 0 by (3.6). Thus from

Korn’s inequality in W
1,p(x)
0 (Ω) (see [14], Theorem 14.3.21) it follows that u ≡ 0,

which is a contradiction. �

R em a r k 3.2. In order that u ∈ W 1,p(x)(Ω) has a trace u ∈ Lr(∂Ω), it is needed

the restriction p− > nr/(n+ r − 1) by the standard trace embedding.

If α = 0 in (1.3), then in Definition 2.1, the term including integration on ∂Ω

vanishes. So we want to show a Korn-type inequality not including any trace norm.

Theorem 3.3. Let Ω be a C0,1 bounded, non-axisymmetric domain of Rn, n > 2,

and p(x) ∈ P log(Ω), p(x) > 1. Then there exists a positive constant c, depending

only on Ω, p−, p+ and Clog, such that for all u ∈ W
1,p(x)
ν (Ω) there holds

(3.7) ‖u‖1,p(x) 6 c‖Du‖p(x).

P r o o f. For contradiction, we assume that the inequality (3.7) does not hold.

Hence for any k ∈ N there exists a function uk ∈ W
1,p(x)
ν (Ω) satisfying

‖uk‖1,p(x) > k‖Duk‖p(x).

Setting vk := uk/‖uk‖1,p(x), we have ‖v
k‖1,p(x) = 1 and

1 > k‖Dvk‖p(x).

Hence ‖Dvk‖p(x) → 0 as k → ∞. On the other hand, by ‖vk‖1,p(x) = 1 and

Lemma 3.1, there exists a function v ∈ W
1,p(x)
ν (Ω) such that vk ⇀ v in W

1,p(x)
ν (Ω)

and ‖Dv‖p(x) = 0. Thus v = a + b ∧ x and v · ν = 0 on ∂Ω. Then since Ω is

axisymmetric if and only if there exists a nontrivial rigid motion w which is tangent

to ∂Ω ([12], Lemma 5), this implies that Ω is axisymmetric, which is a contradiction.

�
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3.3. Lipschitz truncation method. In this subsection we show that a weakly

convergent sequence of Sobolev functions can be approximated by a sequence of

Lipschitz functions such that certain additional convergence properties hold and,

in addition, it preserves the zero normal component. To begin with we recall the

well-known Lipschitz extension theorem, see [15], [31].

Proposition 3.1. Let w : E → R
m, defined on a nonempty set E ⊂ R

d, be such

that for certain λ > 0 and θ > 0 and for all x, y ∈ E

(3.8) |w(x) − w(y)| 6 λ|x− y|, |w| 6 θ.

Then there exists an extension wθ,λ : R
d → R

m satisfying (3.8) for all x, y ∈ R
d, and

wθ,λ = w on E.

Recall that the Hardy-Littlewood maximal function is defined as

Mf(x) := sup
r>0

|Br(x)|
−1

∫

Br(x)

|f(y)| dy.

The following lemma is a keystone in proving Theorem 3.4 below.

Lemma 3.2. Let Ω be a bounded domain with C1,1-boundary and w ∈ W 1,1
ν (Ω).

Then for every θ, λ > 0, there exist truncations wθ,λ ∈ W 1,∞
ν (Ω) such that

‖wθ,λ‖∞ 6 θ,(3.9)

‖∇wθ,λ‖∞ 6 c∗λ,(3.10)

where c∗ > 0 depends only on the dimension n and the smoothness of ∂Ω. Moreover,

up to a null-set (i.e., a set of the Lebesgue measure zero)

(3.11) {wθ,λ 6= w} ⊂ Ω ∩ ({Mw > θ} ∪ {M(∇w) > λ}).

P r o o f. We follow the same argument as in the proof of [15], Theorem 2.3, with

the important difference that it needs to construct Lipschitz truncations, normal

components of which vanish on the boundary. By localization method we can assume

that Ω = R
n
+. Then it is clear that wn = w · ν = 0 on ∂Rn

+. At first we extend w

from R
n
+ to R

n as

(3.12) w̃i(x
′, xn) :=

{
wi(x

′, xn) if xn > 0,

wi(x
′,−xn) if xn < 0,

w̃n(x
′, xn) :=

{
wn(x

′, xn) if xn > 0,

−wn(x
′,−xn) if xn < 0,
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where i = 1, . . . , n − 1 and x′ = (x1, . . . , xn−1). It is easy to see that a function

w̃ ∈ W 1,1(Rn) and w̃n|∂Rn
+
= 0. Let L(w̃) be the set of its Lebesgue points. Then it

is well-known that

|Rn \ L(w̃)| = 0

and there holds

(3.13) |w̃(x) − (w̃)Br(x0)| 6 crM(∇w̃)(x)

for all balls Br(x0) ⊂ R
n and for all x ∈ L(w̃) ∩ Br(x0), see [15] or [31]. Then for

any x, y ∈ L(w̃) we take x = x0, r = 2|y − x| in (3.13) and obtain

(3.14) |w̃(x)− w̃(y)| 6 c|x− y|(M(∇w̃)(x) +M(∇w̃)(y)).

For λ, θ > 0 we define

Hθ,λ := L(w̃) ∩ {Mw̃ 6 θ} ∩ {M(∇w̃) 6 λ}.

It follows from (3.14) that for all x, y ∈ Hθ,λ

(3.15) |w̃(x)− w̃(y)| 6 cλ|x− y|, |w̃(x)| 6 θ.

Now we must construct a Lipschitz truncation such that its normal component

vanishes on ∂Rn
+. For w̃i (i = 1, . . . , n − 1) assertions of the lemma follow from

Proposition 3.1 applied to E = Hθ,λ. Let x ∈ Hθ,λ ∩ Ω and r := 2 dist(x,ΩC).

Recalling the extension (3.12) and using Poincaré’s inequality, we obtain that for

x ∈ Hθ,λ ∩ Ω

|(w̃n)Br(x)| 6
1

|Br|

∫

Br(x)∩Ω

|wn(y)| dy +
1

|Br|

∫

Br(x)∩ΩC

|w̃n(y)| dy

=
1

|Br|

∫

Br(x)∩Ω

|wn(y)| dy +
1

|Br|

∫

(Br(x)∩ΩC)ref
|wn(y)| dy

6
cr

|Br|

∫

Br(x)∩Ω

|∇wn(y)|dy +
cr

|Br|

∫

(Br(x)∩ΩC)ref
|∇wn(y)| dy

6
cr

|Br|

∫

Br(x)

|∇w̃n(y)| dy 6 crM(∇w̃n)(x) 6 crλ,

where (Br(x)∩Ω
C )ref is a reflection of Br(x)∩Ω

C with respect to the boundary ∂Rn
+.

This together with (3.13) implies that

|w̃n(x)| 6 |(w̃n)Br(x)|+ crM(∇w̃n)(x) 6 crλ.
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Noting that w̃n(y) = 0 for all y ∈ ∂Rn
+ we obtain that for x ∈ Hθ,λ ∩Ω and y ∈ ∂Rn

+

|w̃n(x)− w̃n(y)| 6 |w̃n(x)| 6 crλ 6 cλ|x− y|,

since r = 2dist(x,ΩC) 6 c|x− y|. It is obvious that

|w̃n(x) − w̃n(y)| = 0 6 cλ|x− y|

for all x, y ∈ ∂Rn
+. The two previous inequalities together with (3.15) yield that for

all x, y ∈ Hθ,λ ∪ ∂Rn
+

|w̃n(x)− w̃n(y)| 6 cλ|x− y|,

which, in other words, shows that w̃n is Lipschitz continuous on Gθ,λ := Hθ,λ∪∂Rn
+.

Since Mw̃n 6 θ on Hθ,λ and w̃n = 0 on ∂Rn
+, we have |w̃n| 6 θ on Gθ,λ. Applying

Proposition 3.1 to E = Gθ,λ we can see that there exists an extension (wθ,λ)n of wn

with (wθ,λ)n = wn on Gθ,λ and satisfying (3.9) and (3.10). In particular, (wθ,λ)n = 0

on ∂Rn
+ since it is contained in Gθ,λ and thus wθ,λ ∈ W 1,∞

ν (Ω). Using wθ,λ = w on

Gθ,λ and |L(w)C | = 0, and recalling that

GC
θ,λ = (Rn

+ ∪ R
n
−) ∩ L(w̃)C ∪ {Mw̃ > θ} ∪ {M(∇w̃) > λ}

we have (3.11). �

The following theorem is the main result in this subsection.

Theorem 3.4. Let Ω be a bounded domain with C1,1-boundary and p ∈ P log(Ω)

with 1 < p− 6 p+ < ∞. Let wk ∈ W
1,p(x)
ν (Ω) be such that wk ⇀ 0 in W

1,p(x)
ν (Ω).

Set

K = sup
k

‖wk‖1,p(x) < ∞, τk = ‖wk‖p(x) → 0.

Then there exists a null-sequence {εj} and for every j, k ∈ N there exist a function

wk,j ∈ W 1,∞
ν (Ω) and a number λk,j ∈ [22

j

, 22
j+1

] such that

lim
k→∞

(
sup
j∈N

‖wk,j‖L∞(Ω)

)
= 0, ‖∇wk,j‖L∞(Ω) 6 cKλk,j 6 cK22

j+1

,

lim sup
k→∞

‖λk,jχ{wk 6=wk,j}‖p(x) 6 εj, lim sup
k→∞

‖∇wk,jχ{wk 6=wk,j}‖p(x) 6 εj ,

where the constant c depends on n, p−, p+ and Clog.

Moreover, for a fixed j ∈ N, ∇wk,j ⇀ 0 in Ls(Ω), s < ∞, and ∇wk,j ∗
⇀ 0 in

L∞(Ω) as k → ∞.

P r o o f. By the same argument as in the proofs of [14], Theorem 9.5.2 and

Corollary 9.5.4, we can prove the claims and so omit the details. �
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4. Proof of the main result

In this section we prove the existence of weak solution of the problem (1.1)–(1.3),

that is, Theorem 2.1.

R em a r k 4.1. The condition that Ω is a non-axisymmetric for α = 0 in Theo-

rem 2.1 is needed only due to the application of Korn’s inequality (3.7).

We consider two cases: 2n/(n+ 2) < p− 6 3n/(n+ 2), and p− > 3n/(n+ 2).

Case 1: p− > 3n/(n+ 2). To begin with we define corresponding Galerkin

approximation. Let {φj} be a Schauder basis of V
p(x)
ν . Let Xm be the span of

{φ1, φ2, . . . , φm}. Let us define the Galerkin approximation um by um :=
m∑
j=1

ajφj

and an operator A : R
m → R

m; a = {a1, . . . , am} → b = {b1, . . . , bm}, where bj is

given by

(4.1) bj :=

∫

Ω

S(x,Dum) : Dφj dx+

∫

Ω

(um · ∇)um · φj dx

+

∫

Ω

F : ∇φj dx+

∫

∂Ω

αum · φj dσ.

Note that ‖a‖ := ‖Dum‖p(x) for α = 0 or ‖a‖ := ‖Dum‖p(x) + ‖um‖L2(∂Ω) for

0 < α < ∞ is a norm in R
m. Indeed, by Korn’s and Poincaré’s inequalities

‖a‖ = 0 ⇒

∥∥∥∥D
( m∑

j=1

ajφj

)∥∥∥∥
p(x)

+

∥∥∥∥
m∑

j=1

ajφj

∥∥∥∥
L2(∂Ω)

= 0 ⇒
m∑

j=1

ajφj = 0,

which in turn, together with the fact that {φj} is linearly independent implies that

‖a‖ = 0 ⇒ aj = 0 ∀ j, 1 6 j 6 m.

It is easy to verify the remaining axioms.

It is obvious that A is continuous. Multiplying (4.1) by aj and summing up over j,

we obtain that

(4.2) Aa · a =

∫

Ω

S(x,Dum) : Dum dx+

∫

Ω

F : ∇um dx+ α

∫

∂Ω

|um|2 dσ

= I1 + I2 + I3,

where we use that ∫

Ω

(um · ∇)um · um dx = 0.

It follows from (1.4) that

(4.3) I1 =

∫

Ω

S(x,Dum) : Dum dx > c1

∫

Ω

|Dum|p(x) dx− c.
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We use Korn’s ((3.3) for α > 0, (3.7) for α = 0) and Young’s inequalities to get

(4.4) I2 6 ‖F‖p′(x)‖∇um‖p(x) 6
c0
8

∫

Ω

|Dum|p(x) dx+
c0
8

∫

∂Ω

|um|2 dσ

+ cmax
{
‖F‖

(p−)′

Lp′(x)(Ω)
, ‖F‖

(p+)′

p′(x)

}
+ c‖F‖2p′(x)

6
c0
8

∫

Ω

|Dum|p(x) dx+
c0
4

∫

∂Ω

|um|2 dσ + C,

where c0 := min{c1, α}. Note that there is the trace u ∈ L2(∂Ω) for p(x) >

3n/(n+ 2) by Remark 3.2.

The equation (4.2) together with (4.3)–(4.4) implies that

Aa · a > c

∫

Ω

|Dum|p(x) dx+ cα

∫

∂Ω

|um|2 dσ − C.

By [23], Lemma IX.3.1, this estimate shows the solvability of the Galerkin approxi-

mations um ∈ X
m, that is,

(4.5)

∫

Ω

S(x,Dum) : Dφdx+

∫

Ω

(um ·∇)um ·φdx+α

∫

∂Ω

um ·φdσ = −

∫

Ω

F : ∇φdx

for all φ ∈ X
m. Moreover this provides the a priori estimate

∫

Ω

|Dum|p(x) dx+ α

∫

∂Ω

|um|2 dσ 6 K,

where the constant K depends on n, Ω, p−, p+, Clog and ‖F‖Lp′(x)(Ω). Furthermore

by Korn’s inequality ((3.3) for α > 0 and (3.7) for α = 0), Poincaré’s inequality (3.1),

and (1.5) we obtain

(4.6)

∫

Ω

|um|p(x) dx+

∫

Ω

|∇um|p(x) dx+

∫

Ω

|S(x,Dum)|p
′(x) dx 6 K.

This shows that there exists a function u ∈ V
p(x)
ν and a subsequence, which will be

denoted again by um, such that

um ⇀ u in W 1,p(x)(Ω),(4.7)

um → u in L2(∂Ω),

S(x,Dum) ⇀ Ξ in Lp′(x)(Ω)

since W 1,p(x)(Ω) →֒→֒ L2(∂Ω) for p− > 3n/(n+ 2).

Note that 1
2np−/(n− p−) > p′− for p− > 3n/(n+ 2). Taking into account this and

using (4.7), the compact embedding W 1,p(x)(Ω) →֒→֒ Lq(Ω) (q < np−/(n− p−)) we

have as m → ∞

(4.8)

∫

Ω

(um · ∇)um · φdx →

∫

Ω

(u · ∇)u · φdx ∀φ ∈ Vp(x)
ν (Ω).
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By passing to the limit m → ∞ together with (4.8), (4.7), the equation (4.5) leads to

(4.9)∫

Ω

Ξ : Dφdx+

∫

Ω

(u · ∇)u · φdx+ α

∫

∂Ω

u · φdσ = −

∫

Ω

F : ∇u dx ∀φ ∈ Vp(x)
ν (Ω).

On the other hand, substituting φ = um into (4.5) and letting m → ∞, we have

(4.10) lim
m→∞

(∫

Ω

S(x,Dum) : Dum dx

)
+ α

∫

∂Ω

|u|2 dσ = −

∫

Ω

F : ∇u dx.

We use the monotonicity condition (1.6) to get

lim
m→∞

∫

Ω

(S(x,Dum)− S(x,Dφ)) : D(um − φ) dx > 0 ∀φ ∈ Vp(x)
ν (Ω).

This together with (4.10) implies that

−

∫

Ω

S(x,Dφ) : D(u− φ) dx−

∫

Ω

Ξ : Dφdx− α

∫

∂Ω

|u|2 dσ −

∫

Ω

F : ∇u dx > 0.

Adding this to (4.9) with φ = u, we have

(4.11)

∫

Ω

(Ξ− S(x,Dφ)) : D(u − φ) dx > 0.

Choosing φ = u± tϕ in (4.11) and letting t → 0, we conclude that

∫

Ω

(Ξ− S(x,Du)) : Dϕdx = 0 ∀ϕ ∈ Vp(x)
ν (Ω),

which implies that Ξ = S(x,Du). This shows that u is a weak solution of the problem

(1.1)–(1.3).

Case 2: 2n/(n+ 2) < p− 6 3n/(n+ 2). As in [15], [22] we use the Lipschitz

truncation method in this case.

R em a r k 4.2. In the case p = const > 2n/(n+ 2), it seems to be possible for

us to prove the existence of a weak solution by the same method from [8]. Here we

can give a shorter proof than that in [8] by relying on Theorem 3.4.

We first show the existence of a weak solution to the approximation problem

(4.12)






− divS(x,Duk) + (uk · ∇)uk +∇π +
1

k
|uk|q−2uk = divF in Ω,

div uk = 0 in Ω,

uk · ν = 0, (S(x,Duk)ν)τ + α(uk)τ = 0 on ∂Ω,

where k ∈ N and q = 2p′−.
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Let {φj} be a Schauder basis of V
p(x)
ν (Ω) ∩ Lq(Ω). Let us define Xm as a span

of {φ1, φ2, . . . , φm}. We put uk,m :=
m∑
j=1

ajφj . Due to a suitable choice of the value

for q we have

∫

Ω

(uk,m · ∇)uk,m · φj dx 6 ‖uk,m‖q‖∇u‖p−
‖φj‖q < ∞.

Following the argument as in Case 1, we have

Aa · a > c

∫

Ω

|Duk,m|p(x) dx+
1

k
‖uk,m‖qq + cα

∫

∂Ω

|uk,m|2 dσ − C.

It is worth noting that the term
∫
∂Ω

|uk,m|2 dσ has meaning since we can assume

that uk,m are smooth by means of a possible choice of Schauder basis. Hence by [23],

Lemma IX.3.1, there exist the Galerkin approximations uk,m satisfying

‖Duk,m‖p(x) + α‖uk,m‖L2(∂Ω) +
1

k1/q
‖uk,m‖q 6 C.

As in Case 1 we can prove the existence of weak solutions uk ∈ V
p(x)
ν (Ω) ∩ Lq(Ω) to

the problem (4.12) such that

(4.13) ‖Duk‖p(x) + α‖uk‖L2(n−1)/n(∂Ω) +
1

k1/q
‖uk‖q 6 C,

where we use that ‖uk‖L2(n−1)/n(∂Ω) 6 c‖uk‖L2(∂Ω) by the smoothness of ∂Ω and

the trivial inequality 2(n− 1)/n < 2. We note that even though uk ∈ V
p(x)
ν ∩ Lq,

‖uk‖L2(n−1)/n(∂Ω) has meaning for p− > 2n/(n+ 2) by the standard trace embedding

theorem. Hence there exist a function u ∈ V
p(x)
ν and a (not relabeled) subsequence uk

such that

Duk ⇀ Du,∇uk ⇀ ∇u in Lp(x)(Ω),(4.14)

uk → u a.e. in Ω,

S(x,Duk) ⇀ Ξ1 in Lp′(x)(Ω),

uk → u in L1(∂Ω),

and satisfying

(4.15) ‖Du‖p(x) + α‖u‖L1(∂Ω) 6 K.

It follows from (4.13) that as k → ∞

(4.16)
1

k

∫

Ω

|uk|q−2uk · φdx 6
1

k1/q

( 1

k1/q
‖uk‖q

)q−1

‖φ‖q → 0 ∀φ ∈ Lq(Ω).
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Since W 1,p(x)(Ω) →֒→֒ L2(Ω), W 1,p(x)(Ω) →֒→֒ L1(∂Ω) for p− > 2n/(n+ 2) we get

that as k → ∞∫

Ω

(uk ⊗ uk) : ∇φdx →

∫

Ω

(u⊗ u) : ∇φdx ∀φ ∈ W 1,∞
ν (Ω),

∫

∂Ω

uk · φdσ →

∫

∂Ω

u · φdσ ∀φ ∈ W 1,∞
ν (Ω).

This together with (4.14) and (4.16) implies that
∫

Ω

Ξ1 : Dφdx+

∫

Ω

(u⊗ u) : ∇φdx+ α

∫

∂Ω

u · φdσ = −

∫

Ω

F : ∇φdx ∀φ ∈ V∞
ν (Ω).

To complete the proof, it suffices to show that Ξ1 = S(x,Du). To this end, we

use the Lipschitz truncation method in W
1,p(x)
ν (Ω). Since wk := uk − u ⇀ 0 in

W
1,p(x)
ν (Ω) by (4.14), we can apply Theorem 3.4 to the function. We denote by wk,j

the Lipschitz approximations to the vector-valued functions wk. Since functions wk,j

are in general not divergence free, we cannot use them as test functions. By [14],

Theorem 14.3.15 there exists a solution ξk,j ∈ W
1,p(x)
0 (Ω) to the problem

div ξk,j = divwk,j in Ω; ξk,j = 0 on ∂Ω.

Furthermore it follows from Theorem 3.4 that for each j ∈ N and for all s ∈ (1,∞)

(4.17) ξk,j ⇀ 0 in W 1,s(Ω), ξk,j → 0 in Ls(Ω).

Since divwk,j = divwk = 0 on {x : wk(x) = wk,j(x)} we can easily see that by

Theorem 3.4

(4.18) lim sup
k→∞

‖ξk,j‖1,p(x) 6 c lim sup
k→∞

‖ divwk,jχ{wk 6=wk,j}‖p(x)

6 c lim sup
k→∞

‖∇wk,jχ{wk 6=wk,j}‖p(x) 6 cεj.

Setting ηk,j = wk,j−ξk,j and using Theorem 3.4 and (4.17) we obtain that for a fixed

j ∈ N

(4.19) ηk,j ⇀ 0 in W 1,s(Ω); ηk,j → 0 in Ls(Ω) as k → ∞.

We test (4.12) with ηk,j to get

(4.20)∫

Ω

(S(x,Duk)− S(x,Du)) : Dwk,j dx

=

∫

Ω

S(x,Duk) : Dξk,j dx−

∫

Ω

S(x,Du) : Dwk,j dx−
1

k

∫

Ω

|uk|q−2uk · ηk,j dx

±

∫

Ω

F : ∇ηk,j dx+

∫

Ω

(uk ⊗ uk) : ∇ηk,j dx− α

∫

∂Ω

uk · ηk,j dσ

=: J1
k,j + J2

k,j + J3
k,j + J4

k,j + J5
k,j + J6

k,j .
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By the same arguments as in [15] we can see that for all j ∈ N

lim
k→∞

|J2
k,j + J3

k,j + J4
k,j + J5

k,j | = 0,(4.21)

lim
k→∞

|J1
k,j | 6 c(K)εj.(4.22)

Since ηk,j → 0 in Ls(∂Ω) by (4.19) and the standard trace embedding, it follows

that for all j ∈ N

(4.23) lim
k→∞

|J6
k,j | = 0.

The equation (4.20) together with (4.21)–(4.23) implies that for all j ∈ N

lim sup
k→∞

∫

Ω

(S(x,Duk)− S(x,Du)) : Dwk,j dx 6 c(K)εj .

Following the same lines as in [15] we can get that for a not relabeled subsequence

∫

Ω

(S(x,Duk)− S(x,Du)) : Dφdx → 0 ∀φ ∈ W 1,∞
ν (Ω),

which shows that Ξ1 = S(x,Du).

Moreover the estimates (4.15), (4.6) together with Poincaré’s inequality (3.1) and

Korn’s one ((3.3) for α > 0, (3.7) for α = 0) imply (2.1). �
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