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1. Introduction and notations

The theory of differential equations and inclusions with maxima has attracted a

lot of interest in the recent years. The justification of the averaging for the case of

differential equations with maxima was considered in, e.g., [4], [10], [13], [14], [15], and

the averaging method of set valued differential equations with maxima is considered

in [9]. The method of averaging of differential inclusions with maxima was also

considered recently in [5].

We consider the following initial value problem associated to a differential inclusion

with maxima;

(1.1)

{
ẋ ∈ εF

(
t, x(t), max

s∈S(t)
x(s)

)
, t > 0,

x(t) = x0,
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where F : R+ ×R
p ×R

p → P(Rp) and S : R+ → P(R+), with S(t) ⊂ [0, t] for t > 0,

are multifunctions and

max
s∈S(t)

x(s) :=
(
max
s∈S(t)

x1(s), max
s∈S(t)

x2(s), . . . , max
s∈S(t)

xp(s)
)
.

In the case where the multifunctions F : R
p × R

p → P(Rp) and S : R+ → P(R+),

given by

(1.2) F (x, z) = lim
T→∞

1

T

∫ T

0

F (t, x, z) dt

and

(1.3) lim
ε→0

εS
(τ
ε

)
= S(τ)

exist, where the integral is understood in Aumann-Hukuhara sense and the conver-

gence in sense of the Hausdorff metric (see [3]).

We can consider the following initial value problem:

(1.4)

{
z′ ∈ F

(
z(τ), max

τ∈S(τ)
z(s)

)
, τ > 0,

z(0) = x0

such that z′ = dz/dτ .

The structure of the paper is as follows. In Section 2 we present our main results:

Theorems 2.1 and Corollary 2.1. We state and prove some preliminary results in

Section 3 and then give the proofs of Theorem 2.1.

We finish this section with some definitions and notations. Let Rp denot the p-

dimensional space with the Euclidean norm |·|. Comp(Rp) (Conv(Rp), respectively)

stands for the class of all nonempty compact (nonempty compact and convex, re-

spectively) subsets of Rp. In Comp(Rp) the so-called Hausdorff metric is defined by

H(A,B) = max
(
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
)

∀A,B ∈ Comp(Rp),

where d(α,C) = inf{|α− c|, c ∈ C} for any α ∈ R
p and any C ∈ Comp(Rp).

Definition 1.1 ([7]). A multifunction G : Ω ⊂ R
m → Comp(Rn) is said to be

continuous at a point x0 ∈ Ω if for all ε > 0, exists δ > 0 such that for all x ∈ Ω

where ‖x − x0‖ < δ then H(G(x), G(x0)) 6 ε. G is said to be continuous if it is

continuous at every point of Ω.
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Definition 1.2 ([2], [3]). The integral of a multifunction G : I ⊂ R → Comp(Rn)

on the interval I is defined by

∫

I

G :=

{∫

I

g, g ∈ Γ

}
,

where Γ is the set of functions g which are integrable on I and which verify g(t) ∈ G(t)

for all t ∈ I.

Let F : R+×R
p×R

p → Comp(Rp) be a multifunction. By a solution of the differ-

ential inclusion with maxima ẋ(t) ∈ F
(
t, x, max

s∈S(t)
x(s)

)
we mean an absolutely con-

tinuous function x defined on some interval and satisfying ẋ(t) ∈ F
(
t, x, max

s∈S(t)
x(s)

)

almost everywhere.

Let α,A > 0. We call K(α,A) the class of multifunctions S : R+ → Comp(R+)

which verify: for all t1, t2 ∈ R+, |t1 − t2| 6 α ⇒ H(S(t1), S(t2)) 6 A. This class

is always nonempty, and for every S uniformly continuous and α > 0 there is A =

A(α) > 0 such that S ∈ K(α,A).

For the basic theory of differential inclusions we refer to the books of Deim-

ling (see [7]), Aubin and Frankowska (see [2]), Aubin and Cellina (see [1]) and

Smirnov (see [16]).

2. Averaging results

First, let us formulate the assumptions on F and S that we need to prove our

averaging results.

(H1) F : R+ × U × U → Conv(Rp), where U is an open subset of Rp, is measurable

in t, continuous in (x, y) uniformly in t, and

H(F (t, x, y), {0}) 6 m(t) ∀ (t, x, y) ∈ R+ × U× U

with ∫ t2

t1

m(t) dt 6 M(t2 − t1) ∀ t1, t2 ∈ R+.

(H2) For all x, y ∈ U, the limit

F (x, y) := lim
L→∞

1

L

∫ L

0

F (τ, x, y) dτ

exists uniformly with respect to (x, y), where the integral is meant in Aumann-

Hukuhara’s sense.
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(H3) There is S : R+ → Comp(Rp) such that, for every L > 0, the quantity

ξε(L) = sup
{
H
(
εS

(τ
ε

)
, S(τ)

)
, τ ∈ [0, L]

}
is such that lim

ε→0
ξε(L) = 0.

We have the following theorem:

Theorem 2.1. Assume that the assumptions (H1)–(H3) are fulfilled. Then, for

any T > 0, where S ∈ K(T,AT ) for a certain fixed AT and is measurable, and for

any η > 0, there exists ε0 = ε(η, T ) > 0 such that, for any ε ∈ (0, ε0] and for every

solution xε of problem (1.1) which is defined on [0, T/ε], there is a solution z of

problem (1.4) such that z is defined on [0, T ] and satisfies

|xε(t)− z(εt)| 6 η ∀ t ∈ [0, T/ε].

In the case where problem (1.4) has a unique solution, we have the following result

which is a corollary of Theorem 2.1.

Corollary 2.1. Assume that the assumptions (H1)–(H3) are fulfilled and let

T > 0 such that problem (1.4) has a unique solution yε(·) defined on [0, T ], and

S ∈ K(T,AT ) for a certain fixed AT and is measurable, then, for any η > 0, there

exists ε0 = ε0(η, T ) > 0 such that for any ε ∈ (0, ε0] and for every xε(·) solution of
problem (1.1)

|xε(t)− yε(εt)| 6 η ∀ t ∈ [0, T/ε].

R em a r k 2.1.

(1) If we take the particular case S(t) = {t}, then we obtain an ordinary differential
inclusion (i.e., without maximum), and the results above are similar to those

found in [12], Theorem 2.1, and to those in [11], Theorem 8.

(2) When S(t) = [t−r, t] and F is single valued, we deduce from the above corollary

the result in [15].

(3) In [5], [10], the multifunction S is supposed to be uniformly continuous, and

the function F verifies a certain Lipschitz condition. In Theorem 2.1 above,

S is a general multifunction which is not necessarily continuous, and F is only

continuous.

E x am p l e 2.1. As an example for Theorem 2.1, we consider the system





ẋ(t) ∈ ε| sin(t)|2

(
[0, 1] +

(
max

s∈[g1(t),g2(t)]
x(s)

)1/2)
, t > 0,

x(0) = 1,
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where g1(t) = max
{
0, 1

2

(
t−

√
t
)}
, and g2(t) = min{t, 12⌈t⌉}, where ⌈·⌉ is the ceiling

function. Notice that S(·) ≡ [g1(·), g2(·)] is not continuous, but S ∈ K(1, 1) and S

exists and is given by S(τ) = 1
2τ , for τ > 0, where τ = t/ε.





z′(τ) ∈ 1

2

(
[0, 1] +

√
z
(τ
2

))
,

z(0) = 1.

Theorem 2.1 gives us that every solution of the original problem could be approx-

imated by a solution of the averaged one; notice also that from a numerical point of

view the averaged problem is less expensive, because the evaluation needed is only

in a single point (i.e., 1
2τ), whereas in the original one we must find the maximum

on an interval.

E x am p l e 2.2. Let us take the following example considered in [9]





ẋ1(τ) = ε
[
−2λx1 sin

(
τ + max

s∈[g1(τ),g2(τ)]
x2(s)

)
+µx3

1 cos
3(τ + x2)

]
sin(τ + x2),

ẋ2(τ) = − ε

x1

[
−2λx1 sin

(
τ + max

s∈[g1(τ),g2(τ)]
x2(s)

)
+ µx3

1 cos
3(τ + x2)

]
cos(τ + x2)

with x1(0) = 2, x2(0) = 1
2π, g1(τ) = max{0, τ − 1

2}, and g2(τ) = max{0, τ − 1
4},

λ = 0.7, µ = 0.2. The averaged system is given by:




y′1(t) = −λy1(t), y1(0) = 2,

y′2(t) = −3µ

8
y21(t), y2(0) =

π

2
.

This means that y1(t) = 2 exp(−λt), and y2(t) =
1
2π + (exp(−2λt)− 1)3µ/(16λ)

ε 0.5 0.1 0.01 0.001
max |x1(τ) − y1(ετ)| 0.2470 0.0740 0.0083 0.0008

max |x2(τ) − y2(ετ)| 0.2890 0.0692 0.0076 0.0007

Although the solution of the problem can be computed analytically (contrary to

that in [10]), the error bounds are sharper than those in the aforementioned work,

but this is not true in general.

E x am p l e 2.3. The need for one-sided Lipschitz condition (see [5]) for approx-

imating solutions of problem (1.4) by those of (1.1), is justified by the following

system:

(2.1)





ẋ(t) = ε

(√∣∣∣max
s∈[0,t]

x(s)
∣∣∣+ sin(t)

)
,

x(0) = 0.
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Theorem 2.1 still holds, and the averaged system is:

(2.2)





ẏ(t) = ε

√∣∣∣ max
s∈[0,t]

y(s)
∣∣∣,

y(0) = 0.

There are no solutions of problem (2.1) approximating the trivial solution y(t) ≡ 0

of the averaged problem (2.2) (see [8]).

3. Proofs of the results

To prove Theorems 2.1–2.2 we need to establish the following preliminary lemma:

Lemma 3.1. Let F : R+ × U× U → Conv(Rp) be a multifunction.

(1) If F satisfies Assumption (H1), then its average F : U × U → Conv(Rp) is uni-

formly bounded by the constant M and is continuous.

(2) Let S : R+ → Comp(R+) be in a class K(T,AT ). Then S : R+ → Comp(Rp)

defined in (H4) is continuous.

P r o o f. For (1), see [6].

Now suppose that τ1, τ ∈ R+, and 0 < ε ≪ 1 such that |τ1/ε − τ/ε| 6 T , which

implies H(S(τ1/ε), S(τ/ε)) 6 AT . Thus

H(S(τ1), S(τ)) 6 H
(
S(τ1), εS

(τ1
ε

))
+ εH

(
S
(τ1
ε

)
, S

(τ
ε

))
+H

(
εS

(τ
ε

)
, S(τ)

)

6 2ξε(T ) + εAT .

Piecing it all together gives

|τ1 − τ | 6 Tε → 0 ⇒ H(S(τ1), S(τ)) 6 2ξε(T ) + εAT → 0.

This finishes the proof. �

We need the following lemma, which is a generalization of Lemma 1 (see [1],

page 99); the proof is similar to the one mentioned.

Lemma 3.2 (Integral representation). LetG : [0, L]×U×U → Conv(Rp), where U

is an open subset of Rp, be an ε − δ upper semicontinuous multifunction (see [7]),

and H(G(t, x, y), 0) 6 m(t) for all (t, x, y) ∈ I × U × U, where m(·) as in (H1),
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and S̃ : R+ → Comp(Rp) be continuous (w.r.t the metric H). Then the continuous

function x(·) is a solution on I = [0, L] to the inclusion

ẋ(t) ∈ G
(
t, x(t), max

s∈S̃(t)
x(s)

)

if and only if for every pair t1, t2 ∈ I

x(t2)− x(t1) ∈
∫ t2

t1

G
(
t, x(t), max

s∈S̃(t)
x(s)

)
dt.

P r o o f. The necessity of the statement is obvious, so we prove only its suffi-

ciency.

First, notice that |x(t2)−x(t1)| 6
∫ t2
t1

m(t) dt 6 M(t2−t1). Thus x is differentiable

a.e.; also the fact that S̃ and x are continuous means that the function max
s∈S̃(·)

x(s) is

continuous as well. Hence ϕ(·) = G
(
·, x(·), max

s∈S̃(·)
x(s)

)
is ε−δ upper semicontinuous.

Fix t and let δ > 0 be such that for t′ ∈ I, we have that |t − t′| 6 δ implies that

ϕ(t′) ⊂ ϕ(t) + εB, where B is the unit ball in R
p. Then

x(t1)− x(t) ∈
∫ t1

t

G
(
l, x(l), max

s∈S̃(l)
x(s)

)
dl ∈

(
G
(
t, x(t), max

s∈S̃(t)
x(s)

)
+ εB

)
(t1 − t),

The last inclusion means that ẋ(t) ∈ G
(
t, x(t), max

s∈S̃(t)
x(s)

)
+εB, ε is arbitrary and G

is closed valued, i.e.,

ẋ(t) ∈ G
(
t, x(t), max

s∈S̃(t)
x(s)

)
.

This finishes the proof. �

P r o o f of Theorem 2.1. First, the fact that F is continuous in (x, y) uniformly

in t means that there exists some function ω such that

ω(F, γ) = sup{H(F (t, x1, y1), F (t, x2, y2)) : |x1−x2|+|y1−y2|6 γ, t∈R+, xi, yi ∈U}

and lim
γ→0

ω(F, γ) = 0.

Let us make the following change of variable: τ = εt, and let {εn}n∈N be a non-

increasing sequence converging to 0, and let xn be a solution of (1.1) for ε = εn;

thus xn is a solution of the inclusion:

(3.1)





x′

n ∈ F
( τ

εn
, xn(τ), max

s∈εnS(τ/εn)
xn(s)

)
, t > 0,

xn(0) = x0.
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It is easy to prove that the set {xn} is uniformly bounded and equicontinuous; thus
by Ascoli-Arzelà’s theorem there is a subsequence that converges to a function z, i.e.,

lim
n

‖xn−z‖C[0,T ] = 0. For α, β ∈ [0, T ], let us divide the interval [α, β] into intervals

[τi, τi+1], such that τi = α + i(β − α)/m where i 6 m − 1, and define z as a step

function defined by z(τ) = z(τi), for τ ∈ [τi, τi+1[ and i 6 m− 1.

Let us take n > n0 and m > m0 such that ‖xn − z‖ 6 δ and ‖z− z‖ 6 δ, we have

(3.2)

H

(∫ β

α

F
( τ

εn
, xn(τ), max

s∈εnS(τ/εn)
xn(s)

)
dτ,

∫ β

α

F
(
z(τ), max

s∈S(τ)
z(s)

)
dτ

)

6 H

(∫ β

α

F
( τ

εn
, xn(τ), max

s∈εnS(τ/εn)
xn(s)

)
dτ,

∫ β

α

F
( τ

εn
, z(τ), max

s∈εnS(τ/εn)
z(s)

)
dτ

)

+H

(∫ β

α

F
( τ

εn
, z(τ), max

s∈εnS(τ/εn)
z(s)

)
dτ,

∫ β

α

F
( τ

εn
, z(τ), max

s∈S(τ)
z(s)

)
dτ

)

+H

(∫ β

α

F
( τ

εn
, z(τ), max

s∈S(τ)
z(s)

)
dτ,

∫ β

α

F
(
z(τ), max

s∈S(τ)
z(s)

)
dτ

)

+H

(∫ β

α

F
(
z(τ), max

s∈S(τ)
z(s)

)
dτ,

∫ β

α

F
(
z(τ), max

s∈S(τ)
z(s)

)
dτ

)

and

(3.3)

H

(∫ β

α

F
( τ

εn
, xn(τ), max

s∈εnS(τ/εn)
xn(s)

)
dτ,

∫ β

α

F
( τ

εn
, z(τ), max

s∈εnS(τ/εn)
z(s)

)
dτ

)

6

∫ β

α

H
(
F
( τ

εn
, xn(τ), max

s∈εnS(τ/εn)
xn(s)

)
, F

( τ

εn
, z(τ), max

s∈εnS(τ/εn)
z(s)

))
dτ

6 Tω(F, 2δ).

We have also
∣∣∣ max
s∈εnS(τ/εn)

z(s)− max
s∈S(τ)

z(s)
∣∣∣ 6

∣∣∣ max
s∈εnS(τ/εn)

z(s)− max
s∈S(τ)

z(s)
∣∣∣

+
∣∣∣ max
s∈S(τ)

z(s)− max
s∈S(τ)

z(s)
∣∣∣

6 Mξεn(T ) + δ,

where lim
n→∞

ξεn(T ) = 0. By virtue of the last inequality, we obtain

(3.4) H

(∫ β

α

F
( τ

εn
, z(τ), max

s∈εnS(τ/εn)
z(s)

)
dτ,

∫ β

α

F
( τ

εn
, z(τ), max

s∈S(τ)
z(s)

)
dτ

)

6

∫ β

α

H
(
F
( τ

εn
, z(τ), max

s∈εnS(τ/εn)
z(s)

)
, F

( τ

εn
, z(τ), max

s∈S(τ)
z(s)

))
dτ

6 Tω(F,Mξεn(T ) + 2δ).
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It is also easy to prove (see [11]) that for every µ > 0 we have

H

(∫ τi+1

τi

F
( τ

εn
, z(τ), max

s∈S(τ)
z(s)

)
dτ,

∫ τi+1

τi

F
(
z(τ), max

s∈S(τ)
z(s)

)
dτ

)
6 (τi+1 − τi)µ.

Hence,

H

(∫ β

α

F
( τ

εn
, z(τ), max

s∈S(τ)
z(s)

)
dτ,

∫ β

α

F
(
z(τ), max

s∈S(τ)
z(s)

)
dτ

)
6 Tµ,(3.5)

H

(∫ β

α

F
(
z(τ), max

s∈S(τ)
z(s)

)
dτ,

∫ β

α

F
(
z(τ), max

s∈S(τ)
z(s)

)
dτ

)
6 Tω(F, 2δ).(3.6)

By virtue of (3.2), (3.3), (3.4), (3.5), and (3.6), we obtain

H

(∫ β

α

F
( τ

εn
, xn(τ), max

s∈εnS(τ/εn)
xn(s)

)
dτ,

∫ β

α

F
(
z(τ), max

s∈S(τ)
z(s)

)
dτ

)

6 2Tω(F, 2δ) + Tω(F,Mξεn(T ) + 2δ) + Tµ.

The last quantity could be made as small as we want, and thus z verifies

z(β)− z(α) ∈
∫ β

α

F
(
z(τ), max

s∈S(τ)
z(s)

)
dτ.

Taking into account Lemma 3.1 (F and S are continuous), and applying Lemma 3.2

to the last inclusion means that z is solution of (1.4). This finishes the proof of

Theorem 2.1. �

References

[1] J.-P.Aubin, A. Cellina: Differential Inclusions: Set-Valued Maps and Viability Theory.
Grundlehren der Mathematischen Wissenschaften 264. Springer, Berlin, 1984. zbl MR doi

[2] J.-P.Aubin, H. Frankowska: Set-Valued Analysis. Systems and Control: Foundations
and Applications 2. Birkhäuser, Boston, 1990. zbl MR doi

[3] R. J. Aumann: Integrals of set-valued functions. J. Math. Anal. Appl. 12 (1965), 1–12. zbl MR doi
[4] D.D.Bainov, S. G.Hristova: Differential Equations with Maxima. Pure and Applied
Mathematics (Boca Raton) 298. CRC Press, Boca Raton, 2011. zbl doi

[5] B.Bar, M.Lakrib: Averaging method for ordinary differential inclusions with maxima.
Electron. J. Differ. Equ. 2018 (2018), Article ID 115, 12 pages. zbl MR

[6] A.Bourada, R.Guen, M. Lakrib, K.Yadi: Some averaging results for ordinary differen-
tial inclusions. Discuss. Math., Differ. Incl. Control Optim. 35 (2015), 47–63. MR doi

[7] K.Deimling: Multivalued Differential Equations. De Gruyter Series in Nonlinear Analy-
sis and Applications 1. Walter de Gruyter, Berlin, 1992. zbl MR doi

[8] R.Gama, G. Smirnov: Stability and optimality of solutions to differential inclusions via
averaging method. Set-Valued Var. Anal. 22 (2014), 349–374. zbl MR doi

9

https://zbmath.org/?q=an:0538.34007
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0755330
http://dx.doi.org/10.1007/978-3-642-69512-4
https://zbmath.org/?q=an:0713.49021
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1048347
http://dx.doi.org/10.1007/978-0-8176-4848-0
https://zbmath.org/?q=an:0163.06301
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0185073
http://dx.doi.org/10.1016/0022-247X(65)90049-1
https://zbmath.org/?q=an:1244.34001
http://dx.doi.org/10.1201/b10877
https://zbmath.org/?q=an:1393.34070
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3831861
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3444879
http://dx.doi.org/10.7151/dmdico.1169
https://zbmath.org/?q=an:0760.34002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1189795
http://dx.doi.org/10.1515/9783110874228
https://zbmath.org/?q=an:1307.34001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3207744
http://dx.doi.org/10.1007/s11228-013-0261-4


[9] O.D.Kichmarenko: Averaging of differential equations with Hukuhara derivative with
maxima. Int. J. Pure Appl. Math. 57 (2009), 447–457. zbl MR

[10] O.D.Kichmarenko, K.Y. Sapozhnikova: Full averaging scheme for differential equation
with maximum. Contemp. Anal. Appl. Math. 3 (2015), 113–122. zbl MR doi

[11] S.Klymchuk, A.Plotnikov, N. Skripnik: Overview of V.A.Plotnikov’s research on aver-
aging of differential inclusions. Phys. D 241 (2012), 1932–1947. MR doi

[12] M.Lakrib: An averaging theorem for ordinary differential inclusions. Bull. Belg. Math.
Soc. - Simon. Stevin 16 (2009), 13–29. zbl MR doi

[13] V.A. Plotnikov, O.D.Kichmarenko: Averaging of differential equations with maxima.
Nauk. Visn. Chernivets’kogo Univ., Mat. 150 (2002), 78–82. (In Ukrainian.) zbl

[14] V.A. Plotnikov, O.D.Kichmarenko: A note on the averaging method for differential
equations with maxima. Iranian J. Optim. 1 (2009), 132–140.

[15] V.P. Shpakovich, V. I.Muntyan: Method of averaging for differential equations with
maxima. Ukr. Math. J. 39 (1987), 543–545; translation from Ukr. Mat. Zh. 39 (1987),
662–665. zbl MR doi

[16] G.V. Smirnov: Introduction to the Theory of Differential Inclusions. Graduate Studies
in Mathematics 41. AMS, Providence, 2002. zbl MR doi

Author’s address: Bachir Bar, École Normale Supérieure, Mostaganem 27000, Algeria,
e-mail: bachir.bar1@gmail.com.

10

https://zbmath.org/?q=an:1190.34099
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2584470
https://zbmath.org/?q=an:1353.34095
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3333779
http://dx.doi.org/10.18532/caam.88723
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2994333
http://dx.doi.org/10.1016/j.physd.2011.05.004
https://zbmath.org/?q=an:1166.34024
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2498955
http://dx.doi.org/10.36045/bbms/1235574188
https://zbmath.org/?q=an:1071.34519
https://zbmath.org/?q=an:0716.34090
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0916865
http://dx.doi.org/10.1007/BF01066476
https://zbmath.org/?q=an:0992.34001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1867542
http://dx.doi.org/10.1090/gsm/041

