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Abstract. We study the oscillatory properties of the solutions of the third-order nonlinear
semi-noncanonical delay difference equation

Dy(n) + f(n)y"(o(n)) = 0,

where D3y(n) = A(b(n)A(a(n)(Ay(n))®)) is studied. The main idea is to transform the
semi-noncanonical operator into canonical form. Then we obtain new oscillation theorems
for the studied equation. Examples are provided to illustrate the importance of the main
results.
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1. INTRODUCTION
Consider the third-order nonlinear delay difference equation
(E) Dyy(n) + f(n)y”(o(n)) =0, n € N(ng),

where N(ng) = {ng,no + 1,m0 + 2, ...}, ng is a positive integer and D3 denotes the
difference operator

(1.1) Dzy(n) = A(b(n)A(a(n)(Ay(n))?)).
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Throughout the paper, we assume that

Cy) {b(n)}, {a(n)} and {f(n)} are positive real sequences for all n > ny;

(
(C2) {o(n)} is a sequence of integers with o(n) < n — 1 and o(n) — oo as n — oo;
(C3) « and B are ratios of odd positive integers;
(C4) the operator Dj is in semi-noncanonical form, that is,

o0 oo

1 1 \V/e

(1.2) Z o) < oo and Z (a(n)) = 00.

n=n n=no

By a solution of (E), we mean a nontrivial real sequence {y(n)} that satisfies (E)
for all n € N(ng). We only consider those solutions of (E) which exist for all n € N(ng)
and satisfy the condition

sup{ly(n)|: N <n<oo} >0 forany N € N(ng).

A solution of (E) is called oscillatory if it is neither eventually positive nor eventually
negative. Otherwise, it is said to be nonoscillatory.

Several results have been reported in the literature on the oscillatory and asymp-
totic properties of the solutions of (E), see for example [2]-[19], [21], and [24]. Most
papers are devoted to canonical type equations, that is,

This is due to the fact that the canonical type equation is relatively simpler to study.
In this paper, we connect the semi-noncanonical equation (E) to the canonical type.

While considering the nonoscillatory solutions of (E), we can restrict our attention
to the positive ones since the proof for the negative case is similar. It follows from
a well-known result in [1], that the set of positive solutions of (E) has the property
described by the following lemma:

Lemma 1.1. Assume that {y(n)} is a positive solution of (E). Then {y(n)}
satisfies one of the following conditions:
@D (Ay(n))* >0, Ala(n)(Ay(n))*) > 0, A(b(n)A(a(n)(Ay(n))")) <0,
(D) (Ay(n))* <0, Ala(n)(Ay(n))*) >0, A(b(n)A(a(n)(Ay(n))*)) <0,
(M) (Ay(n))* >0, Ala(n)(Ay(n))*) <0, A(b(n)A(a(n)(Ay(n))*)) <0
for all n € N(n1), n1 = ng.
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From the above lemma it is clear that if we want to establish oscillation criteria for
a semi-noncanonical equation, we have to eliminate the above mentioned classes. To
overcome this, we present a simple condition that leads to a canonical representation
of (E), which essentially simplifies the study of (E).

2. MAIN RESULTS

Throughout the paper, we use the notation

Z bi =b(n)II(n)I(n+1), c(n)= %’
o(n)—1 s—1 1/o\ o

= 1 = o(s))\1/a
n) = 5;1 @ and 7n(n) = S;I (ACL((J((S))))) for all ny > ng.

Theorem 2.1. Assume that

(2.1) i (1;((:)))1/& = .

1
II(n+1)

(Ey) A(b(n)H(n)H(n + 1)A(

Proof. By a straightforward computation we can show that

T+ DA (FEHAu()*) = )b Ala(m) A()*) + alm) Ay ()"

So

or

1
II(n+1)

a(n)
II(n

A (BT + 1A (T (Ay(m)) ) = A Aa(n)(Ay(n)™)),

which shows that equations (E) and (E;) are equivalent.
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Now, we show that (E1) is canonical, that is,

oo oo

1 1 . 1 1
2 b)) + 1) > A(w) = im O(n) (o)

n=no n=no

and

n=no

by (2.1). The proof is complete. O

Corollary 2.2. Let (2.1) hold. If {y(n)} is a positive solution of (E), then {y(n)}
is a positive solution of

(E2) A(d(n)A(c(n)(Ay(n)*)) + F(n)y®(a(n)) =0
and {y(n)} satisfies either

(Ay(n))* <0, Ale(n)(Ay(n))*) >0, A(d(n)A(c(n)(Ay(n))*)) <0,
in which case we say y(n) € S, or

(Ay(n))* >0,  Ale(n)(Ay(n))*) >0,  A(d(n)A(c(n)(Ay(n))*)) <0,

in which we say y(n) € Sa.

Corollary 2.2 simplifies the form of possible positive solutions of (E). Therefore, to
obtain oscillation criteria for (E) it suffices to eliminate the classes Sp and S; instead
of the three classes postulated by Lemma 1.1.

Theorem 2.3. Let (2.1) hold. Assume that {y(n)} is a positive solution of (E).
If a = 8 and

n—1 1 n—1 1 n—1 1/«
2.2 lim sup (— — F(j ) > 1,
22) e 3\ 2 a2 7V

s=o(n) s

[

then {y(n)} does not satisfy (Sy).
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Proof. Assume to the contrary that y(n) € Sp. Summing up (E2) from s to
n — 1 yields

n—1 n—1
d(s)A(c(s)(Ay(s)™) = Y F(t)y (o) = y7(o(n) Y F(1).

Summing it up twice from s to n — 1, we obtain
n—1 1 n—1 1 n—1 1/«
o) =00 Y (5 3 0 LF0)
2\ & 1) 2
By setting s = o(n) and o = 8 we reach a contradiction to (2.2). This completes

the proof. O

Theorem 2.4. Let (2.1) hold. Assume that {y(n)} is a positive solution of (E).
If a = 8 and

n—1
. 1
(2.3) 11nrri>1or<1>f E G(s) > >
s=o(n)
then {y(n)} does not satisfy (Sz).

Proof. Assume to the contrary that y(n) € Ss. Since d(n)A(c(n)(Ay(n))*) is
positive and decreasing, we can verify that

ety > Y ALY gy atetn) Bytm)) 3 g

Summing it up again from n; to n — 1, we get
n—1 s—1 1 1/«
ylo) > (A el y)) 3 )

Substituting this into (Ez), we see that w(n) = d(n)A(e(n)(Ay(n))®) is a positive
solution of the difference inequality

Auw(n) + F(n) ((_Z) (s _Z %)w)aw(a(n» <o.

On the other hand, by Lemma 2.7 in [23], the corresponding equation
(2.4) Aw(n) + G(n)w(o(n)) =0

also has a positive solution. But by (2.3) and Theorem 2.1 in [20], equation (2.4)
has no positive solution, which is a contradiction. This completes the proof. [l
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Combining Theorems 2.3 and 2.4, we immediately obtain the following theorem.

Theorem 2.5. Let o = § and (2.1), (2.2), (2.3) hold. Then (E) is oscillatory.

Next, we consider the case a > .

Theorem 2.6. Let o > 8 and (2.1) hold. If

n—1 1 n—1 1 n—1 1/«
(2.5) lim sup Z —Z—Z =00
e 3 (55 15 5 79)
and
(2.6) Y Fn) =

n=ni
for all ny € N(ng), then equation (E) is oscillatory.

Proof. Assume that {y(n)} is a nonoscillatory solution of (E), say y(n) > 0
and y(o(n)) > 0 for all n > n; € N(ng). From Corollary 2.2, y(n) € Sy or y(n) € Sy
for all n > ny.

First assume y(n) € Syp. Then proceeding as in the proof of Theorem 2.3, we

obtain
n—1

y(o(n) = v/ (o(n)) Z( Z i >/a,

or

n—1 1 n—1 1 n—1 1/a
s 3 ()
Yy o(n)) > , i .
o= 2\ it
Since {y(n)} is decreasing and o > f3, we have that y'~#/*(o(n)) < M for all
n > ne > ni. Using this, we obtain

n—1 n—1 — 1/«
w> ¥ (GE )
t=o(n) =t =J
which contradicts (2.5) as n — oo.

Next assume y(n) € S3. Then, since y(n) is increasing, there exists a constant
My > 0 for all n > ny. Then from (E2) we obtain

A(d(n)A(e(n)(Ay(n))) + MY F(n) < 0.

Summing the above inequality from ny to n — 1, we have

M S F(s) < dna)Ae(ns) (Ay(n2)?) < o,

S=no2

which contradicts (2.6). The proof is complete. O
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Lemma 2.7. Assume that (E3) possesses an eventually positive solution y(n) € Ss.
Then

is eventually decreasing.

Proof. Assume that y(n) € Sz. Since d(n)A(c(n)(Ay(n))*) is positive and
decreasing, we have

n—1

c(n)(Ay(n))* = Y d(S)A(C(s)(Ay(S))Q)%S) 2 d(n)A(c(n)(Ay(n))*)u(n),
which implies that
c(n)(Ay(n))*
A( w(n) ) <0
This proof is complete. O

Lemma 2.8. Assume that (E3) possesses an eventually positive solution y(n) € Ss.
Then

y(o(n)) = n(n)(d(n)Ale(n)(Ay(n))*)"/*
for all n = n1 € N(ng).

Proof. The proofis similar to Lemma 2.2 in [22]. Thus, the details are omitted.
O

Theorem 2.9. Let (2.1) hold. Assume that « = 8 and both

o0 1 &1 & 1/
(2.7) Z (m Z o) ;F(t)) =00
and
1 o(n)—1
28) timsupd ~ s 3 s+ DFE) (o)

n—1 > QQ(O'(S))
£ Y Fe)e(ols) +u<”<””§_;F(s)m}> -

s=o(n)
Then every nonoscillatory solution {y(n)} of (E) satisfies li_>m y(n) = 0.
n—oo
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Proof. Let {y(n)} be an eventually positive solution of (E). Then by Corol-
lary 2.2, {y(n)} is also a positive solution of (E2) and so either y(n) € Sy or y(n) € S,
for all n > ny € N(ny).

First assume that y(n) € S. By Lemma 2.7, the function ¢(n)(Ay(n))*/u(n) is
decreasing and thus

L Ma(s) Ay(s) pt/ (s e (n)Ay(n
y(n) > Z HE/‘)I(SZ;( )lél/a((s)) g u(l/i(ny)( ) ()

S=ny

n—1

where o(n) = > (u(s)/c(s))*/®. Substituting the last inequality into (E), we see
sS=n1

that z(n) = ¢(n)(Ay(n))® is a positive increasing solution of the difference inequality

(2.9) A(d(n)Az(n)) + F(n) 9: (€M) ((n)) < 0.

Moreover, the sequence {x(n)/u(n)} is decreasing. Now, summing up (2.9) from n
to oo yields

Summing it up again from n; to n—1 and then changing the order of the summations,

we obtain
S L S F)e (o)
x(n) > P a0s) tz:; (o) x(o(t))
LN FBee) L S Ee (o)
> LI wewy O L TG L aem )
N Bt S E(0e ()
Consequently,
o(n)—1 n—1
z(o(n s s)o® z(a(s)) F(t)g“(a(t))x o
(7)> 32 e VPN o + o) 3 =etot0)
o F(t)e*(o(t))
ot 3o =L (o),
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Since {z(n)} and {x(n)/p(n)} are monotonically decreasing, we have that

o(n)—1 n—1
x<0<”>>>i$% Y wls+ DF(s)e(o(s) +a(o(m) Y. Fit
s=n1 t=0(n)
= F(t)o" (o(t))
+u<a<n>>x<o<n>>; ()
That is,
1 o(n)—1 nzzl
1> u(s +1)F(s)e%(0(s)) + Y Fls)o*(a(s))
ulo(n)) = oo
= F(s)o”(o(s)
—|—u(0(n)); w(o(s)

which is a contradiction and we conclude that y(n) ¢ Ss.
Next, we assume that y(n) € Sp. It follows from the monotonicity of y(n) that
there exists 1i_>m y(n) =1 > 0. We claim that [ = 0. If not, then y(n) > 1 > 0.
n—oo

Summing up (E2) from n to co yields

d(n)A(c(n)(Ay(n)*) = Y F(s)y*(a(s)) = 1Y F(s)

Summing it up once more from n to oo, we obtain
0 1 00 1 0 1 0 1/«
By 217D e S P, o~y 21> S Fw)

Now, by summing this up from n; to oo, one can see that

o0 1 &1 & 1/
w213 (Y S Ew)
Lz
which contradicts (2.7). Thus, we conclude that lim y(n) = 0. O
n— oo

Our final result concerns the case when
(2.10) Y F(n) < oc.
Theorem 2.10. Let (2.1), f = a and (2.2) hold. If (2.10) and

(2.11) lim supn®(n) Z F(s)>1

n—oo

then equation (E) is oscillatory.
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Proof. Let {y(n)} be an eventually positive solution of (E). Then by Corol-
lary 2.2, {y(n)} is also a positive solution of (E2) and so either y(n) € Sy or y(n) € S,
for all n > ny € N(ny).

First assume that y(n) € Se. Define

d(n)A(e(n)(A
y*(a(n)

Then w(n) > 0. Using (E3), we have

|
=N

3
=
=
Q
<=

w(n) =

din+ 1)A(c(n+ 1)(Ay(n + 1))*)
y*(o(n))y*(o(n+1))

Aw(n) = —F(n) - Ay°(o(n)) < ~F(n).

Summing the last inequality from n to co, we obtain

W) A(e(n) (Ay(n))*)
ZF e

Using Lemma 2.8 in the above inequality, we get

which contradicts (2.11) as n — oo. The proof for the case Sy is similar to that of
Theorem 2.3. This completes the proof. O

3. EXAMPLES

In this section, we present some examples to illustrate the main results.

Example 3.1. Consider the semi-noncanonical third-order delay difference
equation

(31 Aln(+ 1)A(%(Ay(n))1/3)) F 2B+ 1)y 3 (n—2)=0, n>1.

Here b(n) = n(n+1), a(n) = 1/n, a = B =%, f(n) =273(n+1), o(n) = n— 2.
Clearly (3.1) is semi-noncanonical. A straightforward calculation shows that II(n) =
1/n,d(n) =1, ¢(n) = 1, F(n) = 27/3. The transformed canonical equation is

(3.2) A (Ay(n))V3) 4273y 3 —2) =0, n>1.
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It is easy to see that condition (2.1) is satisfied. Condition (2.2) becomes

n—1 n—1ln—1 3
limsup ) (Z > 27/3) = 3584 > 1,

MO s—p—2 Nt=s j=t

while condition (2.3) becomes

n—1 s—=3 ,t—1 \3\1/3
o 7/3 _ 95/31: CEN2/3(( _ \2/3 _4\2/3
hnn_1>10rolf ;22 (Z (Z 1) ) =2 hy{r_agf(n 5)%°((n —6)*° 4+ (n — 4)°/°)

= o0.
Hence, all the conditions of Theorem 2.5 are satisfied and therefore equation (3.1)

is oscillatory. Using (3.2) one can easily verify that y(n) = {(—1)"} is one such
oscillatory solution of (3.1).

Example 3.2. Consider the semi-noncanonical third-order delay difference
equation

(3.3) A(2n+1A(2in(Ay(n)))) S yn—2)=0, n>l.

Here b(n) = 2" a(n) =1/2", a =B =1, f(n) = X > 0, o(n) = n—2. Clearly (3.3)
is semi-noncanonical. A straightforward calculation shows that II(n) = 1/2", d(n) =
1/27 ¢(n) =1, F(n) = A/2"T! n(n) =2""2 —n + 2.

It is easy to see that condition (2.1) is satisfied. Condition (2.2) becomes

s=n—2 ‘t=s J=t
while condition (2.11) becomes
3B\nm A A
: n—2 _ -
(2t ) T =gt

Hence, Theorem 2.10 is satisfied if A > 4, and so equation (3.3) is oscillatory.

4. CONCLUSION

In this paper, we have obtained new oscillation criteria for equation (E) by trans-
forming (E) into canonical form. By this technique, we get a new kind of oscillation
criteria for equation (E). We have shown the application of the results through some
illustrative examples.

Acknowledgements. The authors would like to express their gratitude to
the anonymous referees for their help to improve the manuscript.
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