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Abstract. The main objective of this paper is to give the specific forms of the meromorphic
solutions of the nonlinear difference-differential equation

f
n(z) + Pd(z, f) = p1(z)e

α1(z) + p2(z)e
α2(z),

where Pd(z, f) is a difference-differential polynomial in f(z) of degree d 6 n− 1 with small
functions of f(z) as its coefficients, p1, p2 are nonzero rational functions and α1, α2 are non-
constant polynomials. More precisely, we find out the conditions for ensuring the existence
of meromorphic solutions of the above equation.

Keywords: nonlinear differential equation; differential polynomial; Nevanlinna’s value
distribution theory
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1. Introduction, definitions and results

In the paper, a meromorphic function means a function meromorphic in the open

complex plane C. We use the standard notations of Nevanlinna theory, e.g., N(r, f),

m(r, f), T (r, f), N(r, a; f), N(r, a; f), m(r, a; f), etc. (see [2]). We denote by S(r, f)

a quantity, not necessarily the same at each of its occurrence, that satisfies the

condition S(r, f) = o{T (r, f)} as r → ∞ except possibly a set of finite linear measure.

A meromorphic function a = a(z) is called a small function of a meromorphic

function f if T (r, a) = S(r, f). Let us denote by S(f) the class of all small functions

of f . Clearly C ⊂ S(f) and if f is a transcendental function, then every rational

function is a member of S(f).
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The order and hyper-order of a meromorphic function f(z) are denoted and

defined by

̺(f) = lim sup
r→∞

logT (r, f)

log r
and ̺2(f) = lim sup

r→∞

log logT (r, f)

log r
,

respectively. It is clear that if ̺(f) <∞, then ̺2(f) = 0.

Let k ∈ N and a ∈ C∪{∞}. We use the notations Nk)(r, a; f) and N(k+1(r, a; f) to

denote the counting function of a-points of f with multiplicity not greater than k and

the counting function of a-points of f with multiplicity greater than k, respectively.

Similarly, Nk)(r, a; f) and N (k+1(r, a; f) are their reduced functions, respectively.

By a differential polynomial Pd(z, f) in f(z) of degree d, we mean a polynomial

in f(z) and its derivatives of a total degree at most d with small functions of f(z)

as coefficients. When the coefficients are polynomials, we call Pd(z, f) an algebraic

differential polynomial.

By a difference-differential polynomial Pd(z, f) in f(z) of degree d, we mean a poly-

nomial in f(z), its shifts and their derivatives of a total degree at most d with small

functions of f(z) as coefficients.

It is always an interesting and quite difficult problem to prove the existence of the

entire or meromorphic solutions f(z) of a given differential equation and to find out

the solutions if they exist. A special type of nonlinear differential equation

fn(z) + Pd(z, f) = h(z),

where h(z) is a given entire or meromorphic function and Pd(z, f) is a differential

polynomial in f(z) of degree d, has become a matter of increasing interest among

the researchers.

It is easy to show that the function f1(z) = sin z is a solution of the nonlinear

differential equation 4f3(z) + 3f ′′(z) = − sin 3z. In [3], it was proved that f2(z) =

−
√
3
2 cos z− 1

2 sin z is also a solution of this equation. In 2004, Yang and Li (see [10])

proved that this equation admits exactly three entire solutions, namely f1(z), f2(z)

and f3(z) =
√
3
2 cos z − 1

2 sin z. Since the function − sin 3z is a linear combination of

ei3z and e−i3z, so it is interesting to find all entire solutions of the general equation

(1.1) fn(z) + Pd(z, f) = p1e
λz + p2e

−λz,

where p1, p2 and λ are nonzero constants and Pd(z, f) denotes a differential polyno-

mial in f(z) of degree d 6 n− 1.

In 2004, Yang and Li (see [10]) answered the above question partially and obtained

the following result.
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Theorem A ([10]). Let n ∈ N \ {1, 2}, Pd(z, f) be a differential polynomial in f

of degree d 6 n − 3, b ∈ S(f) and λ, p1, p2 be three nonzero constants. Then the

differential equation

fn(z) + Pd(z, f) = b(z)(p1e
λz + p2e

−λz)

has no transcendental entire solution f(z).

In 2006, Li and Yang (see [6]) derived similar conclusion when the term on the

right-hand side of equation (1.1) was replaced by p1(z)e
α1z +p2(z)e

α2z, where p1(z),

p2(z) are nonzero polynomials, α1, α2 are two constants with α1/α2 6∈ Q, and

presented their result as follows.

Theorem B ([6]). Let n ∈ N\{1, 2, 3} and Pd(z, f) denote an algebraic differential

polynomial in f(z) of degree d 6 n−3. Let p1(z), p2(z) be two nonzero polynomials,

α1 and α2 be two nonzero constants with α1/α2 6∈ Q. Then the differential equation

fn(z) + Pd(z, f) = p1(z)e
α1z + p2(z)e

α2z

has no transcendental entire solutions.

In 2011, Li derived the possible forms of solutions of equation (1.1) when d 6 n−2,

and obtained the following result (see [5]).

Theorem C ([5]). Let n ∈ N \ {1}, Pd(z, f) be a differential polynomial in f(z)

of degree d 6 n− 2 and p1, p2, α1, α2 be nonzero constants and α1 6= α2. If f(z) is

a transcendental meromorphic solution of the equation

fn(z) + Pd(z, f) = p1e
α1z + p2e

α2z

satisfying N(r,∞; f) = S(r, f), then one of the following holds:

(i) f(z) = c0(z) + c1e
α1/nz,

(ii) f(z) = c0(z) + c2e
α2/nz,

(iii) f(z) = c1e
α1/nz + c2e

α2/nz and α1 + α2 = 0,

where c0 ∈ S(f) and c1, c2 ∈ C \ {0} such that cni = pi, i = 1, 2.

In 2013, Liao, Yang and Zhang (see [7]) extended the above results by considering

that h(z) is a meromorphic function of integer order and improved the results of

Theorems B and C. Actually, they obtained the following result.
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Theorem D ([7]). Let n ∈ N \ {1, 2} and Pd(z, f) be a differential polynomial in

f(z) of degree d with rational functions as its coefficients. Suppose that p1, p2 are

nonzero rational functions and α1, α2 are polynomials. If d 6 n− 2, the differential

equation

fn(z) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z)

admits a meromorphic function f(z) with finitely many poles. Then α′
1/α

′
2 is a ra-

tional number. Furthermore, only one of the following four cases holds:

(1) f(z) = q(z)ep(z) and α′
1(z)/α

′
2(z) = 1, where q(z) is a nonzero rational function

and p(z) is a polynomial with np′(z) = α′
1(z) = α′

2(z);

(2) f(z) = q(z)ep(z) and either α′
1(z)/α

′
2(z) = k/n or α′

1(z)/α
′
2(z) = n/k, where q(z)

is a nonzero rational function, k ∈ N with 1 6 k 6 d and p(z) is a polynomial

with np′(z) = α′
1(z) or np

′(z) = α′
2(z);

(3) f(z) satisfies the first order linear differential equation f ′(z) = n−1(p′2(z)/p2(z)+

α′
2(z))f(z) + ψ(z) and α′

1(z)/α
′
2(z) = (n− 1)/n or f(z) satisfies the first order

linear differential equation f ′(z) = n−1(p′1(z)/p1(z) + α′
1(z))f(z) + ψ(z) and

α′
1(z)/α

′
2(z) = n/(n− 1), where ψ(z) is a rational function;

(4) f(z) = γ1(z)e
β1(z) + γ2(z)e

−β1(z) and α′
1(z)/α

′
2(z) = −1, where γ1(z), γ2(z) are

nonzero rational functions and β1(z) is a polynomial with nβ
′
1(z) = α′

1(z) or

nβ′
1(z) = α′

2(z).

Now it is interesting to find out all the meromorphic solutions of the following

nonlinear differential-difference equation:

(1.2) fn(z) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z),

where Pd(z, f) is a differential-difference polynomial in f(z) of degree d 6 n−1 with

small functions of f(z) as its coefficients, p1(z), p2(z) are nonzero rational functions

and α1(z), α2(z) are non-constant polynomials.

In 2018, Lü, Wu, Wang and Yang (see [8]) derived the possible forms of the

solutions of equation (1.2) when n = 3, d = 1, and obtained the following result.

Theorem E ([8]). Let Pd(z, f) denote a difference-differential polynomial in f(z)

of degree one with small functions as its coefficients such that Pd(z, 0) ≡ 0 and let

p1, p2, α1, α2 be nonzero constants such that α1 6= α2. If f(z) is an entire solution

with ̺2(f) < 1 to equation

f3(z) + Pd(z, f) = p1e
α1z + p2e

α2z ,

then one of the following relations holds:
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(1) f(z) = c1 exp(
1
3α1z) + c2 exp(

1
3α2z), where c1, c2 ∈ C \ {0} satisfying c31 = p1,

c32 = p2 and α1 + α2 = 0,

(2) f3(z) = (p1 − c1) exp(α1z) and Pd(z, f) = c1 exp(α1z) + p2 exp(α2z), where c1
is a constant,

(3) f3(z) = (p2 − c2) exp(α2z) and Pd(z, f) = p1 exp(α1z) + c2 exp(α2z), where c2
is a constant.

For further study, it is quite natural to ask the following questions.

Q u e s t i o n 1. What happens if f3(z) is replaced by fn(z), where n ∈ N, in

Theorem E?

Q u e s t i o n 2. What will happen if we delete the condition Pd(z, 0) ≡ 0 in

Theorem E?

Q u e s t i o n 3. How to find the solutions of equation (1.2) under the condition

n > d+ 2?

The main objective of this paper is to find out the possible answers to the above

questions. The following theorem is the main result of the paper.

Theorem 1.1. Let Pd(z, f) be a difference-differential polynomial in f(z) of de-

gree d ∈ N ∪ {0} with small functions of f(z) as its coefficients and n ∈ N such that

n > d+2. Suppose that p1(z), p2(z) are nonzero rational functions and α1(z), α2(z)

are non-constant polynomials. If f(z) is a meromorphic solution to the difference-

differential equation

(1.3) fn(z) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z)

satisfying ̺2(f) < 1 and N(r,∞; f) = S(r, f), then one of the following cases holds:

(1) f(z) = q(z)eα2(z)/n and α′
1(z) ≡ α′

2(z), where q(z) is a nonzero rational function

such that qn(z) = c0p2(z), where c0 ∈ C \ {0};

(2) f(z) = q(z)eα1(z)/n and α′
1 ≡ α′

2(z), where q(z) is a nonzero rational function

such that qn(z) = p1(z) + c1p2(z), where c1 ∈ C;

(3) T (r, e(kα1−nα2)/(n+1)) = S(r, f), where k ∈ {0, 1, 2, . . . , d}. In this case, f(z) =

q(z)eα1(z)/n, where q(z) is a nonzero rational function such that qn(z) = p1(z);

(4) T (r, e(kα2−nα1)/(n+1)) = S(r, f), where k ∈ {0, 1, 2, . . . , d}. In this case, f(z) =

q(z)eα2(z)/n, where q(z) is a nonzero rational function such that qn(z) = p2(z);

(5) T (r, e(n−1)α1−nα2) = S(r, f). In this case, f(z) = u1(z)e
α1(z)/n − v1(z), where

u1(z) and v1(z) are nonzero small functions of f(z) such that u
n
1 (z) = p1(z);

(6) T (r, e(n−1)α2−nα1) = S(r, f). In this case, f(z) = u2(z)e
α2(z)/n − v2(z), where

u2(z) and v2(z) are nonzero small functions of f(z) such that u
n
2 (z) = p2(z);
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(7) T (r, eα1−α2) = S(r, f). In this case, f(z) = q(z)eα1/n and Pd(z, f) ≡ 0, where

q(z) and ϕ(z) are nonzero small functions of f(z) such that qn(z) = p1(z) +

ϕ(z)p2(z);

(8) T (r, eα1+α2) = S(r, f). In this case, f(z) = δ1(z)e
γ(z)+δ2(z)e

−γ(z), where δ1(z),

δ2(z) are nonzero small functions of f(z) and γ(z) is a non-constant polynomial

such that either enγ(z)+α1(z) is a small function of f(z) or enγ(z)+α2(z) is a small

function of f(z).

From Theorem 1.1 we have the following corollary.

Corollary 1.1. Equation (1.2) does not have any meromorphic solution f(z)

satisfying N(r,∞; f) = S(r, f), ̺(f) = ∞ and ̺2(f) < 1.

R em a r k 1.1. It is easy to see that conclusions (5) and (6) in Theorem 1.1 can

not be removed by the following examples.

E x am p l e 1.1. Let us consider the difference-differential equation

f3(z) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z),

where Pd(z, f) = − 1
3f

′(z)− 2
27 , p1(z) = p2(z) = 1, α1(z) = 3z and α2(z) = 2z. Here

n = 3 and d = 1. One can easily verify that f(z) = u1(z)e
α1(z)/3 − v1(z), where

u1(z) = 1, v1(z) =
1
3 is a solution of the given difference-differential equation.

E x am p l e 1.2. Let us consider the difference-differential equation

f4(z) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z),

where Pd(z, f) = f2(z+ c)−3(f ′(z))2−4f ′′(z)f(z)−2f(z+ c), p1(z) = 1, p2(z) = 4,

α1(z) = 4z, α2(z) = 3z and c ∈ C\{0} such that ec = 1. Here n = 4 and d = 2. One

can easily verify that f(z) = u2(z)e
α2(z)/4 − v2(z), where u2(z) = 1 and v2(z) = −1

is a solution of the given difference-differential equation.

R em a r k 1.2. It is easy to see that conclusion (8) in Theorem 1.1 cannot be

removed by the following examples.

E x am p l e 1.3. Let us consider the difference-differential equation

f2(z) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z),

where Pd(z, f) ≡ −2, p1(z) = p2(z) = 1, α1(z) = 2z and α2(z) = −2z. Here n = 2

and d = 0. One can easily verify that f(z) = δ1(z)e
γ(z) + δ2(z)e

−γ(z) is a solution

of the given difference-differential equation, where δ1(z) = δ2(z) = 1 and γ(z) = z.

Also we see that enγ(z)+α2(z) is a small function of f(z).
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E x am p l e 1.4. Let us consider the difference-differential equation

f3(z) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z),

where Pd(z, f) = zf ′′(z) − f ′(z) − (4z3 + 3)f(z), p1(z) = p2(z) = 1, α1(z) = 3z2

and α2(z) = −3z3. Here n = 3 and d = 1. One can easily verify that f(z) =

δ1(z)e
γ(z) + δ2(z)e

−γ(z) is a solution of the given difference-differential equation,

where δ1(z) = δ2(z) = 1 and γ(z) = z2. Also we see that enγ(z)+α2(z) is a small

function of f(z).

2. Lemmas

The following lemmas are needful in the proof of our main result.

Lemma 2.1 ([4]). Let f(z) be a transcendental meromorphic function and

fn(z)P (z, f) = Q(z, f), where P (z, f) and Q(z, f) are polynomials in f(z) and its

derivatives with meromorphic coefficients, say {aλ(z) : λ ∈ I} such that m(r, aλ) =

S(r, f) for all λ ∈ I. If the total degree of Q(z, f) as a polynomial in f(z) and its

derivatives is less than or equal to n, then m(r, P (z, f)) = S(r, f).

Lemma 2.2 ([2]). Let f(z) be a non-constant meromorphic function and let

ai ∈ S(f), i = 1, 2. Then T (r, f) 6 N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 2.3 ([9]). Let f(z) be a non-constant meromorphic function and let

an (6≡ 0), an−1, . . . , a0 ∈ S(f). Then T
(

r,
n
∑

i=0

aif
i
)

= nT (r, f) + S(r, f).

Lemma 2.4 ([11]). Let f be a non-constant meromorphic function and k ∈ N.

Then

m
(

r,
f (k)

f

)

= S(r, f)

and if f is of finite order of growth, then

m
(

r,
f (k)

f

)

= O(log r).

Lemma 2.5 ([1]). Let c ∈ C\{0}, ε > 0 and f(z) be a non-constant meromorphic

function such that ̺2(f) < 1. Then

m
(

r,
f(z + c)

f(z)

)

= o
( T (r, f)

r1−̺2(f)−ε

)

outside of an exceptional set of finite logarithmic measure.
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Lemma 2.6. Let n ∈ N and Pd(z, f) be a difference-differential polynomial in f(z)

of degree d 6 n−1 with small functions of f(z) as its coefficients. Suppose that p1(z),

p2(z) are nonzero rational functions and α1(z), α2(z) are non-constant polynomials.

If f(z) is a meromorphic solution to the nonlinear difference-differential equation

(2.1) fn(z) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z)

satisfying ̺2(f) < 1 and N(r,∞; f) = S(r, f), then f(z) is a transcendental mero-

morphic function of finite order.

P r o o f. Let f(z) be a rational function satisfying the differential-difference equa-

tion (2.1). Then clearly p1(z)e
α1(z)+p2(z)e

α2(z) is a rational function, say R1(z), and

so −p1(z)e
α1(z) = p2(z)e

α2(z)−R1(z). This shows that p2(z)e
α2(z)−R1(z) has finitely

many zeros. But from Lemma 2.2, one can easily conclude that p2(z)e
α2(z) −R1(z)

has infinitely many zeros. Therefore we arrive at a contradiction. Consequently, any

non-constant meromorphic solution of the difference-differential equation (2.1) must

be transcendental.

A difference-differential polynomial Pd(z, f) in f(z) can be expressed as

Pd(z, f) =
∑

µ

bµ(z)Gµ(z, f),

where bµ ∈ S(f) and

Gµ(z, f) = (f(z))p
µ
0 (f ′(z))p

µ
1 . . . (f (k)(z))p

µ

k (f(z + c0))
qµ
0 (f(z + c1))

qµ
1 . . . (f(z + ck))

qµ
k

× (f(z + cµ))
lµ
0 (f ′(z + cµ))

lµ
1 . . . (f (k)(z + cµ))

lµ
k ,

pµ0 , p
µ
1 , . . . , p

µ
k , q

µ
0 , q

µ
1 , . . . , q

µ
k , l

µ
0 , l

µ
1 , . . . , l

µ
k ∈ N∪{0} such that

k
∑

j=0

pµj +
k
∑

j=0

qµj +
k
∑

j=0

lµj =

µ 6 d. Therefore we have

(2.2) Pd(z, f) =
∑

µ

bµ(z)
Gµ(z, f)

fµ(z)
fµ(z).

Now by Lemmas 2.4 and 2.5, we derive

m
(

r, bµ(z)
Gµ(z, f)

fµ(z)

)

= m
(

r, bµ(z)
(f ′(z)

f(z)

)pµ
1

. . .
(f (k)(z)

f(z)

)pµ

k

. . .
(f(z + cµ)

f(z)

)lµ
0

. . .
(f (k)(z + cµ)

f(z)

)lµ
k
)

= S(r, f).
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Therefore (2.2) takes the form

Pd(z, f) = cd(z)f
d(z) + cd−1(z)f

d−1(z) + . . .+ c0(z),

where cd(z) 6≡ 0 and m(r, ci(z)) = S(r, f) for i = 0, 1, 2, . . . , d. Now by using the

mathematical induction, it follows that m(r, Pd(z, f)) 6 dm(r, f) + S(r, f). Since

N(r,∞; f) = S(r, f), it follows that

(2.3) T (r, Pd(z, f)) 6 dT (r, f) + S(r, f).

Now from (2.1) and (2.3) we have

(2.4) T (p1(z)e
α1(z) + p2(z)e

α2(z)) = T (r, fn(z) + Pd(z, f)) = nT (r, f) + S(r, f)

and

T (p1(z)e
α1(z) + p2(z)e

α2(z)) = T (r, fn(z) + Pd(z, f))(2.5)

> T (r, fn(z))− T (r, Pd(z, f))

> (n− d)T (r, f) + S(r, f).

It follows from (2.4) and (2.5) that

(n− d)T (r, f) + S(r, f) 6 T (p1(z)e
α1(z) + p2(z)e

α2(z)) 6 nT (r, f) + S(r, f),

which implies that ̺(f) <∞. This completes the proof. �

Lemma 2.7 ([5]). Suppose that f(z) is a transcendental meromorphic function

and q1, q2, q3, a ∈ S(f) such that q3a 6≡ 0. If

q1f
2 + q2ff

′ + q3(f
′)2 = a,

then

q3(q
2
2 − 4q1q3)

a′

a
+ q2(q

2
2 − 4q1q3)− q3(q

2
2 − 4q1q3)

′ + (q22 − 4q1q3)q
′
3 ≡ 0.

Lemma 2.8 ([2]). Let f(z) be a non-constant meromorphic function and n ∈ N.

Suppose that

g(z) = fn(z) + Pn−1(z, f),

where Pn−1(z, f) is a differential polynomial in f(z) of degree at most n − 1 with

small functions of f(z) as its coefficients and

N(r, f) +N
(

r,
1

g

)

= S(r, f).

Then g(z) = (f(z) + γ(z))n, where γ ∈ S(f).
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Lemma 2.9. Let f(z) be a non-constant meromorphic function and n ∈ N. Sup-

pose that

(2.6) g(z) = fn+1(z) + Pn−1(z, f),

where Pn−1(z, f) is a differential polynomial in f(z) of degree at most n − 1 with

small functions of f(z) as its coefficients and

N(r, f) +N
(

r,
1

g

)

= S(r, f).

Then g(z) = fn+1(z) and Pn−1(z, f) ≡ 0.

P r o o f. Firstly, from Lemma 2.8 we have g(z) = (f(z) + γ(z))n+1, where

γ ∈ S(f). If possible, suppose that γ 6≡ 0. Now from (2.6) we have

(f(z) + γ(z))n+1 = fn+1(z) + Pn−1(z, f)

and so

(n+ 1)γ(z)fn(z) +Qn−1(z, f) = Pn−1(z, f),

where Qn−1(z, f) is a differential polynomial in f(z) of degree at most n − 1 with

small functions of f(z) as its coefficients. Therefore we have

fn−1(z)(n+ 1)γ(z)f(z) = Pn−1(z, f)−Qn−1(z, f).

Now by Lemma 2.1, we conclude that m(r, f) = S(r, f). Since N(r,∞; f) = S(r, f),

it follows that T (r, f) = S(r, f), which is impossible. Hence γ ≡ 0. Consequently,

g(z) = fn+1(z) and Pn−1(z, f) ≡ 0. This completes the proof. �

3. Proof of the theorem

P r o o f of Theorem 1.1. By the given condition, we have

(3.1) fn + Pd = p1e
α1 + p2e

α2 ,

where Pd = Pd(z, f). Let f be a meromorphic solution of equation (3.1). Then by

Lemma 2.6, we can conclude that f is a transcendental meromorphic function of

finite order. Now differentiating both sides of (3.1) once, we get

(3.2) nfn−1f ′ + P ′
d = (p1α

′
1 + p′1)e

α1 + (p2α
′
2 + p′2)e

α2 .

Now by eliminating eα2 from (3.1) and (3.2), we have

(3.3) fn−1(np2f
′ − (p2α

′
2 + p′2)f) + p2P

′
d − (p2α

′
2 + p′2)Pd = A1e

α1 ,

82



where A1 = p2(p1α
′
1 + p′1) − p1(p2α

′
2 + p′2). Again by eliminating eα1 from (3.1)

and (3.2), we have

(3.4) fn−1(np1f
′ − (p1α

′
1 + p′1)f) + p1P

′
d − (p1α

′
1 + p′1)Pd = −A1e

α2 .

Suppose that A1 ≡ 0. Then we have α′
1 − α′

2 = p′2/p2 − p′1/p1 and so α
′
1 ≡ α′

2. Now

from (3.3) we have

(3.5) fn−1(np2f
′ − (p2α

′
2 + p′2)f) = (p2α

′
2 + p′2)Pd − p2P

′
d.

Suppose that np2f
′ − (p2α

′
2 + p′2)f 6≡ 0. Then by Lemma 2.1, we have

(3.6)

{

m(r, np2f
′ − (p2α

′
2 + p′2)f) = S(r, f),

m(r, np2ff
′ − (p2α

′
2 + p′2)f

2) = S(r, f).

Since N(r,∞; f) = S(r, f), from (3.6) we conclude that

T (r, f) 6 T (r, np2f
′f − (p2α

′
2+p

′
2)f

2)+T (r, np2f
′− (p2α

′
2+p

′
2)f)+O(1) = S(r, f),

which is impossible. Therefore np2f
′−(p2α

′
2+p

′
2)f ≡ 0 and so by integration, we get

fn = c0p2e
α2 , where c0 ∈ C \ {0}. Therefore we let f(z) = q(z)eα2(z)/n, where q(z)

is a nonzero rational function such that qn(z) = c0p2(z).

Next we suppose that A1(z) 6≡ 0. Now differentiating (3.3) once, we get

(3.7) fn−2(−(p2α
′
2 + p′2)

′f2 − np2α
′
2ff

′ + (n− 1)np2(f
′)2 + np2ff

′′) +Q′
d

= (A′
1 + A1α

′
1)e

α1 ,

where

(3.8) Qd = p2P
′
d − (p2α

′
2 + p′2)Pd.

Eliminating eα1 from (3.3) and (3.7), we get

(3.9) fn−2(h21f
2 + h22ff

′ + h23(f
′)2 + h24ff

′′) = Rd,

where

(3.10)



































Rd = (A′
1 +A1α

′
1)Qd −A1Q

′
d,

h21 = (p2α
′
2 + p′2)(A

′
1 +A1α

′
1)−A1(p2α

′
2 + p′2)

′,

h22 = −n(α′
1 + α′

2)p2A1 − np2A
′
1,

h23 = n(n− 1)p2A1 6≡ 0,

h24 = np2A1 6≡ 0.

Clearly, h2j are rational functions for j = 1, 2, 3, 4.
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First we suppose that h21 ≡ 0. Then we have

(p2α
′
2 + p′2)

′

p2α′
2 + p′2

−
A′

1

A1
≡ α′

1

and so by integration we have p2α
′
2 + p′2 = c1A1e

α1 , where c1 ∈ C \ {0}. This shows

that A1e
α1 ∈ S(f). Then from (3.3) we have

(3.11) fn−1(np2f
′ − (p2α

′
2 + p′2)f) = (p2α

′
2 + p′2)Pd − p2P

′
d +A1e

α1 .

In this case, one can also easily conclude that f(z) = q(z)eα2(z)/n, where q(z) is

a nonzero rational function such that qn(z) = c1p2(z), where c1 ∈ C \ {0}.

Next we suppose that h21 6≡ 0. Let

(3.12) h21f
2 + h22ff

′ + h23(f
′)2 + h24ff

′′ = a.

Now we consider the following two cases.

Case 1. Suppose that a ≡ 0. Then from (3.12) we have

(3.13) −h21f
2 ≡ h22ff

′ + h23(f
′)2 + h24ff

′′.

Let z1 be a zero of f of order l1 such that h2i(z1) 6= 0,∞ for i = 1, 2, 3, 4. Clearly,

z1 is a zero with multiplicity 2l1 of the left-hand side of equation (3.13) and a zero

with multiplicity 2l1 − 2 of the right-hand side of equation (3.13). Therefore we

arrive at a contradiction from (3.13). Now from (3.13) we can easily conclude that

N(r, 0; f) = O(log r). Since a ≡ 0, from (3.9) and (3.10) we have

(3.14) Rd ≡ 0, i.e., (A′
1 +A1α

′
1)Qd ≡ A1Q

′
d.

First we suppose that Qd ≡ 0. Then from (3.8) we have

(3.15) (p2α
′
2 + p′2)Pd ≡ p2P

′
d.

If Pd ≡ 0, then from (3.1) and (3.3) we have, respectively,

(3.16) fn = p1e
α1 + p2e

α2

and

(3.17) fn−1(np2f
′ − (p2α

′
2 + p′2)f) = A1e

α1 .

Now (3.17) gives

(3.18) np2
f ′

f
− (p2α

′
2 + p′2) = A1

eα1

fn
.
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Using Lemma 2.4, one can easily conclude from (3.18) that m(r, eα1/fn) = O(log r).

Since N(r, 0; f) = O(log r), we have T (r, eα1/fn) = O(log r). Then by the first

fundamental theorem, we have T (r, fn/eα1) = O(log r). Also from (3.16) we have

fne−α1 = p1 + p2e
α2−α1 .

This shows that T (r, eα2−α1) = O(log r) and so eα2−α1 is a nonzero constant. Let

eα2−α1 = c2 ∈ C\{0}. Clearly α′ ≡ α′
2. Now from (3.16) we have f

n = ϕ1e
α1 , where

ϕ1 = p1 + c1p2 is a rational function. In this case we also have f(z) = q(z)eα1(z)/n,

where q(z) is a nonzero rational function such that qn(z) = p1(z) + c1p2(z).

Next we suppose that Pd 6≡ 0. Then from (3.15) we have

(3.19)
P ′
d

Pd
≡ α′

2 +
p′2
p2
.

Integrating, we get Pd = c3p2e
α2 , where c3 ∈ C \ {0} and so from (3.1) we get

fn +
(

1−
1

c3

)

Pd = p1e
α1 .

If c3 6= 1, then by Lemma 2.9, we have fn = p1e
α1 and Pd ≡ 0, which contradicts

the fact that Pd 6≡ 0. Therefore c3 = 1 and so fn = p1e
α1 and Pd = p2e

α2 6≡ 0. In

this case also, we have f(z) = q(z)eα1(z)/n, where q(z) is a nonzero rational function

such that qn(z) = p1(z). Note that

(3.20) Pd(z, f) =
∑

µ

bµ(z)
Gµ(z, f)

fµ(z)
fµ(z),

where bµ ∈ S(f) and

Gµ(z, f) = (f(z))p
µ
0 (f ′(z))p

µ
1 . . . (f (k)(z))p

µ

k

× (f(z + cµ))
qµ
0 (f ′(z + cµ))

qµ
1 . . . (f (k)(z + cµ))

qµ
k ,

pµ0 , p
µ
1 , . . . , p

µ
k , q

µ
0 , q

µ
1 , . . . , q

µ
k ∈ N ∪ {0} such that

k
∑

j=0

pµj +
k
∑

j=0

qµj = µ 6 d. Now by

Lemmas 2.4 and 2.5, we derive m(r,Gµ(z, f)/f
µ(z)) = S(r, f). Since N(r,∞; f) +

N(r, 0; f) = S(r, f), it follows that T (r,Gµ(z, f)/f
µ(z)) = S(r, f). Therefore (3.20)

takes the form Pd(z, f) = cd(z)f
d(z)+ cd−1(z)f

d−1(z)+ . . .+ c0(z), where cd(z) 6≡ 0

and ci ∈ S(f) for i = 0, 1, 2, . . . , d. Now substituting f(z) = q(z)eα1(z)/n into

Pd(z, f) = p2(z)e
α2(z), we get

(3.21)

d
∑

k=0

a2k(z)e
kα1(z)/n = p2(z)e

α2(z),

where a2k(z) (k = 0, 1, . . . , d) are small functions of f(z).
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Since T (r, f) = T (r, eα1/n) + S(r, f), it follows that a2k(z), k = 0, 1, . . . , d, are

small functions of eα1/n and so a2k(z), k = 0, 1, . . . , d, are small functions of ekα1/n,

where k ∈ {1, 2, . . . , d}. Since p2 6≡ 0, from (3.21) we conclude that there exists at

least one value of k ∈ {0, 1, . . . , d} such that a2k 6≡ 0. We now claim that there exists

exactly one value of k ∈ {0, 1, . . . , d} such that a2k 6≡ 0. If d = 0, then our claim

is true. Next we suppose that d > 1. If possible, suppose that there exist at least

two values of k ∈ {0, 1, . . . , d} such that a2k 6≡ 0. For the sake of simplicity we may

assume that a2k 6≡ 0 for k ∈ {0, 1, 2, . . . , d}. Now by Lemma 2.3 we have

(3.22) T

(

r,

d
∑

k=1

a2ke
kα1/n

)

= dT (r, eα1/n) + S(r, eα1/n).

Also from (3.21) we have

(3.23) N

(

r,−a20;
d

∑

k=1

a2ke
kα1/n

)

= N(r, 0; p2) 6 S(r, eα1/n).

Now from Lemmas 2.2, 2.3, (3.22) and (3.23) we have

dT (r, eα1/n) 6 N

(

r, 0;
d

∑

k=1

a2ke
kα1/n

)

+N

(

r,∞;
d

∑

k=1

a2ke
kα1/n

)

+N

(

r,−a20;

d
∑

k=1

a2ke
kα1/n

)

+ S(r, eα1/n)

6 N

(

r, 0;

d−1
∑

k=0

a2ke
kα1/n

)

+ S(r, eα1/n)

6 T

(

r,

d−1
∑

k=0

a2ke
kα1/n

)

+ S(r, eα1/n)

= (d− 1)T (r, eα1/n) + S(r, eα1/n),

which is impossible. Therefore there exists exactly one value of k ∈ {0, 1, . . . , d} such

that a2k 6≡ 0 and so from (3.21) we conclude that there must exist exactly one value

of k ∈ {0, 1, 2, . . . , d} such that e(kα1−nα2)/n is a small function of f .

Next we suppose that Qd 6≡ 0. Then from (3.14) we have

(3.24)
Q′

d

Qd
≡
A′

1

A1
+ α′

1.

Integrating, we get Qd = c4A1e
α1 , where c4 ∈ C \ {0} and so from (3.3) we get

fn−1(np2f
′ − (p2α

′
2 + p′2)f) ≡

( 1

c4
− 1

)

Qd.
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Let ϕ3 = np2f
′ − (p2α

′
2 + p′2)f . If c4 6= 1, then by Lemma 2.1, we have

m(r, ϕ3) = S(r, f) and m(r, ϕ3f) = S(r, f). Since N(r,∞; f) = S(r, f), it fol-

lows that T (r, ϕ3) = S(r, f) and T (r, ϕ3f) = S(r, f). Note that

T (r, f) 6 T (r, ϕ3f) + T
(

r,
1

ϕ3

)

+ S(r, f) = S(r, f),

which is impossible. Hence c4 = 1 and so ϕ3 ≡ 0. Then we have

n
f ′

f
=
p′2
p2

+ α′
2.

On integration, we get fn = c5p2e
α2 , where c5 ∈ C \ {0}. If c5 6= 1, then from (3.1)

we have
(

1−
1

c5

)

fn + Pd = p1e
α1 .

Now by Lemma 2.9, we conclude that Pd ≡ 0 and so Qd ≡ 0, which contradicts

the fact that Qd 6≡ 0. Hence c5 = 1 and so fn = p2e
α2 . Also from (3.1) we have

Pd = p1e
α1 . In this case we have f(z) = q(z)eα2(z)/n, where q(z) is a nonzero

rational function such that qn(z) = p2(z). Also there must exist exactly one k ∈

{0, 1, 2, . . . , d} such that e(kα2−nα1)/n is a small function of f .

Case 2. Suppose that a 6≡ 0. Then by Lemma 2.1, we can conclude that a is

a small function of f . Now from (3.12) we have

(3.25)
1

f2
=
h21
a

+
h22
a

f ′

f
+
h23
a

(f ′

f

)2

+
h24
a

f ′′

f
.

Therefore from Lemma 2.4 and (3.25) we conclude that m(r, 1/f2) = S(r, f), i.e.,

m(r, 1/f) = S(r, f). Consequently, by the first fundamental theorem, we have

T (r, f) = N(r, 0; f) + S(r, f). This shows that f has infinitely many zeros. Let z2
be a multiple zero of f such that h2i(z2) 6= 0,∞ for i = 1, 2, 3, 4. Then from (3.12)

we conclude that z2 is a zero of a. Therefore N(2(r, 0; f) 6 T (r, a) = S(r, f), i.e.,

N(2(r, 0; f) = S(r, f). Consequently, f has infinitely many simple zeros. Differenti-

ating (3.12) once, we have

(3.26) a′ = h′21f
2 + (2h21 + h′22)ff

′ + (h22 + h′23)(f
′)2 + (h22 + h′24)ff

′′

+ (2h23 + h24)f
′f ′′ + h24ff

′′′.

Now from (3.12) and (3.26) we have

(3.27) (ah′21 − a′h21)f
2 + (2ah21 + ah′22 − a′h22)ff

′ + (ah22 + ah′23 − a′h23)(f
′)2

+ (ah22 + ah′24 − a′h24)ff
′′ + a(2h23 + h24)f

′f ′′ + ah24ff
′′′ ≡ 0.
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Let z3 be a simple zero of f which is not a zero or pole of the coefficients in (3.27).

Now from (3.27) we see that z3 is a zero of (2ah23+ah24)f
′′−(a′h23−ah22−ah

′
23)f

′.

Let

(3.28) α =
(2ah23 + ah24)f

′′ − (a′h23 − ah22 − ah′23)f
′

f
.

SinceN(r,∞; f)+N(2(r, 0; f) = S(r, f), from (3.28) we see thatN(r,∞;α) = S(r, f).

Also by Lemma 2.4, we have m(r, α) = S(r, f) and so T (r, α) = S(r, f). This shows

that α is a small function of f . Therefore from (3.28) we have

(3.29) f ′′ =
a′h23 − ah22 − ah′23

2ah23 + ah24
f ′ +

α

2ah23 + ah24
f.

Now from (3.12) and (3.29) we have

(3.30) a = q1f
2 + q2ff

′ + q3(f
′)2,

where

q1 = h21 −
β

2ah23 + ah24
, q2 = h22 +

a′h23 − ah22 − ah′23
2ah23 + ah24

h24 and q3 = h23

are small functions of f . Also from (3.10) we see that

(3.31)
q2
q3

= −
2

2n− 1
(α′

1 + α′
2)−

3

2n− 1

A′
1

A1
+

1

2n− 1

a′

a
−

1

2n− 1

p′2
p2
.

By Lemma 2.7, we have

(3.32) q3(q
2
2 − 4q1q3)

a′

a
+ q2(q

2
2 − 4q1q3)− q3(q

2
2 − 4q1q3)

′ + (q22 − 4q1q3)q
′
3 ≡ 0.

Let δ = q22 − 4q1q3. Clearly δ is a small function of f . Now we consider the following

two sub-cases.

Sub-case 2.1. Suppose that δ = q22 − 4q1q3 ≡ 0. Then from (3.30) we have

q3

(

f ′ +
q2
2q3

f
)2

= a.

This shows that f ′+q2f/(2q3) is a small function of f . Let b = f ′+q2f/(2q3). Since

a 6≡ 0, it follows that b 6≡ 0. By substituting f ′ = b− q2f/(2q3) into (3.3) and (3.4),

we have, respectively,

(3.33) fn
(

p2α
′
2 + p′2 + np2

q2
2q3

)

− np2bf
n−1 +R1d = A1e

α1

and

(3.34) fn
(

p1α
′
1 + p′1 + np1

q2
2q3

)

− np1bf
n−1 +R2d = −A1e

α2 ,

where R1d = p2P
′
d − (p2α

′
2 + p′2)Pd and R2d = p1P

′
d − (p1α

′
1 + p′1)Pd.

88



Let

γ1 = p2α
′
2 + p′2 + np2

q2
2q3

and γ2 = p1α
′
1 + p′1 + np1

q2
2q3

.

First we suppose that γ1 ≡ 0. Then using (3.31), we get

p′2
p2

+ α′
2 =

n

2n− 1

(

α′
1 + α′

2 +
3

2

A′
1

A1
−

1

2

a′

a
+

1

2

p′2
p2

)

.

Therefore by integrating, we get

(p2e
α2)2n−1 = c6

A
3n/2
1 p

n/2
2

an/2
en(α1+α2),

where c6 ∈ C \ {0}. This shows that e(n−1)α2−nα1 is a small function of f . Next we

suppose that γ2 ≡ 0. Then using (3.31), we get

p′1
p1

+ α′
1 =

n

2n− 1

(

α′
1 + α′

2 +
3

2

A′
1

A1
−

1

2

a′

a
+

1

2

p′2
p2

)

.

Therefore by integrating, we get

(p1e
α1)2n−1 = c7

A
3n/2
1 p

n/2
2

an/2
en(α1+α2),

where c7 ∈ C \ {0}. This shows that e(n−1)α1−nα2 is a small function. Next we

discuss the following four sub-cases.

Sub-case 2.1.1. Suppose that γ1 ≡ 0 and γ2 ≡ 0. Then both e(n−1)α2−nα1 and

e(n−1)α1−nα2 are small functions of f . Clearly eα1+α2 is a small function of f and

so eα2 = ϕ4e
−α1 , where ϕ4 is a small function of f . Now from (3.33) and (3.34) we

have, respectively,

(3.35) −np2bf
n−1 +R1d = A1e

α1

and

(3.36) −np1bf
n−1 +R2d = −A1ϕ4e

−α1 .

Eliminating eα1 and e−α1 , from (3.35) and (3.36) we have

(3.37) f2n−3(n2b2p1p2f) +R3d = −A2
1ϕ4,

where R3d = −np2bR2df
n−1 − np1bR1df

n−1 + R1dR2d is a differential polynomial

in f of degree 6 2n − 3 with small functions as its coefficients. Then by applying

Lemma 2.1, we get from (3.37) that m(r, f) = S(r, f). Since N(r,∞; f) = S(r, f), it

follows that T (r, f) = S(r, f), which is impossible.
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Sub-case 2.1.2. Suppose that γ1 6≡ 0 and γ2 ≡ 0. Since γ2 ≡ 0, we have that

e(n−1)α1−nα2 is a small function of f and so

(3.38) eα2 = ϕ5e
(n−1)α1/n, where ϕ5 ∈ S(f).

Now from (3.33) and Lemma 2.8, there exists a small function v1 of f such that

(3.39) (f + v1)
n =

A1

γ1
eα1 , i.e., f = u1e

α1/n − v1,

where u1 is a nonzero small function of f . Since f has infinitely many zeros, it follows

that v1 6≡ 0. Now from (3.1), (3.38) and (3.39) we have

(u1e
α1/n − v1)

n + Pd = p1e
α1 + c5p2e

(n−1)/nα1 .

Therefore by applying Lemma 2.4, we can conclude that un1 (z) = p1(z).

Sub-case 2.1.3. Suppose that γ1 ≡ 0 and γ2 6≡ 0. Since γ1 ≡ 0, we have that

e(n−1)α2−nα1 is a small function of f and so eα1 = ϕ6e
(n−1)/nα2 , where ϕ6 ∈ S(f).

Now proceeding in the same way as in Sub-case 2.1.2, one can easily conclude that

f = u2e
α2/n − v2, where u2 and v2 are nonzero small functions of f such that

un2 (z) = p2(z).

Sub-case 2.1.4. Suppose that γ1 6≡ 0 and γ2 6≡ 0. Now from (3.33) and (3.34) and

Lemma 2.8, there exist two small functions v3 and v4 of f such that

(f + v3)
n =

A1

γ1
eα1 and (f + v4)

n = −
A1

γ2
eα2 .

From these we have, respectively,

(3.40) f = u3e
α1/n − v3 and f = u4e

α2/n − v4,

where un3 = A1/γ1 6≡ 0 and un4 = −A1/γ2 6≡ 0. Since f has infinitely many zeros, it

follows that v3 6≡ 0 and v4 6≡ 0.

First we suppose that eα1−α2 is a small function of f . Then clearly eα2 = ϕ7e
α1 ,

where ϕ7 ∈ S(f). Now from (3.1) we have

(3.41) fn + Pd = p5e
α1 ,

where p5 = p1 + ϕ7p2. If p5 ≡ 0, then from (3.41) we have fn−1f = −Pd and so by

Lemma 2.1, we conclude that m(r, f) = S(r, f). This shows that T (r, f) = S(r, f),

which is impossible. Next we suppose that p5 6≡ 0. Then by Lemma 2.9, we conclude

that fn = p5e
α1 and Pd ≡ 0. In this case we have f(z) = q(z)eα1/n, where q(z) is

a nonzero small function of f(z) such that qn(z) = p1(z) + ϕ7(z)p2(z).
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Next we suppose that eα1−α2 is not a small function of f . Note that T (r, f) 6

T (r, eα1/n) + S(r, f). Also

T (r, eα1/n) 6 T (r, u3e
α1/n)+S(r, f) 6 T (r, u3e

α1/n−v3)+S(r, f) = T (r, f)+S(r, f).

Combining these, we get T (r, f) = T (r, u3e
α1/n) + S(r, f). Similarly, we have

T (r, f) = T (r, u4e
α2/n) + S(r, f). These show that S(r, f) = S(r, u3e

α1/n) =

S(r, u4e
α2/n). Clearly u3, u4, v3 and v4 are small functions of both eα1/n and

eα2/n. On the other hand, from (3.40) we have

(3.42) u3e
α1/n − u4e

α2/n = v3 − v4.

We claim that v3 ≡ v4. If not, suppose that v3 6≡ v4. Now by Lemma 2.2, we get

T (r, f) = T (r, u3e
α1/n) + S(r, f) 6 N(r, 0;u3e

α1/n) +N(r,∞;u3e
α1/n)

+N(r, v3 − v4;u3e
α1/n) + S(r, u3e

α1/n) + S(r, f)

= S(r, f),

which is a contradiction. Hence, v3 ≡ v4 and so from (3.42) we have

u3e
α1/n ≡ u4e

α2/n.

This shows that e(α1−α2)/n = u4/u3 and so eα1−α2 = (u4/u3)
n. Consequently,

eα1−α2 is a small function of f , which contradicts our assumption.

Sub-case 2.2. Suppose that δ = q22 − 4q1q3 6≡ 0. Then from (3.32) we have

q2
q3

≡
δ′

δ
−
q′3
q3

−
a′

a
.

Therefore from (3.10) and (3.31) we have

2(α′
1 + α′

2) ≡ (2n− 4)
A′

1

A1
+ (2n− 2)

a′

a
+ (2n− 2)

p′2
p2

− (2n− 1)
δ′

δ
.

Integrating, we get

e2(α1+α2) = c8
A2n−4

1 a2n−2p2n−2
2

δ2n−1
,

where c8 ∈ C. This shows that eα1+α2 is a small function of f and so eα2 = ϕ8e
−α1 ,

where ϕ8 ∈ S(f). Now from (3.3) and (3.4), we have, respectively,

(3.43) fn−1(np2f
′ − (p2α

′
2 + p′2)f) +R1d = A1e

α1

and

(3.44) fn−1(np1f
′ − (p1α

′
1 + p′1)f) +R2d = −ϕ8A1e

−α1 .
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Eliminating eα1 and e−α1 , from (3.43) and (3.44) we have

(3.45) f2n−2(np2f
′ − (p2α

′
2 + p′2)f)(np1f

′ − (p1α
′
1 + p′1)f) +Q∗

d = −ϕ8A
2
1,

where

Q∗
d = fn−1(np2f

′ − (p2α
′
2 + p′2)f)R2d + fn−1(np1f

′ − (p1α
′
1 + p′1)f)R1d +R1dR2d

is a differential polynomial in f of degree 6 2n − 2 with small functions of f as

its coefficients. Now by Lemma 2.1, we conclude that ((p1α
′
1 + p′1)f − np1f

′)×

((p2α
′
2 + p′2)f − np2f

′) = b11, where b11 is a small function of f . If b11 ≡ 0, then we

have either (p1α
′
1+p

′
1)f−np1f

′ ≡ 0 or (p2α
′
2+p

′
2)f−np2f

′ ≡ 0. Thus, in either case

one can easily conclude that N(r, 0; f) = S(r, f), which is impossible here. Hence

b11 6≡ 0. Therefore we can assume that

(3.46) (p2α
′
2 + p′2)f − np2f

′ = b1e
γ and (p1α

′
1 + p′1)f − np1f

′ = b2e
−γ ,

where b1, b2 are small functions of f such that b1b2 = b11 and γ is an entire function.

Since f is of finite order, it follows that γ is a polynomial.

First we suppose that γ is a constant. Then from (3.46) we have

f ′ =
1

n

(

α′
2 +

p′2
p2

)

f −
b1e

γ

np2
and f ′ =

1

n

(

α′
1 +

p′1
p1

)

f −
b2e

−γ

np1
.

These imply that

(3.47)
(

α′
1 − α′

2 +
p′1
p1

−
p′2
p2

)

f =
b2e

−γ

p1
−
b1e

γ

p2
.

If α′
1−α

′
2+p

′
1/p1−p

′
2/p2 ≡ 0, then by integration, we have eα1−α2 = c9p2/p1, where

c9 ∈ C \ {0} and so α1 − α2 is a constant. Since e
α2 = ϕ8e

−α1 , it follows that eα2 is

a small function of f . Certainly eα1 is also a small function of f . Now from (3.1) and

Lemma 2.1, we conclude that m(r, f) = S(r, f) and so T (r, f) = S(r, f), which is

impossible here. Therefore α′
1 −α′

2 + p′1/p1 − p′2/p2 6≡ 0. Now from (3.47), it follows

that f is a small function of f , which is absurd.

Next we suppose that γ is a non-constant polynomial. Now solving for f , we get

from (3.46) that

(3.48) (p1p2(α
′
2 − α′

1) + p1p
′
2 − p′1p2)f = p1b1e

γ − p2b2e
−γ .

Using a similar argument, one can easily prove that p1p2(α
′
2−α

′
1)+p1p

′
2−p

′
1p2 6≡ 0.

Now from (3.48) we get f(z) = δ1(z)e
γ(z) + δ2(z)e

−γ(z), where

δ1 =
p1b1

p1p′2 − p′1p2 − p1p2(α′
1 − α′

2)
and δ2 =

−p2b2
p1p′2 − p′1p2 − p1p2(α′

1 − α′
2)
.
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Equation (3.46) can be rewritten as

(3.49) A2f − np2f
′ = b1e

γ ,

where A2 = p2α
′
2 + p′2. Differentiating (3.49) once, we get

(3.50) A′
2f + (A2 − np′2)f

′ − np2f
′′ = (b′1 + b1γ

′)eγ .

Using (3.29), we get from (3.50) that

(3.51)
(

A′
2 − n

p2α

2ah23 + ah24

)

f +
(

A2 − np′2 − n
a′h23 − ah22 − ah′23

2ah23 + ah24
p2

)

f ′ = (b′1 + b1γ
′)eγ .

Now from (3.10) and (3.51) we get

(3.52)
(

A′
2 −

1

2n− 1

α

aA1

)

f +
(

A2 − np′2 −
1

2n− 1
(α′

1 + α′
2)p2

−
n(n− 1)

2n− 1

a′

a
p2 +

n(n− 1)

2n− 1
p′2 +

n(n− 1)

2n− 1

A′
1

A1
p2

)

f ′ = (b′1 + b1γ
′)eγ .

Dividing (3.52) by (3.49), we get

(3.53) ζ1f + ζ2f
′ ≡ 0,

where

ζ1 = A′
2 −

1

2n− 1

α

A1
−A2

(b′1
b1

+ γ′
)

and

ζ2 = A2 − np′2 −
1

2n− 1
(α′

1 + α′
2)p2 −

n(n− 1)

2n− 1

a′

a
p2

+
n(n− 1)

2n− 1
p′2 +

n(n− 1)

2n− 1

A′
1

A1
p2 + n

(b′1
b1

+ γ′
)

p2.

Since ff ′ 6≡ 0, it follows from (3.53) that either ζ1 6≡ 0 and ζ2 6≡ 0 or ζ1 ≡ 0 and

ζ2 ≡ 0. First we suppose that ζ1 6≡ 0 and ζ2 6≡ 0. Then from (3.53), one can easily

conclude that N(r, 0; f) = S(r, f), which is a contradiction. Next we suppose that

ζ1 ≡ 0 and ζ2 ≡ 0. Now ζ2 ≡ 0 yields

α′
2 −

(n− 1)2

2n− 1

p′2
p2

−
1

2n− 1
(α′

1 + α′
2)−

n(n− 1)

2n− 1

a′

a
−
n(n− 1)

2n− 1

A′
1

A1
+ n

b′1
b1

+ nγ′ ≡ 0,

which implies that e(2n−1)(nγ+α2) = c10p
(n−1)2

2 eα1+α2(aA1)
n(n−1)b−n

1 , where c10 ∈

C\{0}. Consequently, enγ+α2 is a small function of f . Therefore f(z) = δ1(z)e
γ(z)+

δ2(z)e
−γ(z) and eα1(z)+α2(z) is a small function of f(z), where δ1(z), δ2(z) are nonzero

small functions of f(z) and γ(z) is a non-constant polynomial such that either

enγ(z)+α2(z) is a small function of f(z) or enγ(z)+α1(z) is a small function of f(z). �

93



4. An open problem

For further study, one may raise the following question as an open problem:

O p e n P r o b l e m. What will happen if we remove the condition ̺2(f) < 1 from

Theorem 1.1?

References

[1] R.Halburd, R.Korhonen, K.Tohge: Holomorphic curves with shift-invariant hyperplane
preimages. Trans. Am. Math. Soc. 366 (2014), 4267–4298. zbl MR doi

[2] W.K.Hayman: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon
Press, Oxford, 1964. zbl MR

[3] J.Heittokangas, R.Korhonen, I. Laine: On meromorphic solutions of certain nonlinear
differential equations. Bull. Aust. Math. Soc. 66 (2002), 331–343. zbl MR doi

[4] I. Laine: Nevanlinna Theory and Complex Differential Equations. de Gruyter Studies in
Mathematics 15. Walter de Gruyter, Berlin, 1993. zbl MR doi

[5] P.Li: Entire solutions of certain type of differential equations. II. J. Math. Anal. Appl.
375 (2011), 310–319. zbl MR doi

[6] P.Li, C.-C.Yang: On the nonexistence of entire solutions of certain type of nonlinear
differential equations. J. Math. Anal. Appl. 320 (2006), 827–835. zbl MR doi

[7] L.-W.Liao, C.-C.Yang, J.-J. Zhang: On meromorphic solutions of certain type of non-
linear differential equations. Ann. Acad. Sci. Fenn., Math. 38 (2013), 581–593. zbl MR doi

[8] W.Lü, L.Wu, D.Wang, C.-C.Yang: The existence of solutions of certain type of non-
linear difference-differential equations. Open Math. 16 (2018), 806–815. zbl MR doi

[9] C.-C.Yang: On deficiencies of differential polynomials. II. Math. Z. 125 (1972), 107–112. zbl MR doi
[0] C.-C.Yang, P. Li: On the transcendental solutions of a certain type of nonlinear differ-
ential equations. Arch. Math. 82 (2004), 442–448. zbl MR doi

[11] C.-C.Yang, H.-X.Yi: Uniqueness Theory of Meromorphic Functions. Mathematics and
its Applications (Dordrecht) 557. Kluwer Academic, Dordrecht, 2003. zbl MR doi

Authors’ addresses: Sujoy Majumder, Department of Mathematics, Raiganj University,
Raiganj, West Bengal-733134, India, e-mail: sm05math@gmail.com, Lata Mahato, Depart-
ment of Mathematics, Mahadevananda Mahavidyalaya, SN Banerjee Rd., Monirampore,
Kolkata, West Bengal-700120, India, e-mail: himangshulata@gmail.com.

94

https://zbmath.org/?q=an:1298.32012
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3206459
http://dx.doi.org/10.1090/S0002-9947-2014-05949-7
https://zbmath.org/?q=an:0115.06203
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0164038
https://zbmath.org/?q=an:1047.34101
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1932356
http://dx.doi.org/10.1017/S000497270004017X
https://zbmath.org/?q=an:0784.30002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1207139
http://dx.doi.org/10.1515/9783110863147
https://zbmath.org/?q=an:1206.30046
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2735715
http://dx.doi.org/10.1016/j.jmaa.2010.09.026
https://zbmath.org/?q=an:1100.34066
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2225998
http://dx.doi.org/10.1016/j.jmaa.2005.07.066
https://zbmath.org/?q=an:1303.30029
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3113096
http://dx.doi.org/10.5186/aasfm.2013.3840
https://zbmath.org/?q=an:1412.34239
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3830193
http://dx.doi.org/10.1515/math-2018-0071
https://zbmath.org/?q=an:0217.38402
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0294642
http://dx.doi.org/10.1007/BF01110921
https://zbmath.org/?q=an:1052.34083
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2061450
http://dx.doi.org/10.1007/s00013-003-4796-8
https://zbmath.org/?q=an:1070.30011
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2105668
http://dx.doi.org/10.1007/978-94-017-3626-8

