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K Y B E R N E T I K A — V O L U M E 5 8 ( 2 0 2 2 ) , N U M B E R 6 , P A G E S 8 6 3 – 8 8 2

A PRINCIPAL TOPOLOGY OBTAINED FROM UNINORMS

Funda Karaçal and Tuncay Köroğlu

We obtain a principal topology and some related results. We also give some hints of possible
applications. Some mathematical systems are both lattice and topological space. We show that
a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see
that these topologies satisfy the condition of the principal topology. These topologies can not
be metrizable except for the discrete metric case. We show an equivalence relation on the class
of uninorms on a bounded lattice based on equality of the topologies induced by uninorms.
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Classification: 03E72, 03B52, 06B30, 06F30, 08A72, 54A10

1. INTRODUCTION

Uninorms on the real unit interval [0, 1] have been studied by Yager and Rybalov [29].
These uninorms are the important aggregation operators which have interesting struc-
tures that generalize the notions of t-norms and t-conorms [7, 31], with more appli-
cations such as fuzzy logic, expert systems, neural networks, fuzzy system modelling
[6, 10, 12, 20, 30]. The generalized problem of logical operators on the real unit inter-
val [0, 1] for a complete lattice has been an attractive problem for many researchers
[9, 13,16,18,32,33].

Principal spaces were first studied by Alexandroff [1]. It is a topological space in
which an arbitrary intersection of open sets is open. Equivalently, each singletion has a
minimal neighbourhood base. Principal spaces have important attentions in digital
topology [21, 26]. By using the properties of finite spaces, they play an important
role in image analysis and computer graphics [19, 22, 23]. Moreover, researchers focus
on generating methods for new principal topologies by means of triangular norms and
uninorms [13,15].

This paper is organized as follows. In Section 2, we shortly recall some basic notions
and results. We introduce a principal topology induced a uninorm in Section 3. We
also show in this section that the uninorm is continuous and closed on a bounded lattice
equipped with this topology. The preorder, denoted by �U , induced by this principal
topology obtained from uninorms on a bounded lattice has been introduced. Further-
more, we obtain the order induced by t-norms (or t-conorms) on a bounded lattice. We
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introduce an equivalence on the class of uninorms on a bounded lattice based on the
equality of the principal topologies induced by uninorms. We determine some relation-
ships between the principal topologies induced by t-norms and their N−dual t−conorms.
The last section is devoted to an application to the principal topological structure in
dynamic Kripke frames. Also, principal topologies with uncountable cardinality of the
same form uninorms on unit interval is obtained in this section.

2. PRELIMINARIES

Definition 1. (Birkhoff [5]) A lattice (L,6) is bounded if L have top and bottom
elements, which are denoted as 1 and 0, respectively, that is, there exists two elements
1, 0 ∈ L such that 0 6 x 6 1, for all x ∈ L.

Definition 2. (Karaçal and Mesiar [16]) Let (L,6, 0, 1) be a bounded lattice. An
operation U : L2 → L is called a uninorm on L, if it is commutative, associative,
increasing with respect to the both variables and has a neutral element e ∈ L.

Definition 3. (Aşıcı and Karaçal [3] and Ma and Wu [25]) An operation T (S) on a
bounded lattice L is called a triangular norm (triangular conorm) if it is commutative,
associative, increasing with respect to the both variables and has a neutral element 1 (0).

Recall that, a uninorm U possessing a neutral element e = 1 is, in fact, a triangular
norm. Similarly, a uninorm U with a neutral element e = 0 is, in fact, a triangular
conorm.

Definition 4. (Baczyński and Jayaram [4]) Let (L,6, 0, 1) be a bounded lattice. A
decreasing operation N : L → L is called a negation if N(0) = 1 and N(1) = 0. A
negation N on L is called strong if it is an involution, i. e., N(N(x)) = x, for all x ∈ L.

Definition 5. (Baczyński and Jayaram [4]) Let T be a t-norm on a bounded lat-
tice L and N be a strong negation on L. The t-conorm S is defined by S(x, y) =
N(T (N(x), N(y)) for all x, y ∈ L is called the N−dual t-conorm to T on L.

Definition 6. (Baczyński and Jayaram [4]) If T is a t-norm on the unit interval [0, 1]
and φ : [0, 1] → [0, 1] is an order-preserving bijection, then the operation Tφ : [0, 1]2 →
[0, 1] given by Tφ(x, y) = φ−1(T (φ(x), φ(y)) is also a t-norm. This t-norm is called
φ−conjugate of T.

The φ−conjugate of any t-norm (or t-conorm) on a bounded lattice is defined as
Definition 6.

Definition 7. (Kelley [17]) A topology on a set X is a collection τ of subsets of X
such that;

1. ∅, X ∈ τ ,

2. The union of elements of any sub collection of τ is in τ ,

3. The intersection of the elements of any finite sub collection of τ is in τ .
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A set X together with a topology τ ⊆ ℘(X) is called a topological space (X, τ) and the
set G ∈ τ is called open set of (X, τ). Here, ℘(X) denote the power set of X.

Definition 8. (Kelley [17]) A subset F of X of a topological space (X, τ) is called
closed if X \ F is open.

Definition 9. (Arenas [2]) Let X be a topological space. Then X is a principal space
(or Alexandroff space) if the intersection of arbitrary open sets is open.

Definition 10. (Kelley [17]) Let f : (X, τX) → (Y, τY ) be a function between the
topological spaces X and Y. The map f is called continuous if the preimage of every
open subset of Y is open in X.

Definition 11. (Kelley [17]) Let X and Y be topological spaces. A map f : X → Y
is called an open map if the image f(U) ⊆ Y is open for every open set U ⊆ X.
Furthermore, f is said to be a closed map if the image f(F ) ⊆ Y is closed for every
closed set F ⊆ X.

Proposition 1. (Kelley [17]) Let X and Y be topological spaces. A map f : X → Y
is closed if and only if f(A) ⊆ f(A) for every set A ⊆ X.

Definition 12. (Kelley [17]) Let X be a topological space. X is called T0 − space if
for each of points x 6= y ∈ X, there is a neighborhood of x, Ux such that y /∈ Ux.

Proposition 2. (Kelley [17]) Let X be a topological space. Then, X is a T0− space if
and only if either x /∈ {y} or y /∈ {x} for all x, y ∈ X such that x 6= y.

Definition 13. (Kelley [17]) A closure operator on X is an operator which assings to
each subset A of X a subset C(A) of X such that the following four statements so-called
the Kuratowski closure axioms, are true.

C1. C(∅) = ∅,

C2. A ⊆ C(A) for all A ⊆ X,

C3. C(C(A)) = C(A) for all A ⊆ X,

C4. C(A ∪B) = C(A) ∪ C(B) for all A,B ⊆ X.

The following theorem of Kuratowski shows that these four statements are actually
characteristic of closure. The topology defined below is the topology associated with a
closure operator.

Theorem 3. (Kelley [17]) Let C be a topological closure operator on X, Let F be the
family of all subsets A of X for which C(A) = A, and let T be the family of complements
of members of F. That is, T = {Ac : A ∈ F}. Then T is a topology for X, and C(A) is
the TC-closure of A for each subset A of X.
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3. PRINCIPAL TOPOLOGY GENERATED BY UNINORMS

Proposition 4. Let L be a bounded lattice and U be a uninorm on L with the neutral
element e . Let A be a subset of L such that e ∈ A and U(A,A) ⊆ A. Then the operator
CU,A : ℘(L) → ℘(L) defined for all X ∈ ℘(L) by CU,A(X) := U(X,A) is a topological
closure operator on L.

Throughout this paper, the operator CU,A is just denoted by the letter C unless otherwise
stated. P r o o f . Let X,Y be subsets of L.

C1: C(∅) = U(∅, A) = ∅.

C2: x = U(x, 1) ∈ X = {U(x, 1) : x ∈ X} ⊆ {U(x, a) : x ∈ X, a ∈ A} = C(X) for all
x ∈ X.

C3:

C(C(X)) = U(C(X), A) = U(U(X,A), A) (by def. C)

= U(U(X,A), A) ( by uninorm properties)

= U(X,U(A,A)) ( by uninorm properties)

= U(X,A) = C(X).

C4: We verify the statement X ⊆ Y ⇒ C(X) ⊆ C(Y ). This is clear, because of
C(X) = U(X,A) = {U(x, a) : x ∈ X, a ∈ A} ⊆ {U(y, a) : y ∈ Y, a ∈ A} =
U(Y,A) = C(Y ). Now we show that C4 is valid. X ⊆ X ∪ Y and Y ⊆ X ∪ Y
imply C(X) ⊆ C(X ∪Y ) and C(Y ) ⊆ C(X ∪Y ). Then, C(X)∪C(Y ) ⊆ C(X ∪Y )
is true. On the other hand, C(X∪Y ) ⊆ C(X)∪C(Y ) is clear from the elementary
mathematics. Hence, C(X ∪ Y ) = C(X) ∪ C(Y ) is obtained.

�

Definition 14. A subset X of L is called a closed subset if C(X) = X. The family of
all closed subsets of L is denoted by FC = {C(X) : X ⊆ L}.

Proposition 5. Let C(X) be the closure of X ⊆ L. Then, TC = {L\C(X) : X ∈ ℘(L)}
is a topology on L.

P r o o f . The proof follows from Proposition 4 and Theorem 3. �

Proposition 6. The family FC satisfies arbitrary intersection property, i. e.

C

(⋂
λ∈I

Xλ

)
=
⋂
λ∈I

(Xλ)

for arbitrary subfamily {Xλ : λ ∈ I} of FC .
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P r o o f . Since Xλ ∈ FC for all λ ∈ I, we have C(Xλ) = Xλ. Then, by C4 we get,

⋂
λ∈I

C(Xλ) =
⋂
λ∈I

Xλ ⊆ C

(⋂
λ∈I

Xλ

)
.

On the other hand, since
⋂
λ∈I Xλ ⊆ Xλ and Xλ ∈ FC for all λ ∈ I, by C4 we get ,

C

(⋂
λ∈I

Xλ

)
⊆
⋂
λ∈I

C(Xλ).

Therefore we have,

C

(⋂
λ∈I

Xλ

)
=
⋂
λ∈I

C(Xλ) =
⋂
λ∈I

Xλ

and this completes the proof. �

Proposition 7. Let L be a bounded lattice and U be a uninorm on L with the neutral
element e . Let A be a subset of L such that e ∈ A and U(A,A) ⊆ A. Then, (L,TC) is
a principal topological space.

P r o o f . From Proposition 5, TC is a topology, so it is sufficient to show the arbitrary
intersection property. Let {Gλ : λ ∈ I} be an arbitrary subfamily of the topology TC .
Then we have,

C

(
(
⋂
λ∈I

Gλ)c

)
= C

(⋃
λ∈I

(Gλ)c

)
(by De-Morgan rule)

= U

(⋃
λ∈I

(Gλ)c, A

)
(by def. C)

=
⋃
λ∈I

{U((Gλ)c, A)} (by set theory)

=
⋃
λ∈I

C ((Gλ)c) (by def. C)

=
⋃
λ∈I

(Gλ)c =

(⋂
λ∈I

(Gλ)

)c
∈ FC (Gλ ∈ TC and De-Morgan rule)

It follows that in a principal space L, for each point x, there is a smallest neighbour-
hood which is contained in each other neighbourhood of x. For each x ∈ L,⋂

{V : V is an open set containing x}

is the smallest open set containing x since L is a principal space. �
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Proposition 8. Let U be a uninorm with the neutral element e on a bounded lattice
L and a subset A of L such that U(A,A) ⊆ A, e ∈ A. Then, the set A is closed (i. e.,
A ∈ FC).

P r o o f . C({e}) = U({e}, A) = {U(e, a) : a ∈ A} = A �

Theorem 9. Let U be a uninorm with the neutral element e on a bounded lattice L and
a subset A of L such that U(A,A) ⊆ A, e ∈ A. The following statements are equivalent
for the TC topology.

(i) {x} ∈ FC for all x ∈ L.

(ii) {e} ∈ FC .

(iii) A = {e}

(iv) TC is metrizable with discrete metric.

P r o o f . (i)⇒ (ii) : Trivial.
(ii)⇒ (iii) : Since, {e} ∈ FC then, {e} = C({e}) = U({e}, A) = {U(e, a) : a ∈ A} = A.
(iii) ⇒ (iv) : Let A = {e}. For all x ∈ L, we obtain that C({x}) = {U(x, e)} = {x}.
Hence {x} ∈ FC . Therefore TC is metrizable with discrete metric.
(iv) ⇒ (i) : We suppose that TC is metrizable with discrete metric. Then, the set {x}
is closed for all x ∈ L. That is {x} ∈ FC for all x ∈ L. �

Remark 1. The Euclid topology on the real unit interval can not be generated by any
uninorm and any special subset with this method.

Definition 15. Let U be a uninorm with the neutral element e on a bounded lattice L
and a subset A of L such that U(A,A) ⊆ A, e ∈ A. The preorder x �U y ⇔ x ∈ C({y})
is called a U -preorder for U.

Remark 2. Let L = [0, 1] be the real unit interval and U = Umin,max be a uninorm on
L with the neutral element e, where Umin,max is defined by,

Umin,max :=

{
min(x, y) max(x, y) ≤ e
max(x, y) otherwise.

Let be x < y < e and A = [e, 1]. Then,

C({x}) = {U(x, a) : a ∈ [e, 1]} (by def. of C)

= {max(x, a) : a ∈ [e, 1]} (by def. of U)

= {a : a ∈ [e, 1]} = A,

and similarly,

C({y}) = {U(y, a) : a ∈ [e, 1]} (by def. of C)

= {max(y, a) : a ∈ [e, 1]} (by def. of U)

= {a : a ∈ [e, 1]} = A.

Hence, C({x}) = C({y}) is obtained although x 6= y. Then the topology TC may not
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be T0− space. If we considering the relation x �U y ⇔ x ∈ C({y}) on L, we understand
that (L,�U ) is a pre order. Because it satisfies reflexive and transitive properties.

We conclude from Remark 2 that (L,�U ) may not be a partial order on L. The
following example illustrates this case.

1

d

a

e

b

0

Fig. 1: A lattice correspond to L = {0, a, b, e, d, 1}.

U 0 a b e d 1
0 0 0 0 0 d 1
a 0 0 0 a d 1
b 0 0 0 b d 1
e 0 a b e d 1
d d d d d 1 1
1 1 1 1 1 1 1

Tab. 1: The Uninorm U on L.

Example 1. We consider the bounded lattice L in Figure 1 and the uninorm U in Table
1. Let A = {e, 1} ⊆ L.

CU,A({0}) = {U(0, e), U(0, 1)} = {0, 1}

CU,A({a}) = {U(a, e), U(a, 1)} = {a, 1}

CU,A({b}) = {U(b, e), U(b, 1)} = {b, 1}

CU,A({1}) = {U(1, e), U(1, 1)} = {1}

CU,A({e}) = {U(e, e), U(e, 1)} = {e, 1}
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CU,A({d}) = {U(d, e), U(d, 1)} = {d, 1}
CU,A({a, b}) = {U(a, e), U(a, 1), U(b, e), U(b, 1)} = {a, b, 1}

It is seen that CU,A(X) = X ∪ {1}, for the subset X of L and the topology generated
by U and A is written as,

τ = {Xc ∩ {0, a, b, d, e} : X ⊆ L}.

Then, the uniqe open set including the element 1 is the set L. Also we can consider the
preorder

�U= {(0, 0), (1, 0), (b, b), (1, b), (e, e), (1, e), (d, d), (1, d), (a, a), (1, a)}

defined as in Definition 15. The hasse diagram of this preorder can be shown as Figure 2.

1

0 a b d e

Fig. 2: The preorder of (L,�U ).

Proposition 10. If U is a t-norm (or t-conorm) on a bounded lattice L and a subset
A of L such that U(A,A) ⊆ A, e ∈ A, then �U is an order.

P r o o f . Let U be a t-norm on a bounded lattice L. We suppose x �U y and y �U x for
x, y ∈ L. Then, x ∈ CU,A({y}) and y ∈ CU,A({x}) are valid. Then, there exist elements
a1, a2 ∈ A such that x = U(y, a1) and y = U(x, a2). Further, since U is a t-norm we
have x = U(y, a1) ≤ y∧a1 ≤ y and y = U(x, a2) ≤ x∧a2 ≤ x. From these we get x = y.

�

Corollary 11. If U is a t-norm (or t-conorm) on a bounded lattice L and a subset A
of L such that U(A,A) ⊆ A, 1 ∈ A (or 0 ∈ A), then the topological space (L,TU,A) is a
T0−space.

Proposition 12. Let T be a t-norm on bounded lattice L, N be a strong negation on L
and S be a N−dual t-conorm to T on L. Then following stetements are true for A ⊆ L.

(i) T (A,A) ⊆ A and 1 ∈ A iff S(N(A), N(A)) ⊆ N(A) and 0 ∈ N(A).

(ii) The spaces (L,TT,A) and (L,TS,N(A)) are homeomorphic.

P r o o f . (i) Let, T (A,A) ⊆ A and 1 ∈ A. It is clear 0 ∈ N(A). Then, we have
S(N(A), N(A)) = N(T (A,A)) ⊆ N(A). The converse is similar.

(ii) N : L→ L is the desired homeomorphism. Because x �T,A y ⇐⇒ N(x) �S,N(A)

N(y) is satisfied. Indeed, if x �T,A y then, there exists an element a ∈ A such that
x = T (y, a), N(x) = N(T (y, a)) = N(T (N(N(y)), N(N(a))) = S(N(y), N(a)). Hence,
we have N(x) �S,N(A) N(y). The converse is similar. �
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Proposition 13. Let T be a t-norm on bounded lattice L, N be a strong negation on
L and S be a N−dual t-conorm to T on L. Then following statements are equivalent.

(i) N is increasing with respect to �T,A .

(ii) TT,A is a discrete topology.

(iii) TS,N(A) is a discrete topology.

(iv) �T,A=�S,N(A) .

P r o o f . (i)⇒ (ii) : Suppose that A 6= {1}. Then, there exists an element a′ ∈ A such
that a′ 6= 1. By CT,A({1}) = A, we have a′ �T,A 1. Since N is increasing with respect to
�T,A, we have N(a′) �T,A N(1) = 0. Hence, we obtain N(a′) = T (0, a′) = 0 and a′ = 1.
Thus A = {1}. By Theorem 9, we obtain TC,T is a discrete topology.

(ii)⇒ (iii) : Since CT,A({x}) = {x} for all x ∈ L, we have the following equalities,

CS,N(A)({x}) = {S(x,N(a)) : a ∈ A}
= {N(T (N(x), a)) : a ∈ A}
= {N(N(x))}
= {x} .

Thus, by considering CT,A(X) = X for all X ⊆ L, we get:

CS,N(A)(X) = S(X,N(A))

= S

( ⋃
x∈X
{x} , N(A)

)
=
⋃
x∈X

S({x} , N(A))

=
⋃
x∈X

CS,N(A)({x})

=
⋃
x∈X
{x} = X.

(iii) ⇒ (iv) : Let TS,N(A) be a discrete topology. Then, both of �T,A and �S,N(A)

are the equality relations. Hence, �T,A=�S,N(A) .
(iv) ⇒ (i) : Let �T,A=�S,N(A) . Then, by the proof of Proposition 12 (ii), x �T,A

y ⇐⇒ N(x) �S,N(A) N(y). Finally, we have x �T,A y ⇐⇒ N(x) �S,N(A) N(y) ⇐⇒
N(x) �T,A N(y). �

The proof of following proposition can be easily obtained.

Proposition 14. Let T be a t-norm on a lattice L and φ be an order preserving bijection
and T (A,A) ⊆ A and 1 ∈ A then,

(i) Tφ(φ−1(A), φ−1(A)) ⊆ φ−1(A) and 1 ∈ φ−1(A),
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(ii) φ is order preserving with respect to �T,A ⇐⇒ φ is an order preserving with
respect to �Tφ,φ−1(A),

(iii) φ−1 is an order preserving with respect to �T,A ⇐⇒ φ−1 is an order preserving
with respect to �TTφ,φ−1(A)

.

P r o o f . (i) The proof is clear.
(ii)(⇒:)Let φ be order preserving with respect to �T,A and x �Tφ,φ−1(A) y for all

x, y ∈ L. We must show that φ(x) �Tφ,φ−1(A) φ(y). Then, there exist x1, y1 ∈ L such

that x = φ−1(x1) and y = φ−1(y1). Therefore, we get the following equalities:

φ−1(x1) �Tφ,φ−1(A) φ
−1(y1)⇒ φ−1(x1) = Tφ(φ−1(y1), φ−1(a)) for some a ∈ A

⇒ φ−1(x1) = φ−1(T (φ(φ−1(y1)), φ(φ−1(a)))

⇒ φ−1(x1) = φ−1(T (y1, a))

⇒ x1 = T (y1, a)

⇒ x1 �T,A y1
⇒ φ(x1) �T,A φ(y1)

⇒ φ(x1) = T (φ(y1), a′) for some a′ ∈ A
⇒ x1 = φ−1(T (φ(y1), a′)) = Tφ(y1, φ

−1(a′))

⇒ x1 �Tφ,φ−1(A) y1

⇒ φ(x) �Tφ,φ−1(A) φ(y).

(⇐:)
Let φ be order preserving with respect to �Tφ,φ−1(A) and x �T,A y for x, y ∈ L. Then,

there exist x1, y1 ∈ L such that x = φ(x1) and y = φ(y1). Thus, we get the following
equalities:

φ(x1) �T,A φ(y1)⇒ φ(x1) = T (a1, φ(y1)) for some a1 ∈ A
⇒ x1 = φ−1(T (a1, φ(y1))) = Tφ(φ−1(a1), y1)

⇒ x1 �Tφ,φ−1(A) y1

⇒ φ−1(x) �Tφ,φ−1(A) φ
−1(y)

⇒ φ(φ−1(x)) �Tφ,φ−1(A) φ(φ−1(y))

⇒ x �Tφ,φ−1(A) y

⇒ x = Tφ(y, φ−1(a)) for some a ∈ A
V x = φ−1(T (φ(y), a))

⇒ φ(x) = T (φ(y), a)

⇒ φ(x) �T,A φ(y).

(iii) The proof is similar to the proof of (ii). �
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Proposition 15. Let T be a t-norm on lattice L and φ be an order preserving bijection.
If T (A,A) ⊆ A and 1 ∈ A then, the following statements are equivalent:

(i) TT,A = TTφ,φ−1(A).

(ii) For x, y ∈ L, x �T,A y ⇐⇒ φ(x) �T,A φ(y).

P r o o f . (i)⇒(ii): Let x �T y for some x, y ∈ L. Then, it is obtained that x ∈
CT,A({y}) = CTφ,φ−1(A)

({y}). Hence, for some φ−1(a) ∈ φ−1(A) we get,

x = Tφ(y, φ−1(a)) = φ−1(T (φ(y), φ(φ−1(a))) = φ−1(T (φ(y), a)).

Then, we have for some a ∈ A, φ(x) = T (φ(y), a). Thus, φ(x) �T,A φ(y).
(ii)⇒(i): For any x ∈ CT,A({y}) we have,

x = T (y, a) ⇐⇒ x �T,A y
⇐⇒ φ(x) �T,A φ(y)

⇐⇒ φ(x) = T (φ(y), a′) for some a′ ∈ A
⇐⇒ x = φ−1(T (φ(y), φ(φ−1(a))) = Tφ(y, φ−1(a)), for some φ−1(a) ∈ φ−1(A)

⇐⇒ x ∈ CTφ,φ−1(A)
({y}).

�

Proposition 16. Let T be a t-norm on a bounded lattice L, S be its N−dual t-conorm
and let φ : L→ L be an order-preserving bijection. Then,

TT,A = TTφ,φ−1(A) ⇐⇒ TS,N(A) = TSψ,ψ−1(N(A)),

where ψ = N ◦ φ ◦N.

P r o o f . Let TT,A = TTφ,φ−1(A). By Proposition 14 and Proposition 15 for any a, b ∈ L,
a �T,A b iff φ(a) �T,A φ(b). Now, let us prove that TSψ,ψ−1(N(A)). For any x, y ∈ L, the
following equivalences are hold:

x ∈ CS,N(A)({y}) ⇐⇒ x = S(y,N(a)) for some N(a) ∈ N(A)

⇐⇒ x = N(T (N(y), N(N(a)))

⇐⇒ N(x) = T (N(y), a)

⇐⇒ N(x) �T,A N(y)

⇐⇒ φ(N(x)) �T,A φ(N(y))

⇐⇒ N(φ(N(x))) �S,N(A) N(φ(N(y)))

⇐⇒ (N ◦ φ ◦ N)(x) �S,N(A) (N ◦ φ ◦ N)(y)

⇐⇒ ψ(x) �S,N(A) ψ(y)

⇐⇒ ψ(x) = S(ψ(y), N(a′)), for some N(a′) ∈ N(A)

⇐⇒ x = ψ−1(S(ψ(y), N(a′))
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⇐⇒ x = ψ−1(S(ψ(y), ψ(ψ−1(N(a′)))

⇐⇒ x = Sψ(y, ψ−1(N(a′)))

⇐⇒ x ∈ CSψ,ψ−1(N(A))({y}).

Conversely, let TS,N(A) = TSψ,ψ−1(N(A)). Then, ψ is order-preserving with respect to
�S,N(A) . For any x, y ∈ L we get

x ∈ CT ({y}) ⇐⇒ x �T,A y
⇐⇒ N(x) �S,N(A) N(y)

⇐⇒ ψ(N(x)) �S,N(A) ψ(N(y))

⇐⇒ (N ◦ φ ◦N)(N(x)) �S,N(A) (N ◦ φ ◦N)(N(y))

⇐⇒ (N ◦ φ)(x) �S,N(A) (N ◦ φ)(y)

⇐⇒ N(N ◦ φ)(x) �T,A N(N ◦ φ)(y)

⇐⇒ φ(x) �T,A φ(y)

⇐⇒ φ(x) ∈ CT ({φ(y)})
⇐⇒ φ(x) = T (φ(y), a), for some a ∈ A
⇐⇒ x = φ−1(T (φ(y), φ(φ−1(a))) = Tφ(y, φ−1(a))

⇐⇒ x ∈ CTφ({y}).

Thus, we get TC,T = TC,Tφ . �

The following proposition is a matter of the direct verification.

Proposition 17. Consider the uninorms U1 and U2 on bounded lattices L1 and L2

with the neutral elements e1, e2, respectively. Then the direct product U1 × U2 of U1

and U2, defined by

U1 × U2((x1, y1), (x2, y2)) = (U1(x1, x2), U2(y1, y2))

is a uninorm with the neutral element (e1, e2) on the product lattice L1 × L2.

Theorem 18. Let U1 U2 be uninorms with the neutral elements e1 and e2 on the
bounded lattices L1 and L2 respectively and subsets A1 and A2 of L1 and L2 such that
U1(A1, A1) ⊆ A1 and U2(A2, A2) ⊆ A2, e1 ∈ A1, e2 ∈ A2. Then TU1,A1

× TU2,A2
=

TU1×U2,A1×A2
.

P r o o f . Let G1 ×G2 ∈ TU1,A1 × TU2,A2 .

CU1×U2,A1×A2
((L1 × L2) \ (G1 ×G2))

= CU1×U2,A1×A2
((L1 \G1)× L2) ∪ (L1 × (L2 \G2))

= (U1 × U2)((L1 \G1)× L2, A1 ×A2)

∪ (U1 × U2)(L1 × (L2 \G2), A1 ×A2)

= (U1(L1 \G1, A1)× U2(L2, A2)) ∪ (U1(L1, A1)× U2(L2 \G2, A2))
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= ((L1 \G1)× L2) ∪ ((L1 × (L2 \G2))

= (L1 × L2) \ (G1 ×G2) ∈ FU1×U2,A1×A2 .

Then, G1 ×G2 ∈ TU1×U2,A1×A2 i. e. TU1,A1 × TU1×U2,A1×A2 ⊆ TU1×U2,A1×A2 .
Conversely, let O ∈ TU1×U2,A1×A2 , Then, we have K = (L1×L2)\O ∈ FU1×U2,A1×A2 .

K = CU1×U2,A1×A2(K) = CU1×U2,A1×A2

 ⋃
(x,y)∈K

{(x, y)}


=

⋃
(x,y)∈K

CU1×U2,A1×A2({(x, y)})

=
⋃

(x,y)∈K

(U1 × U2)((x, y), A1 ×A2) (by def. of CU1×U2,A1×A2)

=
⋃

(x,y)∈K

(U1((x,A1)× U2(y,A2)) (by def. of U1 × U2)

=
⋃

(x,y)∈K

(CU1,A1({x})× CU2,A2({y})) (by def. of closer op.)

Thus, we have K =
⋃

(x,y)∈K(CU1,A1
({x})× CU2,A2

({y})). On the other hand,

O = (L1 × L2) \K

= (L1 × L2) \
⋃

(x,y)∈K

(CU1,A1({x})× CU2,A2({y}))

=

 ⋃
(x,y)∈K

(CU1,A1
({x})× CU2,A2

({y}))

c

=
⋂

(x,y)∈K

(CU1,A1
({x})× CU2,A2

({y}))c (by De-Morgan)

=
⋂

(x,y)∈K

{[(L1 \ CU1,A1
({x}))× L2] ∪ [L1 × (L2 \ CU2,A2

({y}))]}

Since (L1 \ CU1,A1({x})) × L2 and L1 × (L2 \ CU2,A2({y})) is open with respect to the
topology TU1,A1

×TU2,A2
and by considering Proposition 7 we have O ∈ TU1,A1

×TU2,A2
.
�

Corollary 19. Let U be a uninorm with the neutral element e on a bounded lattice
L and let A be a subset of L such that U(A,A) ⊆ A, e ∈ A. Then, TU,A × TU,A is a
principal topology.

Theorem 20. Let L be a bounded lattice and U be a uninorm on L with the neutral
element e .Let A be a subset of L such that e ∈ A and U(A,A) ⊆ A. Then, the uninorm
U is continuous with respect to the TC topology.
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P r o o f . Since the continuity of the function defined between two principal topolog-
ical spaces is equivalent to the monotonicity in the sense of preorder between those
topological spaces, it is sufficient to show the monotonicity. Let (x, y) �U2,A2 (z, t) for
all (x, y), (z, t) ∈ L2. We have to show U(x, y) �U,A U(z, t). In this case, there exists
(a1, a2) ∈ A2 such that (x, y) = U2((z, t), (a1, a2)) = (U(z, a1), U(t, a2)). On the other
hand, U(x, y) = U(U(z, a1), U(t, a2)) = U(U(z, t), U(a1, a2)), U(a1, a2) ∈ A. �

Definition 16. Let L be a bounded lattice, U1 and U2 are uninorms with the same
neutral element e on L and U1(A,A) ⊆ A, U2(A,A) ⊆ A, e ∈ A. Also, let C1 and C2 be
the closure operators obtained from the set A and the uninorms U1 and U2, respectively.
Define a relation ”∼” on the class of all uninorms on L by

U1 ∼ U2 ⇔ C1({x}) = C2({x})

for all x ∈ L.

The next result is obvious.

Proposition 21. The relation ”∼” given in Definition 16 is an equivalence relation on
the set of all uninorms U on L with the neutral element e such that U(A,A) ⊆ A and
e ∈ A.

Now, we define the underlying t-norm TU : [0, 1]2 → [0, 1] and t-conorm SU : [0, 1]2 →
[0, 1] induced by a uninorm U : [0, 1]2 → [0, 1] on the real unit interval as taken in [11]:

TU (x, y) =
1

e
U(ex, ey),

SU (x, y) =
1

1− e
U(e+ (1− e)x, e+ (1− e)y).

Proposition 22. If U1 ∼ U2 then TU1 ∼ TU2 and SU1 ∼ SU2 , where TUi , SUi are
underlying t-norms and t-conorms respectively for Ui uninorms (i = 1, 2).

P r o o f . For x, y ∈ A we have,

TU

(
1

e
x,

1

e
y

)
=

1

e
U(x, y) ∈ 1

e
A.

Hence TU
(
1
eA,

1
eA
)
⊆ 1

eA. On the other hand; for all a ∈ A we obtain,
1

e
a = T (1,

1

e
a) ∈

TU
(
1
eA,

1
eA
)

then, 1
eA ⊆ TU

(
1
eA,

1
eA
)
. Then, TU

(
1
eA,

1
eA
)

= 1
eA. It is trivial that

1 ∈ 1
eA. Therefore we have CTU , 1eA for x ∈ [0, 1] as follows:

CTU , 1eA({x}) = TU ({x}, 1

e
A) = {TU (x,

1

e
a) : a

1

e
∈ a1

e
A}

=

{
1

e
U(ex, a) : a ∈ A

}
=

1

e
CU,A({ex}).
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It can be seen that the following equalities are hold:

CTU1
, 1eA

({x}) = {TU1
(x,

1

e
a) : a ∈ A}

=

{
1

e
U1(ex, e

1

e
a) : a ∈ A

}
=

{
1

e
U1(ex, a) : a ∈ A

}
=

1

e
CU1,A({ex}) =

1

e
CU2,A({ex})

=

{
1

e
U2(ex, a) : a ∈ A

}
=

{
1

e
U2(ex, e

1

e
a) :

1

e
a ∈ 1

e
A

}
=

{
1

e
U2(ex,

1

e
a) :

1

e
a ∈ 1

e
A

}
=

{
TU2

(x,
1

e
a) : a ∈ A

}
= CTU2

, 1eA
({x}).

Thus, we obtain TU1
∼ TU2

. Similarly, SU1
∼ SU2

can be proven.
�

Theorem 23. The set of principal topologies generated by uninorms defined on the
real unit interval [0, 1] has uncountable cardinality.

P r o o f . Let Ua : [0, 1]2 → [0, 1] be a uninorm with the same underlying t-norm (and
t-conorm) defined as follows [11]:

Ua(x, y) =



eTD
(
x
e ,

y
e

)
(x, y) ∈ [0, e]2,

e+ (1− e)SD
(
x−e
1−e ,

y−e
1−e

)
(x, y) ∈ [e, 1]2,

1 x = 1 or y = 1,
a (x, y) ∈ [0, e)× (a, 1) ∪ (a, 1)× [0, e),
max(x, y) otherwise,

where e ∈ (0, 1), e < a < 1 and

TD(x, y) =

{
0 (x, y) ∈ [0, 1)2,
min(x, y) otherwise.

SD(x, y) =

{
1 (x, y) ∈ (0, 1]2,
max(x, y) otherwise.

If we take e < a < b < 1 and A = [e, 1], it can be seen that Ua � Ub although they have
the same underlying t-norm and t-conorm. Indeed, for x < e we have,

Ca({x}) = Ua({x}, [e, a]) ∪ Ua({x}, (a, 1)) ∪ Ua({x}, {1})
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= Ua({x}, {e}) ∪ Ua({x}, (e, a]) ∪ Ua({x}, (a, 1)) ∪ Ua({x}, {1})
= Ua({x}, {e}) ∪ Ua({x}, {a}) ∪ Ua({x}, (e, a)) ∪ Ua({x}, (a, 1)) ∪ Ua({x}, {1})
= {x} ∪ {a} ∪ (e, a) ∪ {a} ∪ {1}
= {x} ∪ (e, a] ∪ {1} ∈ FCa .

Similarly, we obtain Cb({x}) = {x} ∪ (e, b] ∪ {1} ∈ FCb . On the other hand,

Cb({x} ∪ (e, a] ∪ {1})
= Ub({x} ∪ (e, a] ∪ {1}, [e, 1])

= Ub({x}, [e, 1]) ∪ Ub((e, a], [e, 1])) ∪ Ub({1}, {1})
= Ub({x}, {e}) ∪ Ub({x}, (e, 1]) ∪ Ub((e, a], [e, 1)) ∪ Ub((e, a], {1}) ∪ Ub({1}, {1})
= {x} ∪ Ub({x}, (e, b]) ∪ Ub({x}, (b, 1)) ∪ Ub({x}, {1})
∪ Ub((e, a], [e, 1)) ∪ Ub({1}, {1})

= {x} ∪ (e, b] ∪ {b} ∪ {1} ∪ {e+ (1− e)SD
(
x− e
1− e

,
y − e
1− e

)
: e < x ≤ a, e ≤ y < 1}

= {x} ∪ (e, b] ∪ {b} ∪ {e+ (1− e)SD
(
x− e
1− e

,
y − e
1− e

)
: e < x ≤ a, e < y < 1}

∪
{
e+ (1− e)SD

(
x− e
1− e

, 0

)}
∪ {1}

= {x} ∪ (e, b] ∪ {e+ (1− e)} ∪ {1}
= {x} ∪ (e, b] ∪ {1}.

Hence, Cb({x}∪(e, a]∪{1}) 6= {x}∪(e, a]∪{1} for arbitrary x < e. That is, {x}∪(e, a]∪
{1} /∈ FCb . Thus, the topologies generated from Ua and Ub are different. Furthermore,
from this example we show that there are uncountable many principal topologies on the
real unit interval [0, 1] generated from uninorms which are not equivalent. �

Proposition 24. Let U be a uninorm with the neutral element e on L and a subset A
of L such that U(A,A) ⊆ A, e ∈ A. Then, U is closed map from L×L to L with respect
to TC topology.

P r o o f . Let K ⊆ L×L be arbitrary set. By using the definition of the closure operators
CU,A, CU2,A2 and properties of the uninorm U we have,

CU,A(U(K)) = U(U(K), A) = {U(U(k1, k2), a) : (k1, k2) ∈ K, a ∈ A}
= {U(U(k1, k2), U(a, e)) : (k1, k2) ∈ K, a ∈ A}
= {U(k1, U(k2, U(a, e))) : (k1, k2) ∈ K, a ∈ A}
= {U(k1, U(U(k2, a), e)) : (k1, k2) ∈ K, a ∈ A}
= {U(k1, U(U(a, k2), e)) : (k1, k2) ∈ K, a ∈ A}
= {U(k1, U(e, U(k2, a))) : (k1, k2) ∈ K, a ∈ A}
= {U(U(k1, e), U(k2, a)) : (k1, k2) ∈ K, a ∈ A}
⊆ {U(U(k1, a1), U(k2, a2)) : (k1, k2) ∈ K, a1, a2 ∈ A}
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= {U(U2((k1, k2), (a1, a2))) : (k1, k2) ∈ K, (a1, a2) ∈ A×A}
= U(U2(K,A×A)) = U(CU2,A2(K)).

Thus, we obtain that U is closed function. �

Remark 3. a) In Theorem 23, Ua and Ub have the same underlying t-norm and t-
conorm. But Ua � Ub. Therefore, we consider that the converse of Proposition 22
may not be satisfied.

b) The set of all equivalence classes with respect to the relation ∼ on the real unit
interval [0, 1] is uncountable.

1

a

0

b

Fig. 3: Dimond lattice correspond to L = {0, a, b, 1}.

The following example shows that the uninorm U may not be open in general.

Example 2. Consider the lattice (L = {0, a, b, 1},≤, 0, 1) whose diagram is displayed
in Figure 3. We take the weak t-norm TW as a uninorm on L with e = 1. As a subset
of L, we take A = L. Then, we can define a principal topology on L as Proposition 4.
We denote this topology by TW,L. Here,

TW (x, y) =

 x y = 1
y x = 1
0 otherwise.

In this case, since C({a}) = {0, a} then {b, 1} ∈ TW,L. But,

TW ({b, 1} × {b, 1}) = TW ({(b, b), (b, 1), (1, b), (1, 1)})
= {0, b, 1} /∈ TW,L

4. AN APPLICATION

In this section, we give an application to the principal topological structure in dynamic
Kripke frames.
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Definition 17. A set A ⊆ X is called an upset of (X,R) if for each x, y ∈ X, xRy and
x ∈ A imply y ∈ A, where R is a relation on A.

Definition 18. A dynamic Kripke frame is a triple (W,R,G) where W is a set R is a
reflexive, transitive relation on W and G : W →W is function, that is R−monotone in
the following sense for any u, v ∈W, if uRv, then G(u)RG(v).

There is one-to-one correspondence between reflexive and transitive Kripke frames
and principal spaces. More precisely, given a reflexive and transitive Kripke frame F =
〉X,R〈 we can construct a topological spaces, indeed a principal space X = (X, τR) by
defining τR to be the set of all upset of F. Moreover, the evaluation of modal formulas in a
reflexive and transitive Kripke model coincides with their evaluation in the corresponding
principal topological space (see e. g., [ [27], p. 306])

Proposition 25. Let L be a bounded lattice, U be a uninorm on L with the neutral
element e and x0 ∈ L be arbitrary. Then (L,�U , fx0

) is a dynamic Kripke frame, where
fx0 : L→ L, fx0(x) = U(x, x0)

P r o o f . The proof is obtained from that fx0
: L→ L is a �U −monotone function. By

Theorem 20 we obtain, fx0
is continuous with respect to the topology T. �

From this point of view, this topology obtained from uninorms will be applicable to
the dynamic topology, dynamic programming and modal logic.

(Received January 12, 2022)
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