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KYBERNET IKA — VOLUME 5 8 ( 2 0 2 2 ) , NUMBER 6 , PAGES 9 8 4 – 9 9 5

ON ASYMMETRIC DISTRIBUTIONS OF COPULA
RELATED RANDOM VARIABLES WHICH INCLUDES
THE SKEW-NORMAL ONES

Ayyub Sheikhi, Fereshteh Arad and Radko Mesiar

Assuming that CX,Y is the copula function of X and Y with marginal distribution functions

FX(x) and FY (y), in this work we study the selection distribution Z
d
= (X|Y ∈ T ). We present

some special cases of our proposed distribution, among them, skew-normal distribution as well
as normal distribution. Some properties such as moments and moment generating function are
investigated. Also, some numerical analysis is presented for illustration.

Keywords: selection distribution, skew-normal, Gaussian copula

Classification: 62H05, 62Exx

1. INTRODUCTION

In last decades there is a growing interest in the literature on parametric distributions
which represent a local departure from the symmetric distributions. In this studied
there exist some skewness and kurtosis parameters in which they can yield symmetric
distribution by regulating suitable values of these parameters. A general univariate
form of these distributions, which is called skew-symmetric family, can be represented
as a product of a cumulative distribution function and a density distribution function.
Following Wang et al. (2004) [15], a random variable Z is said to have a skew-symmetric
(SS) distribution if its probability density function (PDF) can be written as

f(z) = 2f0(z)G(w(z)), z ∈ R, (1)

where f0(.) is a probability density function centrally symmetric about 0, w(.) : R→ R
is an odd real-valued function, i. e., w(−x) = −w(x) for all x ∈ R and G(w(.)) is a
cumulative distribution function on R such that g = G′ is an even density function,
providing G is differentiable. The first and foremost special case of these families arises
when f0 follows a normal distribution and g = f0 and is called the skew-normal distri-
bution which has proposed independently by Roberts (1966) [11], Ainger et al. (1977)
[1], Andel et al. (1984) [2] and Azzalini (1985) [4]. Including the location and scale
parameters µ and σ respectively, it is said that the univariate random variable Zsn has
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a skew-normal distribution with mean µ, variance σ2 and the skewness parameter λ, if
its density can be written as

fλ(z) = 2ϕ(z;µ, σ2)Φ
(
λ
z − µ
σ

)
, z ∈ R, (2)

where ϕ(.;µ, σ2) is the normal density function with mean µ and variance σ2 and Φ(.)
denotes the standard normal distribution function. We adopt the notation Zsn ∼
SN(µ, σ2;λ) and it reduces to Zsn ∼ N(µ, σ2) if λ = 0.

A most common scenario to constructing asymmetric distribution functions is based
on conditional (or selection) random variables. Based on the definition (1) of Arellano -
Valle et al. (2006), let X,Y ∈ R be two random variables, and denote by T a measurable
subset of R. The selection distribution is defined as the conditional distribution of X
given Y ∈ T , i.e, it is said that a random variable X ∈ R has a selection distribution

if Z
d
= (X|Y ∈ T ), denoted by Z ∼ SLCT (θ) with parameter(s) θ depending on the

characteristics of X,Y , and T . A well known special case of their definition is the
skew-normal distribution. Suppose that (X,Y ) has a bivariate normal distribution with
standardized marginals and correlation ρ. The conditional density of X given Y > 0
is skew-normal SN(λ) with λ = ρ/

√
(1− ρ2). See [3] for more details and the other

scenarios.
The aim of this work is the study of conditional distribution of two copula related

random variables X and Y . Based on the Sklar theorem [14] for any random vector
(X,Y ), there exists a grounded, uniformly marginal and 2−increasing bivariate copula

function C : [0, 1]
2 → [0, 1] such that

FX,Y (x, y) = C(FX(x), FY (y)), (3)

where FX,Y : R2 → [0, 1] is the joint distribution function of the random vector (X,Y )
and FX , FY : R → [0, 1] are respectively distribution functions of random variables X
and Y . We assume that bothX and Y are continuous random variables which guarantees
that copula C is unique and hence its density, if exists, is just function c(., .) such that

fX,Y (x, y) = fX(x)fY (y)c(FX(x), FY (y)), (4)

where fX,Y : R2 → R+ is the joint density function of X,Y and fX , fY : R → R+ are
respectively density functions of X and Y . We refer to [8, 12, 16] for more information
about copulas and association measures. Denoting the copula coupling X and Y as

CX,Y , we study the distribution of Z
d
= (X|Y ∈ T ).

A special case of the copula function is the Gaussian copula. Denoting Φ the standard
normal cumulative distribution and Φ(., ρ) the bivariate standard multivariate normal
distribution function with correlation ρ, it is said that random variables X and Y are
associated to a Gaussian copula with correlation matrix ρ if

CGa(u1, u2) = Φ(Φ−1(u1),Φ−1(u2), ρ), (5)

where Φ−1(.) is the inverse function of the standard normal distribution function [12].
We consider this copula as a connection function of our variables in this work. The rest
of this paper is organized as follows. The main results are given in the next section. In
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Section 3, we estimate the parameter of the proposed distribution. In section 4, we apply
our results to do a simulation analysis. Also an application of our theoretical results in
a real dataset is given. Finally, some concluding remarks are presented in section 5.

2. MAIN RESULTS

It is well known that conditioning a variable on a subset of another variable causes a
skewness parameter. Consider two random variables X and Y are associated with the
copula function CX,Y . Also assume that the marginal distributions of these two random
variables as well as their associated copula function are absolutely continuous. Then,

from the classical probability, we have the distribution of Z
d
= (X|Y ∈ T ) as

FZ(z) =

∫ z
−∞

∫
T
fX,Y (x, y) dydx∫
T
fY (y) dy

=

∫ x
−∞

∫
T
fX(x)fY (y)c(FX(x), FY (y)) dydx∫

T
fY (y)dy

= mT

∫ x

−∞

∫
T

fX(x)fY (y)c(FX(x), FY (y)) dydx,

where mT = (
∫
T
fY (y)dy)−1 and differentiating with respect to z we readily obtain the

density of z as

fZ(z) = mT

∫
T

fX(z)fY (y)c(FX(z), FY (y)) dy, z ∈ R, (6)

where c(·, ·) is the density of copula.
The following theorem states a more specific version of (6) in which the selection is

made on the positive values of Y .

Theorem 2.1. Assume that CX,Y is the copula function of random variables X and Y

with marginal distribution functions FX(x) and FY (y), then the density of Z
d
= (X|Y >

µy) is given by
fZ(z) = mT fX(z)(1−D1CX,Y ), z ∈ R, (7)

where µy is the mean of Y and D1CX,Y =
∂CX,Y
∂FX(z) if exist otherwise 0.

P r o o f . We have

FZ(z) = mTP (X ≤ z, y > µy) = mT [P (X ≤ z)− P (X ≤ z, y ≤ µy)]

= mT [FX(z)− CX,Y (FX(z), FY (µy))]

and using some chain rules we readily obtain

fZ(z) = mT

[
fX(z)− ∂CX,Y

∂FX(z)

∂FX(z)

∂z

]
= mT

[
fX(z)− fX(z)D1CX,Y

]
= mT fX(z)(1−D1CX,Y ),



Copula-based asymmetric distributions 987

which proves the assertion. �

The following corollary is a special case of the theorem and states a similar result of
Arnold and Beaver (2002) [3].

Corollary 2.2. Let X and Y be two standard normal random variables with the Gaus-

sian copula with correlation ρ (5) then the distribution of Z
d
= (X|Y > 0) is SN(λ)

with
fZ(z) = 2ϕ(z)Φ(λz), z ∈ R, (8)

where λ = ρ/
√

(1− ρ2).

P r o o f . Since mT = 2, similar to the proof of Theorem 2.1 we have

FZ(z) = 2[Φ(z)− CX,Y (Φ(z),Φ(0))].

Regarding to differentiating with respect to z, we first note that

∂CX,Y (u, v, ρ)

∂u
= Φ

(Φ−1(v)− ρΦ−1(u)√
1− ρ2

)
and again using some chain rules we have

fZ(z) = 2
[
ϕ(z)− ∂CX,Y

∂Φ(z)

∂Φ(z)

∂z

]
= 2
[
ϕ(z)− Φ

( −ρz√
1− ρ2

)
ϕ(z)

]
= 2ϕ(z)Φ

( ρz√
1− ρ2

)
,

which is 8. �

We can generalize or simplify this distribution by changing related copula between
the random variables and their marginals as well. For example, considering that the
random variable X follows a standard normal and Y follows an arbitrary distribution
then we may present the following results.

Corollary 2.3. Let X be a standard normal random variables and Y has a distribution
function FY (y) with mean 0 and they are associated with the Gaussian copula with

correlation ρ then the distribution of Z
d
= (X|Y > 0) is

fZ(z) = mTϕ(z)Φ
( ρz − h0√

1− ρ2

)
, z ∈ R, (9)

where h0 = Φ−1(FY (0)).

P r o o f . The proof is similar to the proof of Corollary 2.2 and is omitted. �

Moreover, one may easily prove the following proposition which explains the proper-
ties of this new distribution, see e.g., [3].
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Proposition 1. For the density (9) the following results hold.

i) If Z has the pdf (9) with parameter λ ∈ R+ then −Z follows (9) with parameter
−λ and vise versa.

ii) If λ = 0 in (9) then fZ(z) = ϕ(z).

iii) fZ2(z2) = ϕ(z)
z

iv) f|Z|(|z|) = 2ϕ(z)

v) If Z ′ = ξ + wZ so Z ′ ∼ N(ξ, w2).

P r o o f . We only prove parts (iii) and (v). The proof of other parts are straightforward.
In order to prove (iii), let Y = Z2 then the density function of Y will be

FY (y) = FZ(
√
y)− FZ(

√
−y), so we have fY (y) =

ϕ(
√
y)

√
y

and hence fZ2(z2) =
ϕ(z)

z
.

Regarding (v), we note that FZ′(z
′) = FZ(

z′ − ξ
w

), so

fZ′(z
′) =

∂FZ′(z
′)

∂z′
=

1

w
ϕ(
z′ − ξ
w

) =
1√

2πw2
e
−1

2w2 (z′−ξ)2

.

�

A schematic representation of the properties of this distribution is displayed in Fig-
ure 1. As seen in this figure, density curve Z and −Z matches, when Z and −Z have
the pdf (9) with the parameters λ = 10 and λ = −10, which are stated in the part
(i) of Proposition 1. For example, if Z ∈ R+ has the pdf (9) with the parameter
λ ∈ R− then −Z has the same distribution but with the parameter −λ and in this case
fZ(z) = f−Z(−z) = 0. In addition, density curve Z and −Z matches, when Z and −Z
with the pdf (9) and the parameters λ = −10 and λ = 10, respectively, which are stated
in the part (i) of Proposition 1.

Fig. 1. Density plot of the proposed copula-skew distribution.

Regarding to investigate the moments of this distribution, we first find its Mgf as
follows.
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Corollary 2.4. Under the assumptions of corollary 2.3 the moment generating function
of the random variable Z is

MZ(t) = mT e
t2/2Φ

(
ρt− h0

)
, (10)

where h0 = Φ−1(FY (0)).

P r o o f .

MZ(t) = E(etz) =

∫
etzmTϕ(z)Φ

( ρz − h0√
1− ρ2

)
dz

= mT et
2/2

∫
1√
2π
e−

1
2 (z−t)2

Φ
( ρz − h0√

1− ρ2

)
dz

= mT et
2/2 Φ

(
ρt− h0

)
.

�

As a quick result of the previous corollary, derivation of mgf and getting the torques,
we have the mean and variance of the random variable Z, respectively as

µ = mT ρ φ(h0),

σ2 = mTΦ
(
− h0

)
+mT ρ

2h0φ(h0)− (mT ρ φ(h0))2.

Also, its skewness and kurtosis are obtained respectively as

s =
µ3

σ3
and κ =

µ4

σ4
− 3,

where
µ3 = (3− ρ2 + ρ2h2

0)k − 3mTφ(h0)− 3ρh0k
2 + 2k3 with k = mT ρφ(h0) and

µ4 = ( 3
ρ + 6ρh0 − 3ρ3h0 + ρ3h3

0)k + (4ρ2h2
0 + 4ρ2 + 6mTφ(h0)− 12)k2 + 6ρh0k

3 − 3k4.
Special cases of these four moments yield when Y follows standard normal distribution
and with the assumptions of corollary 2.3, the Mgf of Z will be [4]:

MZ(t) = 2et
2/2Φ

( λt√
1 + λ2

)
and hence, its mean, variance, skewness and kurtosis, are respectively

µ =
√

2
πρ

σ2 = 1− (
√

2
πρ)2

s =
2(
√

2
πρ)3 −

√
2
πρ

3

(σ2)
3
2

κ =
3− 4( 6√

2π
ρ− 2√

2π
ρ3)
√

2
πρ+ 6(

√
2
πρ)2 − 3(

√
2
πρ)4

(σ2)2
− 3.
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Evidently, by switching the role of X and Y in corollary 2.3, we may conclude that if
X is a random variables with distribution function FX(x) and Y has a standard normal
distribution and they are associated to the Gaussian copula with correlation ρ (5) then

the distribution of Z
d
= (X|Y > 0) is

fZ(z) = 2fX(z)Φ
(ρΦ−1(FX(z)√

1− ρ2

)
, z ∈ R. (11)

3. PARAMETER ESTIMATION

Regarding to estimate the parameter of the proposed distribution, without loss of gen-
erality and in order to obtain a closed form, we first consider a simple case of copula
skew-normal distribution under the assumption of Corollary 2.

Let z1, z2, . . . , zn be a sample of size n from distribution (9) in which the distribution
of Y is free of parameter. The likelihood function is given by

Ln(λ; z) = fn(z;λ) = mn
TΠn

i=1ϕ(zi)Π
n
i=1Φ(λzi −

√
1 + λ2Φ−1(FY (0))).

So,
`(λ; z) = lnLn(λ; z) = nlnmT + Σni=1lnϕ(zi) + Σni=1lnΦ(λzi −

√
1 + λ2Φ−1(FY (0))).

By differentiating with respect to λ, we obtain the following equality.

(z1−
λΦ−1(FY (0))√

1+λ2
)φ(λz1−

√
1+λ2Φ−1(FY (0)))

Φ(λz1−
√

1+λ2Φ−1(FY (0)))
+. . .+

(zn−
λΦ−1(FY (0))√

1+λ2)
)φ(λzn−

√
1+λ2Φ−1(FY (0)))

Φ(λzn−
√

1+λ2Φ−1(FY (0)))
= 0

So, λ̂ is the solution of following simultaneous equations.

zi =
λΦ−1(FY (0))√

1 + λ2
or φ(λzi −

√
1 + λ2Φ−1(FY (0))) = 0, i = 1, 2, . . . , n.

Hence,

λ̂ =
zi√

Φ−1(FY (0))2 − z2
i

i = 1, 2, . . . , n or λ̂ = ±∞.

Now, according to λ = ρ√
1−ρ2

, i. e., ρ = λ√
(1+λ2)

, we readily estimate ρ̂ = zi
Φ−1(FY (0)) , i =

1, 2, . . . , n or ρ̂ = ±1. In the other hand, ρ̂ = ±1 is unacceptable because ρ ∈ (−1, 1).
Hence,

ρ̂ =
zi

Φ−1(FY (0))
i = 1, 2, . . . , n.

As another more general case of corollary 2.3, in which µy 6= 0, let Y ∼ beta(α, 1),
then from 7 we again have the density 9 except hµy = Φ−1(FY (µy)) instead of h0, i. e.,

fZ(z) = mTϕ(z)Φ
(ρz − Φ−1(FY (µy))√

1− ρ2

)
, z ∈ R. (12)

Therefore, from FY (µy) = ( α
α+1 )α we have the log-likelihood function as

`(α, λ; z) = lnLn(α, λ; z) = nlnmT +Σni=1lnϕ(zi)+Σni=1lnΦ(λzi−
√

1 + λ2Φ−1(( α
α+1 )α))
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and by derivation with respect to λ and α, the estimated values of these parameters will
be the solution of the following two simultaneous equations:

n∑
i=1

(zi−
λΦ−1( α

α+1
)α

√
1+λ2

)φ(λzi−
√

1+λ2Φ−1(( α
α+1 )α)))

Φ(λzi−
√

1+λ2Φ−1(( α
α+1 )α)))

= 0

αα(ln α
α+1 + 1

α+1 )
√

1+λ2

(α+1)αφ(Φ−1(( α
α+1 )α))

n∑
i=1

φ(λzi−
√

1+λ2Φ−1(( α
α+1 )α))

Φ(λzi−
√

1+λ2Φ−1(( α
α+1 )α))

=
nαα(ln α

α+1 + 1
α+1 )

(α+1)α−(α)α

4. NUMERICAL ANALYSIS

4.1. Simulation study

In order to assess and visualize our proposed distribution, in the section we used a Monte
Carlo simulation study. We generated 1000 random pairs (Xi, Yi), i = 1, 2, . . . , 1000,
in such a way that X followed a standard normal distribution and Y came from an
exponential distribution with λ and they are connected via a Gaussian-copula with
correlation ρXY

1. Without loss of generality, we considered four values for λ as λ =
2, 5, 10, 20 and ρXY varies within values of ρXY = 0.8, ρXY = 0.9 and ρXY = 0.99
and from 12 we obtain the density of Z = X|Y > µy. We repeated this procedure
5000 times. Tables 1-3 summarized the AIC and BIC of our proposed copula-skew-
normal distribution against the skew-normal ones. As seen from these tables, increasing
value of correlation between two copula-connected random variables, yields a significant
difference between goodness of fit of these two distribution in favor of copula-skew-
normal distribution, see also Figure 2. Also, high values of the exponential rate of the
distribution of Y cause more distinct the goodness of fit between the copula-skew-normal
distribution and skew-normal ones.

ρ = 0.8
Estimation copula-skew skew-normal

AIC 818 819
BIC 833 833

ρ = 0.9
Estimation copula-skew skew-normal

AIC 750 751
BIC 765 766

ρ = 0.99
Estimation copula-skew skew-normal

AIC 532 534
BIC 546 549

Tab. 1. AIC and BIC of copula-skew and skew-normal when

Y ∼ exp(λ = 2).

1We use the R software and all codes are available upon request.
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ρ = 0.8
Estimation copula-skew skew-normal

AIC 814 814
BIC 828 829

ρ = 0.9
Estimation copula-skew skew-normal

AIC 716 717
BIC 731 732

ρ = 0.99
Estimation copula-skew skew-normal

AIC 528 532
BIC 543 547

Tab. 2. AIC and BIC of copula-skew and skew-normal when

Y ∼ exp(λ = 10).

ρ = 0.8
Estimation copula-skew skew-normal

AIC 813 814
BIC 828 828

ρ = 0.9
Estimation copula-skew skew-normal

AIC 727 728
BIC 742 743

ρ = 0.99
Estimation copula-skew skew-normal

AIC 526 531
BIC 541 546

Tab. 3. AIC and BIC of copula-skew and skew-normal when

Y ∼ exp(λ = 20).

4.2. Real data

Regarding to apply our previous material so far in a real data set analysis, we consider
the well known data set collected by Australian Institute of sports (AIC) [7]. This data
set is compressing of biological characteristics of 202 Australian athletes in both sexes
(102 males and 100 females) and was considered as an example of skew-normal data in
the literature [6, 5]. Considering two variables height (Ht) and sum of skin folds (SSF)
and by selecting a random sample of size 150 from this data set, we observed that “Ht”
followed a normal distribution with mean 180 and variance 100 and “SSF” followed
an exponential distributions with an average of 68. Moreover we found that these two
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Fig. 2. Density plot of skew-normal and copula-skew distributions in

simulated data when Y ∼ exp(λ = 20) and a) ρ = 0.80, b) ρ = 0.90, c)

ρ = 0.99.

variables were connected via a Gaussian-copula with correlation ρ = −0.06. By condi-
tioning the distribution of HT given SSF greater than 68, from 12, the distribution of
Z = Ht|SSF > 68, was fitted as

fZ(z) = mTϕ(z)Φ
(
1.002(−0.06z − Φ−1(FY (68))

)
, z ∈ R.

Comparing the AIC and BIC values of the Table 4, we conclude that implementing
the correlation between two variables Ht and SSF yields an improvement to the fitting
the distribution of Z = Ht|SSF > 68, in contrast to the traditional school normal
distribution, see also Figure 3.

Estimation copula-skew skew-normal
AIC 155 158
BIC 170 173

Tab. 4. AIC and BIC of copula-skew and skew-normal.

5. CONCLUSION

Based on the idea of the selection distributions, in this work we have proposed a con-
ditional distribution of two copula related random variables which has asymmetric be-
haviors. Using a simulation analysis we have shown that our proposed distribution has
a better performance in contrary of other skew distributions.

The idea of this work may be extended in several manners. Although, we have
considered the Gaussian copula as a connection between random variables, other copula
functions one may be assumed elsewhere. Also, we have only considered two related
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Fig. 3. Performance of skew-normal and copula-skew in real data.

random variables, so more than two variables variables would be of interest. In our
ongoing work we are extending this distribution to its multivariate version.

Finally, it is well known that the skew distributions are frequently used to model the
behavior of order statistics, see e. g., Loperfido (2008) [10] and Sheikhi and Tata (2013)
[13]. Our copula skew distribution will be used in this subject as well as in concomitants
of order statistics.
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[14] A. Sklar: Fonctions de répartition an dimensions et leurs marges. Publ. inst. statist.
univ. Paris 8 (1959), 229–231.

[15] J. Wang, J. Boyer, and M. G. Genton: A skew-symmetric representation of multivariate
distributions. JSTOR, Statistica Sinica (2004), 1259–1270.
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