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CRITICAL POINTS FOR REACTION-DIFFUSION SYSTEM
WITH ONE AND TWO UNILATERAL CONDITIONS

Jan Eisner and Jan Žilavý

Abstract. We show the location of so called critical points, i.e., couples of dif-
fusion coefficients for which a non-trivial solution of a linear reaction-diffusion
system of activator-inhibitor type on an interval with Neumann boundary
conditions and with additional non-linear unilateral condition at one or two
points on the boundary and/or in the interior exists. Simultaneously, we show
the profile of such solutions.

1. Introduction

Let us consider a reaction-diffusion system
(1.1) ut = d1uxx + f(u, v) , vt = d2vxx + g(u, v) in (0, `)
with Neumann boundary conditions for u
(1.2) ux(0) = ux(`) = 0
and at first with Neumann boundary conditions also for v
(1.3) vx(0) = vx(`) = 0 .
Let us assume there is (Uc, Vc) a stationary and spatially constant solution to (1.1)
with (1.2), (1.3), in particular f(Uc, Vc) = g(Uc, Vc) = 0. We can assume without
loss of generality that the trivial solution (Uc, Vc) = (0, 0) but keep in mind that in
application where u and v represent e.g. concentrations of two chemicals or of two
population species they are assumed to be positive.

We will allways assume the Jacobi matrix B = (bij) of (f, g) at (Uc, Vc) satisfies
(1.4) TrB < 0 and detB > 0 .
Then it follows from Hurwitz criteria that the trivial solution (Uc, Vc) is stable as
a solution to the corresponding ODE system without diffusion, i.e., for d1 = d2 = 0.

Finally, we will assume that
(1.5) b11 > 0, b12b21 < 0, b22 < 0 .
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Then the RD-system (1.1) is of an activator-inhibitor or a depletion-substrate type
if b12 > 0 or b21 > 0, respectively. It is well known [7] that under (1.5) an effect
of Turing instability appears: Only for some diffusion coefficients (d1, d2) ∈ R2

+ the
trivial solution (Uc, Vc) remains stable but becomes unstable for the rest of positive
diffusion coefficients. More precisely, there is a system of hyperbolas

(1.6) Hn = {(d1, d2) ∈ R+
2 : d2 = (detB − κnd1b22)/(b21κn − d1κ

2
n)} ,

where κn > 0 is a sequence of positive eigenvalues to Neumann BVP

uxx + κu = 0 on (0, `)

with (1.2). Let us remark that there is no H0 for κ0 = 0. Now, the domain of
stability DS of the trivial solution is the set of couples (d1, d2) lying to the right
from all hyperbolas Hn and the domain of instability DU is the set of (d1, d2) lying
to the left from at least one hyperbola.

In the rest of this paper we will study only stationary solutions of (1.1) and
consider only a linear ODE system

(1.7) d1u
′′ + b11u+ b12v = 0 , d2v

′′ + b21u+ b22v = 0 in (0, `)

where the prime denotes the derivative w.r.t. to the variable x ∈ (0, `). We will still
refer to (1.2) and/or (1.3) where ux = u′ and vx = v′.

It is easy to see that for any (d1, d2) ∈ R2
+ the pair (0, 0) is a solution to (1.7)

with (1.2), (1.3). Critical points of a given boundary value problem will be the set
of diffusion coefficients (d1, d2) ∈ R2

+ for which a nontrivial (spatially nonconstant)
solution exists. It follows from [5] (cf. also Lemma 2.2 below) that the set of critical
points of the Neumann BVP (1.7), (1.2), (1.3) is just the system of hyperbolas (1.6).

We will describe and locate the set of critical points if we prescribe, in addition to
Neumann BCs, some unilateral condition(s) for the inhibitor v. More precisely, we
will describe in the following sections the sets of critical points for the BVPs (1.7)
with Neumann boudary conditions (1.2) for activator u and with several types of
unilateral conditions for v. Let us remark that we choose the simplest examples
in order to be at least partially analytically and numerically tractable. This is
the reason to consider only one dimensional space domain and only point-wise
unilateral obstacles. This method could be applied for the higher dimensional
domain only of a very special form (e.g. a rectangle with unilateral conditions on
(a part of) one edge) but we could obtain only a subset of possible critial points
only because we can not analytically express all non-trivial solutions of a given
unilateral BVP.

Let us finally remark that even the system (1.7) is linear, the unilateral condi-
tions break the linearity, the BVP remains only positively homogeneous: only
a non-negative multiple of a solution is also a solution.

2. A unilateral obstacle for inhibitor

We will start with one point-wise unilateral (one-sided) obstacle.
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2.1. A unilateral obstacle on the boundary. The simplest unilateral obstacle
is given by a Signorini condition prescribed at one boundary point, without loss of
generality at x = `

(2.1) v′(0) = 0, v(`) ≥ 0, v′(`) ≥ 0 , v(`)v′(`) = 0 .

The last three conditions allow v(`) to be non-negative with a non-negative de-
rivative v′(`), but only one of them can be positive. If the value is positive, zero
Neumann condition must be fulfilled. This BC can be considered as a certain
regulation allowing the concentration to be above a prescribed value (here Vc = 0)
and then the boundary is closed, there is no flux through this part of the boundary.
But if v(`) decreases below this value, the boudary opens and the inhibitor income
from outside is large enough to stop the decrease of v(`) below Vc (v satisfies
Dirichlet BC in that case). In other words, the simple point of view is that v satifies
Signorini BC at x = ` if and only if it satisfies either Neumann BC with a proper
(non-negative) sign of v(`) or Dirichlet BC with a proper (non-negative) sign of
v′(`). Of course, it can exceptionally happen that both v(`) = v′(`) = 0.

Looking for critical points of the BVP (1.7) with (1.2), (2.1), these considerations
allow us to decompose this unilateral and hence non-linear Neumann-Signorini
BVP onto two problems: on purely Neumann BVP (1.7), (1.2), (1.3) with a proper
sign of v(`) and on Neumann-Dirichlet BVP (1.7), (1.2),

(2.2) v′(0) = 0, v(`) = 0

with a proper sign of v′(`).

Lemma 2.1. Let (u, v) be a solution to one of linear BVPs (1.7), (1.2), (1.3)
or (1.7), (1.2), (2.2). Then (u, v) or (−u,−v) is a solution of the unilateral
BVP (1.7), (1.2), (2.1).

Proof. If (u, v) is a solution to a linear BVP then also (−u,−v) is a solution. Now
it is necessary to realize that in both BVPs we need to control a sign only of one
object. �

Lemma 2.2. The set of critical points KN to the BVP (1.7), (1.2), (1.3) are just
the hyperbolas Hn from (1.6),

KN =
∞⋃
n=1

Hn .

The profiles of the corresponding non-trivial solutions for (d1, d2) ∈ Hn are

(2.3) un(x) = A(d2κn − b22) cos(nx)/b21 ,
vn(x) = A cos(nx)

with arbitrary A ∈ R.

Proof. The assertion follows e.g. from [5]. �

Characteristic equation corresponding to the system (1.7) is biquadratic

d1d2r
4 + (d2b11 + d1b22)r2 + detB = 0
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and has the (possibly complex) roots ±r1 and ±r2. We obtain for any (d1, d2) ∈ R2
+

with the exception of two half-lines
(b11d2 + b22d1)2 − 4d1d2 detB = 0

(where the upper one is a joint tangent to all hyperbolas Hn) a general solution

(2.4) u(x) = Aer1x +Be−r1x + Cer2x +De−r2x ,
v(x) = −(d1u

′′(x) + b11u(x))/b12

with arbitrary A, B, C, D ∈ R.
Let us define on (0, `) some auxiliary functions

C1(x) := er1x + e−r1x , S1(x) := er1x − e−r1x ,
C2(x) := er2x + e−r2x , S2(x) := er2x − e−r2x

and denote
R1 := r2

1 + b11

d1
, R2 := r2

2 + b11

d1
.

Lemma 2.3. The set of critical points KD to the BVP (1.7), (1.2), (2.2) are the
positive roots of the complex-valued function

FD(d1, d2) = d1r1R2S1(`)C2(`)− d1r2R1S2(`)C1(`) .
The profiles of the corresponding non-trivial solutions for d = (d1, d2) ∈ KD are

(2.5) u(x) = A(C1(x)− C2(x)β(d)) ,
v(x) = −A(d1(r2

1C1(x)− r2
2C2(x)β(d)) + b11(C1(x)− C2(x)β(d)))/b12

with arbitrary A ∈ R and β(d) = r2S2(`)/(r1S1(`)).
Proof. The function FD corresponds to the determinant of the linear system of 4
equations for coefficients A,B,C,D from (2.4) derived by using BCs (1.2), (2.2).
Since these conditions are linear, a nontrivial quadruplet exists if and only if this
determinant is zero. The form (2.5) then follows from (2.4). See e.g. [3] or [6] for
details. �

Remark 2.4. Let us emphasize that the coefficients r1, r2 and therefore also the
functions Ci(x) and Si(x), i = 1, 2, and the numbers R1, R2 and β are in general
complex and depend on diffusion parameters (d1, d2) ∈ R2

+. The form (2.4) and
hence also (2.5) are written in a complex form, nevertheless one can rewrite them
to obtain a couple (u, v) of non-trivial real solutions to the corresponding BVP.
Theorem 2.5. The set of critical points KS to the unilateral BVP (1.7), (1.2),
(2.1) is given by

KS = KN ∪KD =
∞⋃
n=1

Hn ∪ {(d1, d2) ∈ R2
+ : FD(d1, d2) = 0} .

The profiles of the corresponding non-trivial solutions for (d1, d2) lying on some
Hn or in KD are given by (2.3) or (2.5) with any A ∈ R having the proper sign,
i.e. such that v(`) ≥ 0 or v′(`) ≥ 0, respectively.
Proof. The assertion follows from Lemmas 2.1, 2.2 and 2.3 and considerations
above. �
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2.2. A unilateral obstacle in the interior of the domain. Let us consider
our system (1.7) with (1.2), (1.3) and let us add for v a one-sided obstacle given
by a unilateral condition at x = x1 ∈ (0, `) of the form
(2.6) v(x1) ≥ 0, v′(x1−) ≥ v′(x1+) , v(x1) (v′(x1−)− v′(x1+)) = 0 .
It is clear that if (u, v) is a non-trivial solution to (1.7), (1.2), (1.3) then (u, v) or
(−u,−v) (or exceptionally both) satisfies also (2.6). Such pairs are the C2-smooth
solutions to the unilateral problem (1.7), (1.2), (1.3), (2.6) and hence KN is one
part of the set of corresponding critical points.

The other type of solutions are those, for which the obstacle is ‘active’ and they
are broken in the derivative of v (we write one-sided derivatives in (2.6)). The
smoothness of activator u remains ‘full’, i.e. u ∈ C[0, `] ∩ C2(0, `) but

v ∈ C[0, `] ∩ C2(0, x1) ∩ C2(x1, `)
and (1.7) separates to two systems, on (0, x1) and on (x1, `), and four conditions
connecting the left (uL, vL) and right (uR, vR) solutions appear from (2.6)
(2.7) uL(x1) = uR(x1) , u′L(x1−) = u′R(x1+) , vL(x1) = 0 , vR(x1) = 0 ,
together with the proper sign of the jump of derivatives
(2.8) v′(x1−) ≥ v′(x1+) .
Expressing general solution on (0, x1) and on (x1, `) and using BCs (1.2), (1.3) and
conditions (2.7) we obtain a linear system for 8 coefficients AL, BL, CL, DL and
AR, BR, CR, DR. Determinant of the matrix corresponding to this linear system
is the desired function Fx1(d1, d2), positive roots of which are critical points
corresponding to solutions satisfying v(x1) = 0 (they touch the obstacle) and
which can be (obstacle is not active) or are not (obstacle is active and breaks v)
C1-smooth on the whole domain (0, `).

Lemma 2.6 ([3]). The set of critical points Kx1 to the BVP (1.7) on (0, x1) and
on (x1, `) with (1.2), (1.3), (2.7) are the roots of the complex-valued function

Fx1(d1, d2) = r1
r2

(
S1(x1) + S1(`− x1) C1(x1)

C1(`−x1)

)
− R1

R2
C1(x1)

(
S2(`−x1)
C2(`−x1) + S2(x1)

C2(x1)

)
.

The profiles of the corresponding non-trivial solutions for (d1, d2) ∈ Kx1 are

(2.9)
uL(x) = AL(C1(x)− β1(d)C2(x)) ,
vL(x) = −AL

d1(r2
1C1(x)−β1(d)r2

2C2(x))+b11(C1(x)−β1(d)C2(x))
b12

on (0, x1) and

(2.10)
uR(x) = ALβ3(d)(C1(`− x)− β2(d)C2(`− x)) ,
vR(x) = −ALβ3(d)d1(r2

1C1(`−x)−β2(d)r2
2C2(x))+b11(C1(`−x)−β2(d)C2(`−x))

b12

on (x1, `) with arbitrary AL ∈ R and

β1(d) = R1C1(x1)
R2C2(x1) , β2(d) = R1C1(`− x1)

R2C2(`− x1) , β3(d) = C1(x1)
C1(`− x1) .

Proof. The expressions follow from [3, Section 5.5]. �
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Theorem 2.7. The set of critical points Ux1 to the unilateral BVP (1.7), (1.2),
(1.3) and (2.6) is given by

Ux1 = KN ∪Kx1 =
∞⋃
n=1

Hn ∪ {(d1, d2) ∈ R2
+ : Fx1(d1, d2) = 0} .

The profiles of the corresponding non-trivial solutions for (d1, d2) lying on Hn or
in Kx1 are given by (2.3) or by (2.9), (2.10), with any A or AL having the proper
sign, i.e. such that v(x1) ≥ 0 or (2.8) holds, respectively.

Proof. The assertion follows from the analogy of Lemma 2.1 together with Lem-
mas 2.2 and 2.6. �

3. Two unilateral obstacles for inhibitor

3.1. Two obstacles from below. Let us focus now on the example of two
one-sided obstacles at x = x1 and at x = ` (both acting from below) for v,
i.e., we will consider the BVP (1.7), (1.2), (2.1) and (2.6). Two obstacles mean that
there is no analogy of Lemma 2.1. We can still decompose the task: the critical
points are such pairs (d1, d2) for which the corresponding solutions have no active
contact with obstacles or for which only one or even both obstacles are active. In
the last cas we have

Lemma 3.1. The set of critical points Kx1` to the BVP (1.7) on (0, x1) ∪ (x1, `)
with (1.2), (2.2), (2.7) are positive pairs (d1, d2) for which the algebraic linear
system

(3.1)

r1(AR −BR) + r2(CR −DR) = 0 ,
R1(AR +BR) +R2(CR +DR) = 0 ,
R1(ARer1x1 +BRe

−r1x1) +R2(CRer2x1 +DRe
−r2x1) = 0 ,

ARe
r1x1 +BRe

−r1x1 + CRe
r2x1 +DRe

−r2x1 = ALC1(x1)
(

1− R1
R2

)
,

r1
r2

(ARer1x1−BRe−r1x1) + CRe
r2x1−DRe

−r2x1 = ALC1(x1)
(
r1
r2
− R1

R2

)
,

has a non-trivial solution (AL, AR, BR, CR, DR). Then the nontrivial left and right
solutions (uL, vL) and (uR, vR) of our BVP are given by (2.9) and (2.4) with this
AL and (AR, BR, CR, DR), respectively.

Proof. We obtain (3.1) by using boundary and inner conditions (1.2), (2.2), (2.7)
for general solution (2.4) considered on (0, x1) and on (x1, `). �

Theorem 3.2. The set of critical points Ux1` to the unilateral BVP (1.7), (1.2),
(2.1) and (2.6) is given by
(3.2) Ux1` ⊂ (KN ∪Kx1 ∪KD ∪Kx1`)
such that the profiles of the corresponding non-trivial solutions satisfy both (2.1)
and (2.6).

Remark 3.3. Nodal properties of the v-part of corresponding non-trivial solutions
are preserved along the individual branches of critical points only to purely Neumann
BVP (i.e. only along hyperbolas Hn). This is not true in general for the unilateral
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Fig. 1: Critical points KS (Hn for n = 1, 2, 3, 4, and violet KD) for BVP (1.7), (1.2),
(2.1). Profile of solution (u, v) for (d1, d2) = (0.913, 2) ∈ KD on the horizontal branch

and for (d1, d2) = (0.407, 10) ∈ KD on the second violet branch.

BVPs. Therefore, it strongly depends on the location of x1 ∈ (0, `) which parts
of these branches are simultaneously critical points also for the 2-obstacles BVP.
Hence we can not characterize explicitely Ux1` by the equality in (3.2).
Remark 3.4. Numerically it seems that the nodal properties of v are preserved
along a large part of the right-most branches (going to the right which seems to
be bounded in d2) of KD, Kx1 as well as of Kx1`. This boundedness perfectly fits
with the theoretical results for BVPs with unilateral conditions prescribed on the
boundary, see [1, 2, 4]. As far as (more precisely, as close as to the origin) we can
go with d = (d1, d2) along the right-most branches while the profile of v satisfies
simultaneously sharp inequality in (2.8) and v(`) ≥ 0, such d belongs also to Ux1`.
3.2. Two obstacles from opposite sides. Let us consider the similar BVP but
with obstacles acting from the opposite sides and without loss of generality take
(3.3) v(x1) ≤ 0, v′(x1−) ≤ v′(x1+), v(x1)(v′(x1−)− v′(x1+)) = 0
instead of (2.6). We obtain an analogue of Theorem 3.2 with different subset U−x1`

of KN ∪Kx1 ∪KD ∪Kx1`. Irrespectively to Remark 3.4, if d ∈ KD or d ∈ Kx1 lies
on the righ-most branch and close enough to the origin, v with proper sign of A or
AL, resp., satisfies both (3.3) and v(`) ≥ 0, hence such d ∈ U−x1`

.
Remark 3.5. The second right-most branch of Kx1` lies completely to the right
from all Hn, i.e., in the domain of stability DS of the trivial solution.

Let d ∈ Kx1` be from the second right-most branch. Let the corresponding v
satisfy (2.8). Then numerically we observe that this inequality is sharp. Moreover,
v′(`) ≥ 0 (hence d ∈ Ux1`) or v′(`) ≤ 0 (hence (−u,−v) satisfies (2.1) and (3.3), so
d ∈ U−x1`

) for d being sufficiently close to or far from, respectively, the origin.

4. Examples and numerical results for given obstacles

Let us consider unilateral BVP (1.7), (1.2), (2.1) with a matrix B =
(

1 −2
2 −2

)
.

The set of critical points KS from Lemma 2.3 and Theorem 2.5 is visible on Fig. 1.
One can observe just one branch going to the right and being bounded in d2. This
branch are the only critical points from KD and hence from KS lying in DS , i.e.
to the right from all hyperbolas Hn. The other branches belong to DU .
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Fig. 2: Critical points Kx1 (in violet) for BVP (1.7), (1.2), (1.3), (2.6) with x1 = 0.6π.
Profile of solution u in red and v in green for (d1, d2) = (0.6, 0.944) ∈ Kx1 on the

horizontal branch and for (d1, d2) = (0.218, 3.52) ∈ Kx1 on the second violet branch.
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