
Archivum Mathematicum

Aneta Wróblewska-Kamińska
Stability with respect to domain of the low Mach number limit of compressible
heat-conducting viscous fluid

Archivum Mathematicum, Vol. 59 (2023), No. 2, 231–243

Persistent URL: http://dml.cz/dmlcz/151570

Terms of use:
© Masaryk University, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/151570
http://dml.cz


ARCHIVUM MATHEMATICUM (BRNO)
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STABILITY WITH RESPECT TO DOMAIN OF THE LOW
MACH NUMBER LIMIT OF COMPRESSIBLE

HEAT-CONDUCTING VISCOUS FLUID

Aneta Wróblewska-Kamińska

Abstract. We investigate the asymptotic limit of solutions to the Navier-Sto-
kes-Fourier system with the Mach number proportional to a small parameter
ε→ 0, the Froude number proportional to

√
ε and when the fluid occupies large

domain with spatial obstacle of rough surface varying when ε→ 0. The limit ve-
locity field is solenoidal and satisfies the incompressible Oberbeck–Boussinesq
approximation. Our studies are based on weak solutions approach and in order
to pass to the limit in a convective term we apply the spectral analysis of the
associated wave propagator (Neumann Laplacian) governing the motion of
acoustic waves.

1. Introduction and formulation of the problem

The Oberbeck-Boussinesq approximation is a mathematical model of a strati-
fied flow, where the fluid is assumed to be incompressible and yet convecting a
diffusive quantity creating positive and negative buoyancy force. Then the system
of equations reads:
(OB1) divxU = 0 ,

(OB2) % (∂tU + divx (U ⊗U)) +∇xP = µ∆U + r∇xF ,

(OB3) %cp (∂tΘ + divx (UΘ))− κ(ϑ)∆Θ− %ϑαdivx (FU) = 0 ,

(OB4) r + %αΘ = 0 ,
where U denotes the velocity of the fluid, Θ stands for the deviation of the
temperature, P is the pressure, constants µ, κ, %, cp, α are positive (will be
defined later). Here F stands for potential of a driving force (e.g. gravitational
potential) acting on the fluid. Let us note that the density is constant in the
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Oberbeck-Boussinesq approximation except in the buoyancy force, where it is
interrelated in the temperature deviation through Boussinesq relation (OB4), (see
Zeytounian [12]). Let us notice that in the OB approximation Θ is a deviation
of temperature from the equilibrium rather then the temperature itself and the
temperature deferences are not caused by the flow, but exists independent of the
flow. Our aim is to derive the above system on an exterior domain R3 \ O with
no-slip boundary condition on the bounded obstacle O. Therefore we study stability
of the rescaled compressible Navier-Stokes-Fourier system when a Mach number is
proportional to a small parameter, i.e. Ma = ε and ε→ 0, and a Froude number
Fr =

√
ε. About other characteristic numbers like Strouhal, Reynolds, Péclet

number we assume they are equal one.
We are motivated by a similar asymptotic analysis of barotropic compressible

fluid flow, described by the Navier–Stokes system with a low Mach number on
varying domains provided in [5]. Our aim is to extend this result to the case of
heat-conducting fluids by methods developed in [3, 7]. The asymptotic analysis of
complete fluid system on varying domains (but in different way then here) and with
a small Mach number is considered in [11], where the author justify OB system on
whole R3 space with concentric gravitation force.

Following [2,5] we introduce a class of admissible domains with rough (oscillating)
boundaries of some obstacle. It was observed that such a choice may give rise
to the no-slip boundary condition for the asymptotic limit of velocity field. In
particular we assume that the given family of domains {Ωε}ε satisfies the following
hypothesis:

D1) Ωε ⊂ R3 is bounded domain with C2 boundary for each ε ∈ (0, 1) and
∂Ωε = ∂Oε ∪ Sε;

D2) for simplicity we assume that the outer part of boundary Sε consists of a
sphere centred in the origin and of a radius 1

εδ
with δ > 0 (i.e. the domain

is sufficiently ”large”);
D3) the boundary of the obstacle ∂Oε is such that for all ε ∈ (0, 1) Oε ⊂

Br(0) ⊂ B1/εδ(0) with some fixed r > 0;
D4) R3 \ Oε satisfies the uniform α-cone condition with α > 0 independent

of ε. Namely for any x0 ∈ ∂Oε there exists a unit vector ξx0 ∈ R3 s.t.
C(x, γ, α, ξx0) ⊂ (R3 \ Oε) whenever x ∈ R3 \ Oε, |x − x0| < α, where
C(x, γ, α, ξ) = {y ∈ R3 | 0 < |y − x| ≤ α, (y − x) · ξ > cos(γ)|y − x|} with
vertex at x, aperture 2γ < π, height α, and orientation given by a unit
vector ξ;

D5) for each x0 ∈ ∂Oε, there are two open balls Br(xi) ⊂ Ωε, Br(xj) ⊂ Oε of
radius r > cbε

β (the radius r may change but sufficiently ”slow”) such that
Br(xi) ∩Br(xj) = x0 with cb > 0, β > 0 independent of ε;

D6) after translation and rotation of the coordinate system, a part Γ ⊂ ∂O
can be described by a graph of function γ ∈ W 1,∞(U), U ⊂ R3 and
Γ = {x ∈ R3 : (x1, x2) ∈ U, x3 = γ(x1, x2)} while Γε = ∂Oε ∩ U × R
are represented by Γε = {x ∈ R3 : (x1, x2) ∈ U, x3 = γε(x1, x2)}, where
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{γε}ε is a bounded sequence in W 1,∞(U), γε → γ in C(U). Moreover Γε
are oscillating for ε→ 0. Namely, when we introduce a Young measure ν[y],
y ∈ U , associated to the sequence {∇yγε}ε, we suppose that supp [ν[y]]
contains two independent vectors in R2 for a.a. y ∈ U .

In certain sense Ωε → R3 \ O. We give here a mathematical justification of the
Oberbeck-Boussinesq approximation of a incompressible flow on exterior domain
Ω = R3 \O with no-slip boundary condition on the obstacle by asymptotic analysis
of weak solutions to the compressible Navier-Stokes-Fourier system in a low Mach
number regime: Ma = ε→ 0, on a family of domain Ωε varying with ε > 0.

2. Primitive system

In the beginning of this section let us introduce some standard notation. We
denote by 〈·, ·〉 duality pairing. By Lp(B) we mean the space of Lebesgue measurable
functions g, where |g|p is integrable over set B. The Sobolev space of functions which
derivatives are integrable up to order k in Lp we denote by W k,p. By Dk,p(B) we set
homogenous Sobolev spaces i.e. Dk,p(B) = {g ∈ L1

loc(B) : Dαg ∈ Lp(B), |α| = k},
where k ≥ 0 and p ≥ 1. In the whole paper c will denote generic constant which
may change from line to line.

We start our considerations with a “primitive system” – the rescaled Navier-Sto-
kes-Fourier system with a small Mach and Froude number which consists of: the
continuity equation (conservation of mass), the momentum equation, the entropy
balance and the total energy balance respectively
(NSF1

ε) ∂t%ε + divx (%εuε) = 0 ,

∂t(%εuε) + divx (%εuε ⊗ uε) + 1
ε2∇xp(%ε, ϑε)

= divx SSS(ϑε,∇xuε) + 1
ε
%ε∇xFε ,(NSF2

ε)

(NSF3
ε) ∂t(%εs(%ε, ϑε)) + divx (%εs(%ε, ϑε)uε) + divx

(
q(ϑε,∇xϑε)

ϑε

)
= σε ,

(NSF4
ε)

d

dt

∫
Ωε

(
1
2%ε|uε|

2 + 1
ε2 %εe(%ε, ϑε)−

1
ε
%εFε

)
dx = 0 .

Where the viscous stress tensor satisfies the Newton rheological law and the heat
flux is determined by the Fourier law:

SSS(ϑε,∇xuε) = µ(ϑε)
(
∇xuε +∇Txuε −

2
3divx uεIdIdId

)
+ η(ϑε)divx uεIdIdId ,

q(ϑε,∇xϑε) = −κ(ϑε)∇xϑε
with a positive heat coefficient κ and for the entropy production rate holds:

(2.1) σε ≥
1
ϑε

(
ε2SSSε(ϑε,∇xuε) : ∇xuε −

qε(ϑε,∇xϑε) · ∇xϑε
ϑε

)
.
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The unknowns are the fluid mass density %ε = %ε(t, x), the velocity field uε =
uε(t, x) : (0, T )×Ωε → R3 and absolute temperature ϑε = ϑε(t, x) : (0, T )×Ωε → R.
The pressure p, the specific internal energy e and the specific entropy s are given
scalar valued functions of % and ϑ which are related through Gibbs’ equation
ϑDs = De+ pD(1/%) . The system is supplemented with complete slip boundary
conditions for velocity field and the boundary of physical space is thermally isolated,
i.e.

(2.2) uε · n|∂Ωε = 0 , [SSS(ϑε,∇xuε)n]× n = 0 , q · n|∂Ωε = 0 .

Small parameter ε in the system (NSF1
ε)–(NSF4

ε) results from dimensionless form
of a Navier-Stokes-Fourier system and corresponds to small Mach and Froude
number (Ma= ε, Fr=

√
ε), see [6], Klein at al. [9], Zeytounian [13]. Smallness of

Mach number physically means that characteristic speed of the flow is dominated
by the speed of the sound in the medium under consideration. Assumption that
Fr >> Ma means that external sources of mechanical energy are small and Ma

Fr → 0,
what corresponds to low stratification).

2.1. Structural restrictions. In order to be able to use the existence result of
[6] and later to build uniform estimates, we need to impose structural restrictions
on the thermodynamical functions p, e, s as well as on the transport coefficients
µ, η, κ. Following [6] (where the reader can find more detailed description and
physical motivations) we set

p(%ε, ϑε) = ϑ5/2
ε P

(
%ε

ϑ
3/2
ε

)
+ a

3ϑ
4
ε , a > 0 , where P ∈ C1[0,∞) ∩ C2(0,∞) ,

P (0) = 0 , P ′(Z) > 0 for all Z ≥ 0 ,

(2.3)

0 <
5
3P (Z)− P ′(Z)Z

Z
< c for all Z > 0, lim

Z→∞

P (Z)
Z5/3 = P∞ > 0,

and ∂%p(%, ϑ) > 0 .
(2.4)

Accordingly to Gibbs’ relation, the specific internal energy and the entropy can be
written in the following forms

(2.5) e(%, ϑ) = 3
2
ϑ5/2

%
P
( %

ϑ3/2

)
+ a

ϑ4

%
, ∂ϑe(%, ϑ) > 0

is positive and bounded,

(2.6) s(%, ϑ) = S
( %

ϑ3/2

)
+ 4

3a
ϑ3

%
, S′(Z) = −3

2

5
3P (Z)− ZP ′(Z)

Z2

for all Z > 0 .

The transport coefficients: µ - shear viscosity, η - bulk viscosity and κ - heat conduc-
tivity are assumed to be continuously differentiable functions of the temperature
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ϑ ∈ [0,∞) satisfying the following growth conditions for all ϑ ≥ 0 and some positive
constants µ, µ, η, κ, κ:

0 < µ(1 + ϑ) ≤ µ(ϑ) ≤ µ(1 + ϑ) , 0 ≤ η(ϑ) ≤ η(1 + ϑ) ,
0 < κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3) .

(2.7)

2.2. Equilibrium state and ill-prepared initial data. Let us assume that
outer force F is defined on whole space R3 and is independent of ε. The so-called
equilibrium state (static state) for each scaled NSFε system consist of static density
%̃ε and constant temperature distribution ϑ satisfying (for a convenience we consider
a static density %̃ε defined on the whole space R3)

∇xp(%̃ε, ϑ) = ε%̃ε∇xFε in R3 where lim
|x|→∞

%̃ε(x) = % .

Hence we have

%̃ε − % = ε

P ′(%)F + ε2hεFε, with P ′(%) = 1
%
∂%p(%, ϑ), ‖hε‖L∞(R3) < c

and |∇x%̃ε(x)| ≤ εc|∇xFε(x)| for x ∈ R3
(2.8)

(notice that the above properties gives closeness of static density %̃ε and constant
state %). Since we work with weak solutions based on energy estimates and control
of entropy production rate we need to assume that initial data are close to the
equilibrium state. Namely initial density and initial temperature are of the following
form

(2.9) %0,ε = %̃ε + ε%
(1)
0,ε , ϑ0,ε = ϑ+ εϑ

(1)
0,ε

where ϑ > 0 is positive constants characterising the static distribution of the
absolute temperature and

(2.10)
‖%(1)

0,ε‖L∞∩L2(Ωε) ≤ c ,
∫
%

(1)
0,ε dx = 0 , ‖ϑ(1)

0,ε‖L∞∩L2(Ωε) ≤ c ,∫
ϑ

(1)
0,ε dx = 0 , ‖u0,ε‖L∞∩L2(Ωε) ≤ c for all ε ∈ (0, 1] .

The above uniform bounds will allow to control right hand side of total dissipation
balance which is a source of uniform estimates needed to perform the limit system.
Nevertheless, such a choice allow to consider nontrivial dynamics but on the
other hand it causes oscillations in acoustic equation. Those will be eliminated by
dispersive estimates.

2.3. Main result. We say that functions U , Θ and r are a weak solution to the
Oberbeck-Boussinesq approximation (OB) if holds: U ∈ L∞(0, T ;L2(Ω; R3)) ∩
L2(0, T ;W 1,2(Ω; R3)), Θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)),
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r ∈ L∞(0, T ;L5/3
loc (Ω)) and

divxU = 0 a.e. on (0, T )× Ω ,∫ T

0

∫
Ω

(%(U · ∂tϕ+ (U ⊗U) : ∇xϕ)) dx dt

= −
∫

Ω
%U0 · ϕ(0, ·) dx+

∫ T

0

∫
Ω

(SSS : ∇xϕ− r∇xF · ϕ) dxdt

(2.11)

for any ϕ ∈ C∞c ([0, T );C∞c (Ω; R3)), where divx ϕ = 0 and SSS = µ(ϑ)(∇xU+∇xUT ).
Moreover

%cp(%, ϑ) [∂tΘ + divx (ΘU)]− divx (κ(ϑ)∇xΘ)− %ϑα(%, ϑ)divx (FU) = 0
a.e. in (0, T )× Ω ,

Θ(0, ·) = Θ0

r + %α(%, ϑ)Θ = 0 a.e. in (0, T )× Ω .

(2.12)

By cp we mean specific heat at constant pressure and cp(%, ϑ) = ∂ϑe(%, ϑ) +
α(%, ϑ)ϑ%∂ϑp(%, ϑ) by α > 0 we mean the coefficient of thermal expansion of the

fluid, α(%, ϑ) = 1
%
∂ϑp(%,ϑ)
∂%p(%,ϑ)

, both are evaluated at the reference density % and
temperature ϑ. Then the main result reads as follows:

Theorem 2.1. Let Ωε ⊂ R3 be a family of domains defined by (D1)–(D5) with
β < 1

4 and δ > 1. Assume that p, e, and s satisfy (2.3)–(2.6), the transport
coefficients µ, η and κ satisfy growth conditions (2.7) and driving force is determined
by a scalar potential F ∈ W 1,∞(R3). Let {%ε,uε, ϑε}ε>0 be a family of weak
solutions to the scaled Navier-Stokes-Fourier system (NSF1

ε)–(NSF4
ε), on the sets

(0, T ) × Ωε, supplemented with boundary conditions (2.2) and initial data (2.9)
with %̃ε > 0, % > 0 and ϑ > 0, and satisfying (2.10) for all ε ∈ (0, 1). Moreover we
assume that

%
(1)
0,ε ⇀ %

(1)
0 weakly in L2(R3) , u0,ε ⇀ U0 weakly in L2(R3; R3) ,

ϑ
(1)
0,ε ⇀ ϑ

(1)
0 weakly in L2(R3) .

Then for suitable subsequence as ε→ 0 we obtain that

%ε → % strongly in L∞(0, T ;L5/3(K)) , %ε − %
ε

⇀ r weakly in L2(0, T ;L2(K)) ,

ϑε − ϑ
ε

⇀ Θ weakly in L2(0, T ;W 1,2(R3)),

uε ⇀ U weakly in L2(0, T ;W 1,2(R3; R3)) , uε → U strongly in L2((0, T )×K; R3)

for any compact set K ⊂ Ω, where functions U , Θ is a weak solution of the
Oberbeck-Boussinesq approximation (OB1)–(OB4) in (0, T )× R3 in the sense spe-
cified in (2.11)–(2.12) with U(0, ·) = H[U0] and Θ0 = ϑ

(1)
0 . Moreover if (D6) is

satisfied, U |∂O = 0.
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Here H [·] denotes the projection on the space of divergence free functions on Ω
of Helmholtz decomposition. The rest of the paper is devoted to the proof of the
Theorem 2.1 or rather to the sketch of the proof with references where reader can
find all details.

3. Proof of the Theorem 2.1

Since for each ε ∈ (0, 1) the set Ωε is sufficiently regular and bounded, in
order to provide the existence of the family of weak solutions {%ε,uε, ϑε}ε>0 to the
primitive system - compressible Navier-Stokes-Fourier (NSF1

ε)–(NSF4
ε) stated on Ωε

we use the result of E. Feireisl and A. Novotný [6, Theorem 3.2]. Then the following
regularity of solutions can be obtained: %ε ∈ Cweak(0, T ;L5/3(Ωε)), %ε ∈ Lq((0, T )×
Ωε) for a certain q > 5

3 and uε ∈ L2(0, T ;W 1,2(Ωε; R3)). Moreover the absolute
temperature ϑε is a measurable function ϑε(t, x) > 0 for a.a. (t, x) ∈ (0, T )× Ωε

and ϑε ∈ L2(0, T ;W 1,2(Ωε)) ∩ L∞(0, T ;L4(Ωε)), log ϑε ∈ L2(0, T ;W 1,2(Ωε)).

3.1. Uniform bounds. All uniform bounds stated below may be seen as a direct
consequence of total dissipation balance and more detailed reasoning may be found
in [6, 7, 11].

To begin with, according to these references, we introduce essential and residual
part of a measurable function h as

h = [h]ess + [h]res, [h]ess = χ(%ε, ϑε)h , [h]res = (1− χ(%ε, ϑε))h ,
where χ ∈ C∞c ((0,∞) × (0,∞)), 0 ≤ χ ≤ 1, χ = 1 on the set Oess and Oess =
[%/2, 2%]× [ϑ/2, 2ϑ], Ores = (0,∞)2 \ Oess.

The total dissipation balance reads then∫
Ωε

(
1
2%ε|uε|

2
)

(t) dx

+ 1
ε2

(
Hϑ(%ε, ϑε)− (%ε − %̃ε)

∂Hϑ(%̃ε, ϑ)
∂%

−Hϑ(%̃ε, ϑ)
)

(t) dx

+ ϑ

ε2σε
[
[0, t]× Ωε

]
=
∫

Ωε

(
1
2%0,ε|u0,ε|2

)
dx

+ 1
ε2

(
Hϑ(%0,ε, ϑ0,ε)− (%0,ε − %̃ε)

∂Hϑ(%̃ε, ϑ)
∂%

−Hϑ(%̃ε, ϑ)
)

dx ,

(3.1)

where Hϑ is ballistic free energy and Hϑ(%, ϑ) = %
(
e(%, ϑ)− ϑs(%, ϑ)

)
.

It is provided (see Lemma 5.1 in [6]) that Hϑ(%ε, ϑε) − (%ε − %̃ε)
∂H

ϑ
(%̃ε,ϑ)
∂% −

Hϑ(%̃ε, ϑ) is non-negative, strictly coercive, attain global minimum zero at point
(%̃ε, ϑ), dominates internal energy %e and entropy s far from (%̃ε, ϑ). Therefore
according to our assumptions we are able to deduce from (3.1) that (for details see
[5, 6, 7, 11])

ess sup
t∈(0,T )

∫
Ωε
%ε|uε|2(t, ·) dx ≤ c, ess sup

t∈(0,T )
‖√%εuε‖L2(Ωε;R3) ≤ c
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ess sup
t∈(0,T )

∥∥∥∥[%ε − %̃εε

]
ess

(t, ·)
∥∥∥∥
L2(Ωε)

≤ c , ess sup
t∈(0,T )

∥∥∥∥[ϑε − ϑε

]
ess

(t, ·)
∥∥∥∥
L2(Ωε)

≤ c ,

‖σε‖M+([0,T ]×Ωε) ≤ ε
2c ,

ess sup
t∈(0,T )

∫
Ωε

(|[%εe(%ε, ϑε)]res|+ |[p(%ε, ϑε)]res|+ |[%εs(%ε, ϑε)]res|dx) ≤ ε2c ,

ess sup
t∈(0,T )

∫
Ωε

[%ε]5/3res (t, ·) + [ϑε]4res(t, ·) dx ≤ ε2c , ess sup
t∈(0,T )

∫
Ωε

1lres(t, ·)dx ≤ ε2c ,

ess sup
t∈(0,T )

∥∥∥∥[%ε − %̃εε

]
res

∥∥∥∥
L1(Ωε)

≤ cε ,

∫ T

0

∥∥∥∥ϑε − ϑε

∥∥∥∥2

W 1,2(Ωε;R3)
dt+

∫ T

0

∥∥∥∥ log(ϑε)− log(ϑ)
ε

∥∥∥∥2

W 1,2(Ωε;R3)
dt < c ,

∫ T

0
‖uε‖2W 1,2(Ωε;R3) dt < c .

3.2. Convergence. The hypotheses stated on the family of {Ωε}ε provides us:
• the uniform extension property [8]. Namely there exists an extension opera-

tor Eε s.t. Eε : W 1,p(Ωε) 7→ W 1,p(R3), Eε[v]|Ωε = v and ‖Eε[v]‖W 1,p(R3) ≤
c‖v‖W 1,p(Ωε), where the constant c is independent of ε→ 0.

• there exists bounded domain O s.t. R3\O satisfy the uniform α-cone condition
and a suitable subsequence of ε’s such that |(R3 \Oε)\ (R3 \O)| → 0 as ε→ 0.
This property is crucial when studying stability if the spectral properties of
the Neumann Laplacian, see [1, 5], to provide decay of acoustic waves. For
each x0 ∈ ∂O there is xε,0 ∈ ∂Oε such that xε,0 → x0 and O ⊂ Bs(0) and for
any compact K ⊂ Ω, there exists ε(K) such that K ⊂ Ωε for all ε < ε(K).

Since the family of {Ωε}ε possesses a uniform extension property we may deduce
from uniform estimates that

(3.2) uε ⇀ U weakly in L2(0, T ;W 1,2(R3; R3)) ,

ess sup
t∈(0,T )

‖ϑε(t, ·)− ϑ‖L2(Ωε) → 0 as ε→ 0 ,

Θε = ϑε − ϑ
ε

⇀ Θ weakly in L2(0, T ;W 1,2(R3)) .

Following the same procedure as in [7, 11] by uniform estimates and closeness of %
and %̃ε (2.8) we get

ess sup
t∈(0,T )

‖%̃ε(t, ·)− %‖L5/3+Lq(Ωε) → 0 ,

ess sup
t∈(0,T )

‖%ε(t, ·)− %̄‖L2+L5/3+Lq(Ωε) → 0 as ε→ 0 for q > 3 ,

%ε − %
ε

∗
⇀ r weakly* in L∞(0, T ;L5/3(K)) for any compact K ⊂ Ω for ε→ 0 .
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Therefore fluid density becomes constant since ε → 0, i.e. as the Mach number
tends to zero. Then continuity equations provides, that

divxU = 0 a.a. in (0, T )× Ω .

By boundary conditions and properties of Ωε the limit velocity field satisfies the
impermeability condition U · n|∂O = 0 in a weak sense. Moreover the analysis
provided by [2], see also [5, Sec. 6.2], gives that U |∂O = 0 if (D6) is satisfied.

To pass to the limit in rescaled NSFε system one of the most difficult steps is
to provide strong convergence of the velocity field in order to control the limit of
convective term. Namely we need to show that

uε → U strongly in L2((0, T )×K) for any compact K ⊂ R3 \O .

The main obstacle here are possible oscillations in time of the momentum, since
from momentum equations we do not control its time derivative. Then one can
observe that it is sufficient to provide that (see [3, 7, 11])

(3.3) %εuε → %U in L2(0, T ;W−1,2(K)).

Then due to (3.2) it is even enough to prove, instead of (3.3), that{
t→

∫
R3

(%εuε)(t, ·)ϕ dx
}

is precompact in L2(0, T )

and

(3.4)
{
t→

∫
R3
%εuε(·, t) ·ϕ dx

}
→

{
t→ %

∫
R3
U(·, t) ·ϕdx

}
in L2(0, T )

for any fixed ϕ ∈ C∞(R3) where suppϕ ⊂ K as ε→ 0.

3.3. Reformulation to the wave equation. Dispersive estimates – local
decay of acoustic wave. As it was already emphasised, our aim now is to show
(3.4). This will be provided by the analyse of Lighthill’s acoustic analog (see [10])
of our primitive NSFε system, namely

(3.5) ε∂tSε + ωdivx V ε = εf̃1
ε , ε∂tV ε +∇xSε = εf̃

2
ε ,

with homogenous Neuman boundary condition V ε · n|∂Ωε = 0 where

Sε = A

(
%ε − %
ε

)
+B

(
%εs(%ε, ϑε)− %s(%, ϑ)

ε

)
− %Fε + B

ε
Σε , V ε = %εuε ,

(3.6)

f̃1
ε = divx B

(
%ε
s(%, ϑ)− s(%ε, ϑε)

ε
uε

)
︸ ︷︷ ︸

H1
ε

+divx B
(
κ(ϑε)
ϑε

∇xϑε
ε

)
︸ ︷︷ ︸

H2
ε

(3.7)
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f̃
2
ε =∇x

1
ε

[
A

(
%ε − %
ε

)
+B

(
%εs(%ε, ϑε)− %s(%, ϑ)

ε

)
−
(
p(%ε, ϑε)− p(%, ϑ)

ε

)]
︸ ︷︷ ︸

G3
ε

− divx

(%εuε ⊗ uε)︸ ︷︷ ︸
G2,2
ε

+ SSSε︸︷︷︸
G2,1
ε

+ %ε − %
ε
∇xFε︸ ︷︷ ︸

G4
ε

+B
1
ε2∇xΣε︸ ︷︷ ︸
∇xG1

ε

.

Where Σε is a time lifting of σε ([6, 7, 11]) and constants A, B, ω are chosen
s.t. B%∂ϑs(%, ϑ) = ∂ϑp(%, ϑ) and A + B∂%(%s)(%, ϑ) = ∂%p(%, ϑ), ω = ∂%p(%, ϑ) +
|∂ϑp(%,ϑ)|2

%2∂ϑs(%,ϑ)
> 0 (see e.g. [6, 7, 11]). Notice that ω is bounded due to structural

restrictions on p and s.
Let ∇xΦε denote acoustic potential, i.e.

V ε =Hε[V ε] +∇xΦε.

Accordingly we may rewrite (3.5)1 in the following form

ε

∫ T

0
〈Sε(t, ·), ∂tϕ〉dt+ ω

∫ T

0

∫
Ωε
∇xΦε · ∇xϕdxdt

= ε 〈S0,ε, ϕ(0, ·)〉+ ε

∫ T

0

∫
Ωε

(H1
ε +H2

ε ) · ∇xϕdxdt
(3.8)

for all ϕ ∈ C∞c ([0, T ]×Ωε). Next since ϕ = ∇x∆−1
ε,N[ϕ] is an admissible test function

in (3.5)2 (due to slip boundary condtion on uε) we obtain by integration by parts
that

ε

∫ T

0

∫
Ωε

Φε · ∂tϕdt−
∫ T

0
〈Sε, ϕ〉[M,C] dt = −ε

∫
Ωε
V0,ε · ∇x∆−1

ε,N[ϕ(0, ·)] dx

− ε
{∫ T

0
〈G1

ε(t, ·), ϕ〉dt+
∫ T

0

∫
Ωε
G2,1
ε : ∇2

x∆−1
ε,N[ϕ] dxdt

+
∫ T

0

∫
Ωε
G2,2
ε : ∇2

x∆−1
ε,N[ϕ] dxdt+

∫ T

0

∫
Ωε
G3
εϕdxdt

+
∫ T

0

∫
Ωε
G4
ε · ∇x∆−1

ε,N[ϕ] dxdt
}
.

(3.9)

The above equations represent a weak formulation of the acoustic equation for
the potential of the gradient part of the momentum with Neumann boundary
conditions.

Summarising computation from previous sections, due to uniform estimates
obtained in Section 3.1 equations (3.8) and (3.9) can be rewritten in the following
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more conscious form (see [5, 11])

ε

∫ T

0
〈Sε(t, ·), ∂tϕ〉dt+ ω

∫ T

0

∫
Ωε
∇xΦε · ∇xϕdxdt

= ε 〈S0,ε, ϕ(0, ·)〉+ ε

ε2β

∫ T

0

∫
Ωε
J1
εϕ+ J2

ε (−∆ε,N)3/2[ϕ]

+ J3
ε (−∆ε,N)1/2[ϕ] + J4

ε (−∆ε,N)[ϕ] dxdt

(3.10)

for all ϕ ∈ C∞c ([0, T ]× Ωε) and

ε

∫ T

0

∫
Ωε

Φε · ∂tϕdt−
∫ T

0
〈Sε, ϕ〉dt = −ε

∫
Ωε

Φ0,εϕ(0, ·) dx

− ε

ε2β

∫ T

0

∫
Ωε

{
J̃1
εϕ+ J̃2

ε (−∆ε,N)−1/2[ϕ] + J̃3
ε (−∆ε,N)1/2[ϕ]

+ J̃4
ε (−∆ε,N)−1[ϕ] + J̃5

ε (−∆ε,N)[ϕ]
}

dxdt

(3.11)

for any ϕ ∈ C∞c ([0, T )×K), K compact subset of R3 \O, ∇xϕ · n|∂Ωε = 0, where

‖J i‖L2((0,T )×Ωε) < c for i = 1, . . . , 4 and ‖J̃j‖L2((0,T )×Ωε) < c for j = 1, . . . , 5

and for sufficiently small ε and supplemented with the following initial data

S0,ε = (−∆ε,N)[S̃1
0,ε] + (−∆ε,N)1/2[S̃2

0,ε] + S̃3
0,ε ,

with ‖S̃i0,ε‖L2(Ωε) ≤ c and

Φ0,ε = (−∆ε,N)−1divx V0,ε, where ‖(−∆ε,N)−1/2[Φ0,ε]‖L2(Ωε) ≤ c .

Then the Duhamel formula gives as an explicit formulation for acoustic potential,
i.e.:

Φε(t, ·) = 1
2 exp

(
± i
√
−ω∆ε,N

t

ε

)[
Φ0,ε ±

i√
−ω∆ε,N

[S0,ε]
]

+ ε−2β 1
2

∫ T

0
exp

(
± i
√
−ω∆ε,N

t− s
ε

)[
F̃2,ε(s)±

i√
−ω∆ε,N

F̃1,ε(s)
]
ds ,

(3.12)

where
F̃1,ε = J1

ε + (−∆ε,N)3/2[J2
ε ] + (−∆ε,N)1/2[J3

ε ] + (−∆ε,N)[J4
ε ],

F̃2,ε = J̃1
ε + (−∆ε,N)−1/2[J̃2

ε ] + (−∆ε,N)1/2[J̃3
ε ] + (−∆ε,N)−1[J̃4

ε ] + (−∆ε,N)[J̃5
ε ]

(see (3.10), (3.11)). Let us remark that the “large” coefficient ε−2β appearing in
(3.10), (3.11) and (3.12) is a consequence or roughness of the obstacle Oε (see (D5)).
More precisely, an elliptic estimate employed to derive (3.10), (3.11) depends on ε,
i.e. ‖∇2

xϕ‖Lp(Ωε) ≤ c(p)
(
‖∆xϕ‖Lp(Ωε) + 1

ε2β ‖ϕ‖Lp(Ωε)
)

for any ϕ ∈ C∞c (Ωε) with
∇xϕ · n|∂Ωε = 0, with 1 < p <∞.
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With above formulation at hand and by methods developed in [4] we are able to
provide local decay of acoustic wave and consequently to show that

(3.13)
{
t→

∫
Ωε

ΦεG(−∆ε,N)[ϕ] dx
}
→ 0 in L2(0, T ) ,

any G ∈ C∞c (0,∞), what in fact is a key point to prove (3.4) and consequently
to provide convergence in convective term (see for details [5, 11]). The following
lemma gives a local decay of acoustic waves.

Lemma 3.1 ([4, 5]). We have∫ T

0

∣∣∣∣∣
〈

exp
(
i
√
−∆ε,N

t

ε
[Ψ], G(−∆ε,N)[ϕ]

)〉
Ω̃ε

∣∣∣∣∣
2

dt ≤ εc(ϕ,G)‖Ψ‖2
L2(Ω̃ε)

for any ϕ ∈ C∞c (K), Ψ ∈ L2(Ω̃ε), and any G ∈ C∞c (0,∞), where is s.t. K ⊂
R3 \Oε.

Lemma 3.1 applied to Φε given by formula (3.12) provides (3.13), if β < 1
4 ,

see [4] for details. The explicitly given rate of the decay in Lemma 3.1 allow to
compensate exploding coefficient ε−2β which reflects the influence of perturbations
of the domain. Moreover, let us remark that in order to provide good properties of
the spectrum of Neumann Laplacian −∆ε,N it is crucial to notice that the outer
boundary (the boundary of the sphere Sε) is irrelevant for the local analysis (on
supports of test functions ϕ) and in fact we may consider the operator −∆ε,N on
unbounded domain R3 \Oε. Indeed in (3.5) the speed of propagation is finite and
proportional to

√
ω/ε and the boundary Sε is sufficiently “far”, since δ > 1. For

details see again [5, 11].
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