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CONSTRAINED K-MEANS ALGORITHM FOR RESOURCE
ALLOCATION IN MOBILE CLOUDLETS

Rasim M. Alguliyev, Ramiz M. Aliguliyev, and Rashid G. Alakbarov

With the rapid increase in the number of mobile devices connected to the Internet in recent
years, the network load is increasing. As a result, there are significant delays in the delivery of
cloud resources to mobile users. Edge computing technologies (edge, cloudlet, fog computing,
etc.) have been widely used in recent years to eliminate network delays. This problem can
be solved by allocating cloud resources to the cloudlets that are close to users. The article
proposes a clustering-based model for the optimal allocation of cloud resources among cloudlets.
The proposed model takes into account user activity, usage frequency of cloud resources, the
physical distance between users and cloud resources, as well as the storage capacity of cloudlets
for optimal allocation of cloud resources in cloudlets. The proposed model was formalized as a
constrained k-means method and an algorithm was developed to solve it. The MATLAB 2022a
toolkit was used to evaluate the efficiency of the proposed algorithm. The obtained results
revealed that the algorithm is promising.

Keywords: mobile cloud computing, edge computing, cloudlet, cloud resources, con-
strained k-means

Classification: 90B80, 62H30, 90B18

1. INTRODUCTION

Recently developed mobile applications require more computing resources. Mobile de-
vices have limited computing and memory resources due to their portable size. Limited
resources of mobile devices (processing power, battery life, and storage capacity) cre-
ate problems for users in using software applications that require large computing and
memory resources. Cloud computing is used to solve these problems. Cloud computing
systems are an affordable computing model that provides a rich range of applications and
services, in addition to meeting users’ requirements faster. Cloud technologies provide
solutions to the problems of mobile users on cloud servers with sufficient computing and
memory resources. Mobile cloud computing (MCC) is widely used to provide computing
and memory resources to mobile devices. MCC was a new paradigm created from the
integration of network and computing clouds, providing computing resources for solving
problems of mobile users requiring large computing resources [30]. MCC is a network
infrastructure that processes user applications on remote cloud servers. MCC is a new
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distributed computing system that provides processing power and memory transfer to
cloud servers located away from mobile devices. MCC can also be defined as a combina-
tion of a mobile network and cloud computing where users can access applications and
services over the Internet. In addition, MCC technologies have helped to address many
of the limitations of mobile devices. MCC eliminates the following problems:

• provides mobile users with necessary computing resources;

• allows users to use mobile applications that require high computing resources;

• provides prolongation of battery life of mobile devices;

• provides rapid data processing;

• reduces the probability of data loss due to the use of cloud servers;

• increases the security capabilities of user data;

• etc.

In traditional centralized cloud computing, issues are solved on remote cloud servers,
causing the Internet to overload and delays in delivering results to the user. At the same
time, various applications are used on mobile devices (for example, watching movies,
online shopping, interactive games, social networking services, email services, browsing
web pages, etc.). Extensive use of these services by mobile users leads to the rapid
depletion of power sources (batteries) of mobile devices. On the other hand, when issues
are resolved on remote servers, mobile devices run out of power even more quickly.
Recently, edge computing systems (cloudlets, edge, fog computing, etc.) based on the
infrastructure of cloud computing systems have been used to solve the above-mentioned
problems. Edge (periphery) computing systems are established near places or mobile
equipment where data is generated. Edge computing systems expand the boundaries of
cloud computing systems by directing computing resources to the nearest point where
problems arise [15].

Edge computing is presented as a paradigm that expands the cloud computing plat-
form. The use of fog computing in conjunction with cloud technologies helps reduce the
processing load at the data processing center. Servers that are close to users, process
data and send only the most important data to data processing centers (remote servers).
Edge computing servers are close to the end user and provide them with the necessary
computing resources. Edge calculations are closer to the user, so less time is required to
process and transmit data. As services and features are closer to users in fog computing,
users can also achieve a higher quality of service (QoS).

In edge computing, the data is processed on servers close to the user, which in turn
eliminates delays in the network infrastructure. The purpose of edge computing is
to increase efficiency by processing data where they are generated and to reduce the
amount of data transmitted to remote cloud servers [28]. This also improves security
issues that cause problems in the network infrastructure. Multiple user applications are
processed on remote servers and the transfer of results to them is inefficient. Mobile
Edge Computing (MEC) systems have recently been used to overcome these problems.
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MEC is a newly developed paradigm to meet the computing needs of mobile devices.
MEC delivers computing and memory resources to the boundaries (edges) of the mobile
network, which allows mobile users to quickly process applications that require high
computing resources [21].

The processing devices (cloudlets) used in edge computing are usually located near
the base stations of mobile networks (network access point-AP), and mobile users solve
problems by connecting to them via a wireless communication channel (4G/5G, Wi-
Fi). Non-homogeneous computers (servers, laptops, tablets, etc.) are used to create
cloudlets. Compared to cloud computing, servers in mobile edge computing systems
are located on the edge of the network, which provides faster solutions to mobile users’
problems and faster delivery of results to mobile devices. During the widespread use of
5G communication technologies, a large volume of data uploaded to the main network
will cause serious network delays. Mobile edge computing allows data to be processed
over the network, which can effectively reduce network latency while protecting the
security of user data. Therefore, mobile edge computing systems are a solution developed
to reduce power consumption, and network delays and provide high reliability in mobile
devices. The main goal of the MEC is to reduce network delays by bringing computing
resources from the wide area network (WAN) to edge network resources [1].

In Mobile Edge Computing (cloudlet-based mobile networks) networks, Resource
Management Center (RMC) directs user applications to any cloudlet that has free re-
sources and they’re executed there. However, the issue of proximity between users and
cloudlets is not considered. On the other hand, if the applications in cloudlets are not
optimally distributed in a balanced manner (some of the cloudlets are fully loaded, and
some are left empty), the execution time of the task is extended and the power supply
of the mobile device is quickly depleted.

Thus, the above-mentioned problems increase the power consumption of mobile de-
vices and network delays. Mentioned problems can be solved by optimally placing fre-
quently used applications between cloudlets with high user activity. If frequently used
applications are solved in cloudlets close to users, both the time spent on solving the
problem and the delays are reduced. The proposed tasks scheduling strategy provides re-
ducing power consumption and delays by loading the resources to appropriate cloudlets.
Thus, the article proposes a clustering model to solve the above-mentioned problems.
The major feature of the proposed model is that taking into account the activity of users,
usage frequency of cloud resources, and the physical distance between users and cloud
resources it optimally allocates the cloud resources among multiple cloudlets. The model
allows a balance of the workload between multiple cloudlets and therefore, minimizes
the energy consumption and latency in mobile devices.

The rest of the paper is organized as follows. Section 2 describes a literature review.
Section 3 presents the architecture of cloudlet-based MCC. The problem statement, all
the notations, and definitions are given in Section 4. Section 5 presents the proposed
constrained k-means algorithm. The experimental result is given in Section 6. Finally,
the conclusion is provided in Section 7.
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2. RELATED WORKS

The systematic and comprehensive review of resource planning in mobile edge computing
networks was provided by Luo et al. [20]. Yuyi et al. [34] first of all analyzed the
problems of reducing power consumption and network latency in the MEC systems built
between users and cloud servers and then presented a comprehensive review of the state-
of-the-art MEC research from the communication perspective. Another comprehensive
overview and research outlook of MEC was provided by Mach and Becvar [21] with
a focus on architecture and computation offloading. The main part of the paper was
focused on works dealing with computation offloading to the MEC. They first described
major use cases and reference scenarios where the MEC is applicable, after that reviewed
existing concepts integrating MEC functionalities to the mobile networks and discussed
standardization of the MEC.

Yang et al. [33] studied a distributed computation offloading strategy for a multi-
device and multi-server system in small-cell networks and proposed an optimization
model for joint minimization of energy consumption and latency in mobile devices. By
leveraging the Lyapunov technique, a novel framework OPEN (Online PEer offloadiNg)
was proposed by Chen et al. [14], for the optimization of edge computing performance
under energy constraints of small-cell networks. The framework OPEN assumes that
the task’s arrival rates are precise, which may not hold for all network systems. Hu et
al. [16] formulated the task offloading problem as a constrained NP-hard optimization
problem. To achieve a near-optimal solution the authors designed a task-offloading
algorithm named MEFO (Maximum Efficiency First Ordered).

To compute offloading decision-making problems among users for mobile-edge cloud
computing, Chen et al. [13] modeled the problem as a multi-user computation offloading
game. Multi-user computation offloading game formulation, analysis of computation
offloading game properties and distributed computation offloading algorithm design are
the main results of the paper [13]. Lin et al. [19] considered computation offloading
and resource allocation in an edge computing network with the objective to minimize
the long-term average response time delay under the constraints of long-term averages
of computation and power usage. The problem was formulated as an upper-bound
optimization problem and a distributed an algorithm based on the branch-and-bound
method was developed to solve the optimization problem.

To minimization of the average task completion time for each device, Wang et al. [32]
designed a multi-agent imitation learning-based computation an offloading algorithm in
pervasive edge computing networks. The authors modeled the task scheduling issue as
an optimization problem by considering both the communication and computation abil-
ities of edge devices. Mach and Becvar [21] proposed the edge computing architecture,
where task offloading schemes, resource allocation, and user mobility factors are taken
into account based on QoS parameters. Shen et al. [27] presented a task scheduling
mechanism to optimize energy consumption in a cloud environment. This mechanism
allowed for more efficient use of resources by finding a correlation between the solution
time and energy consumption. In [17], Liao et al. considered the scenario of waiting in
line for a mobile application tasks and the selection of reasonable computing offloading
decisions, when mobile devices’ power is limited in the edge computing system, to reduce
the energy consumption of mobile devices and improve the endurance of mobile devices.
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For minimization of latency and energy mobile consumption, Sachula et al. [25]
considered multilayer MCC architecture consisting of a remote cloud server, cloudlet,
and mobile terminal. They formulated the wireless bandwidth and computing resource
allocation model as a triple-stage Stackelberg game and developed an iterative algorithm
to obtain Stackelberg equilibrium. Zhang et al. [35] formulated the integrated resource
allocation problem for delay-sensitive and delay-tolerant applications as a multi-directed
acyclic graph scheduling problem and proposed a heuristic algorithm called LA-RATS
(Load-Aware Resource Allocation and Task Scheduling strategy) for resource allocation
and task scheduling in the MCC system. In [26], Sajnani et al. proposed a multi-
layer latency-aware workload assignment strategy to tackle the optimal allocation of
mobile users’ workloads into cloudlets with lower Service Delay. For efficiently delivering
the processed data to the user device based on the prediction of the user’s current
location, Shreya et al. [29] proposed a real-time cloud-fog-edge IoT architecture, named
Mobi-IoST (Mobility-aware Internet of Spatial Things). Three-layer (Sensors as IoT
devices; Edge device and fog device; Local and remote cloud servers) architecture IoT-
F2N (IoT using Femtolet-based Fog Network), to reduce delay and energy consumption
was proposed by Mukherjee et al. [23]. The major feature of this architecture is that
the data obtained from sensors were processed and maintained inside the edge and
fog devices. The experiment results showed that IoT-F2N is energy-efficient as well as
reduces delay than the existing cloud-centric IoT architectures. Lin et al. [18] analyzed
the task scheduling problems for edge computing in clouds and proposed the Petrel
algorithm.

To solve cloudlet scheduling problems in a cloud computing environment, Ala’anzy
et al. [6] proposed a novel locust-inspired metaheuristic optimization algorithm. The
main goal of the authors in this paper was that the tasks should be allocated on the
virtual machines (VMs) in order to minimize the makespan and waiting time and maxi-
mize resource utilization. Azad and Navimipour [9] proposed a combination of cultural
and ant colony optimization algorithms for an efficient task allocation algorithm tak-
ing into consideration two important criteria, the makespan, and energy consumption.
Nasr et al. [24] introduced a two-step algorithm for scheduling VMs in a cloud comput-
ing environment for load balancing on VMs and minimization of processing time. To
achieve desired task scheduling, minimize executing time, and improve the QoS of the
clouds, Zhang and Zhou [36] presented a two-stage strategy for task scheduling among
heterogeneous VMs. In the first stage, a Bayes method was used to classify tasks based
on historical scheduling data. In the second stage, tasks were allocated on VMs dy-
namically. An algorithm for selecting VMs to provide task solutions in the cloud with
minimal energy consumption was presented by Bindu et al. [11].

Ahmed et al. [2] analyzed the effect of network-centric parameters on the runtime
application migration and on the execution of applications in MCC. By investigating the
runtime application migration, the authors concluded that application characteristics
and dynamic conditions of the network significantly affect the application performance
metrics. In [8], Asghar and Jung surveyed the scheduling strategies in the context
of edge cloud computing in various aspects such as advantages and disadvantages, QoS
parameters, and fault tolerance. It also surveyed such scheduling approaches to evaluate
which one is feasible under what circumstances.
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Alakbarov and Alakbarov [5] presented the balanced placement of mobile users’
queries taking into consideration the location and technical capabilities of cloudlets lo-
cated near base stations of Wireless Metropolitan Area Networks (WMAN). In [22], Mike
et al. explored the deployment of cloud services and the distribution of mobile users to
cloud services in WMAN. An algorithm was proposed to solve the problem, which allows
hosting cloud services in WMAN regions with high user density and assigning mobile
users to hosted cloud services while balancing their workload. Alakberov [3] considered
the balanced distribution of the tasks in the cloudlet network and proposed a strategy
to select cloudlets based on users’ requirements. Alakberov [4], proposed a strategy for
the selection of high-performance cloudlets considering the types of applications.

3. ARCHITECTURE OF CLOUDLET-BASED MOBILE COMPUTING CLOUDS

Cloud-based mobile edge computing is widely used to reduce network latency and power
consumption on mobile devices. Selection of the most suitable cloudlet that allows users
to quickly run applications in a set of cloudlets remains a big challenge. The architecture
of a hierarchically structured cloudlet-based mobile external computing system in a
wireless metropolitan area network environment is shown for efficient use of cloudlet
resources (Figure 1). The Resource Management Center (RMC) was used to ensure the
optimal distribution of applications on the cloud servers in the Cloudlet network.

Fig. 1. An architecture of cloudlet-based mobile computing network.

On the 1st level, the servers of the cloud computing system are located, on the
2nd level, cloudlets are placed near the base stations, and on the 3rd level and mobile
devices are located. The RCC, which is used in the 2nd level of the hierarchically struc-
tured network contains information about the location of cloudlets and their technical
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capabilities. The task of the RCC is to store the data identifiers (ID) of all existing
cloudlets and mobile users in the cloudlet network in the form of a chart and to direct
the applications to the cloudlets according to the user’s request. Data on applications
used by users is collected in the created network. Based on the mobile user’s request,
applications are downloaded from remote cloud servers to the RCC of the cloudlet net-
work. The management server in the RCC determines the cloudlet in which the mobile
user’s issue should be resolved based on the chart in the server. The central server also
provides data exchange between cloudlets or between users and cloudlets. The control
center contains information about the computer hardware used to create cloudlets. At
the same time, the control center collects information about the technical capabilities
of cloudlets and to which cloudlet users (stationary) are located close. Therefore, ac-
cording to the incoming request, the software add-on called from the cloud servers is
placed in the cloudlet that meets the user’s requirements. Mobile internet users down-
load and use their applications on the cloudlets that are close to them, which in turn
frees the network from overloading. This architecture provides a solution to some of the
stated problems (problem solution time, power consumption, delays in the communica-
tion channel, disconnections, etc.), although partially. Thus, cloudlets are created near
the base stations of mobile operators in order for users to effectively use the services of
mobile cloud technologies. The advantages of using cloudlets include fast service access,
support mobility, and reduced roaming costs.

The purpose of mobile edge computing (cloudlet-based network) created in a wireless
metropolitan area network (WMAN) environment rapidly processes the users’ issues
and reduces network delays. In a wireless metropolitan network, the presence of many
mobile users and the solution to their problems on remote cloud servers cause delays in
the network. Edge computing is used to solve this problem. Placing applications with a
high usage frequency in cloudlets located near users who actively use these applications
is a topical issue.

Thus, in the mobile edge computing environment mentioned in the article, a the plan-
ning model is proposed that ensures the reduction of processing time, network delays,
and power consumption of mobile devices by optimal allocation of cloud resources in
cloudlets.

4. PROBLEM STATEMENT, NOTATIONS, AND DEFINITIONS

Considering following:

• the physical distance between users and cloud resources (applications);

• usage frequency of cloud resources;

• activity of users;

• volume of resources;

• storage capacity of servers,

cloud resources should be allocated in cloudlets and users assigned to servers in such a
way, that users are satisfied with the declared quality of service of cloud service providers
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(CSPs). The solution to this problem can allow us to achieve the following goals at the
same time:

• to minimize the time that users spend downloading and processing cloud resources,
i. e., reducing user costs (because a long time means a lot of costs);

• late depletion of power supply of users’ mobile devices, i. e., increasing power
sustainability;

• avoiding overload of network structure more than intended, i. e., reducing network
delays.

Therefore, considering the abovementioned, a mathematical model was proposed to
download the cloud resources on the cloudlet, rapidly receive results, reduce network
delays, and load balance of cloudlets.

Notations. The following notations are introduced:

• U = {Ui | i = 1, . . . , n} – the set of mobile users, where n is the number of mobile
users;

• R = {Rj | j = 1, . . . ,m} – the set of the most frequently requested cloud resources
by users, where m is the number of resources;

• v = {vj | j = 1, . . . ,m} – the volume of cloud resources;

• F = ‖fi,j‖ − the frequency matrix of the use of cloud resources by users;

• D = ‖di,j‖ – the physical distance matrix from users to cloud resources;

• S = {Sq | q = 1, . . . , k} – the set of servers, where k is the number of servers;

• V = {Vq | q = 1, . . . , k} – the storage capacity of servers;

where vj is the volume of resource Rj ; Vq is the storage capacity of server Sq; fi,j is
the usage frequency of the resource Rj by user Ui ; di,j is the physical distance from the
user Ui to the resource Rj . Here, it is assumed that m� n� k.

Definition 1. (User activity.) The activity of mobile users (αi) is defined as follows:

αi =

m∑
j=1

fi,j∑n
p=1

m∑
q=1

fp,q

, i = 1, . . . , n. (1)

From Eq. (1) follows that:
n∑
i=1

αi = 1. (2)
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Definition 2. (Resource usage frequency.) Analogously the relative usage frequency
of cloud resources (βj) can be calculated as follows:

βj =

n∑
i=1

fi,j∑n
p=1

∑m
q=1 fp,q

, j = 1, . . . ,m. (3)

From Eq. (3) we derive:
m∑
j=1

βj = 1. (4)

As can be seen, there are two types of the distance between the mobile user U = {Uj | i =
1, . . . , n} and the cloud resource R = {Rj | j = 1, . . . ,m}: the semantic F = ‖fi,j‖ and
the physical D = ‖di,j‖

Before formalizing the model, let’s normalize the matrices F and D. Normalization is
a scaling technique in which values are shifted and rescaled so that they end up ranging
between 0 and 1.

Definition 3. (Matrix normalization.) The normalization of the matrices F and D is
done on the basis of sum-based normalization:

λi,j =
fi,j

m∑
p=1

fi,p

, i = 1, . . . , n; j = 1, . . . ,m; (5)

δi,j =
di,j
m∑
p=1

di,p

, i = 1, . . . , n; j = 1, . . . ,m. (6)

From Eqs.(5) and (6) follows that:

m∑
j=1

λi,j = 1, i = 1, . . . , n; (7)

m∑
j=1

δi,j = 1, i = 1, . . . , n, (8)

where λi,j and δi,j are normalized values of the elements fi,j and di,j of the matrices F
and D, respectively.

5. CONSTRAINED K-MEANS ALGORITHM

This section proposes a clustering approach for the optimal placement of resources (R)
among servers (S) and optimal assignment of users (U) to the cloud servers. Before clus-
tering each resourceRj should be represented as a feature vector ρj = {ρi,j | i = 1, . . . , n},
j = 1, . . . ,m. The feature ρi,j is determined as follows:

ρi,j = αiβjλi,jδi,j , i = 1, . . . , n; j = 1, . . . , m. (9)
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Here clusters stand for cloudlets. Therefore, the number of clusters will equal to k.
In general, there are two types of clustering: hard and soft. In this paper, we consider

the hard clustering problem. The hard clustering problem is the distribution of the
cloud resources ρ = {ρ1, . . . , ρm}, (ρj = (ρ1,j , . . . , ρn,j) ∈ Rn, j = 1, . . . ,m) into a given
number k of disjoint subsets Cq ∈ ρ, q = 1, . . . , k with respect to predefined criteria such
that [10]:

• Cq 6= ∅ for any q = 1, . . . , k; (i. e., each subset should have at least one resource
allocated);

• Cq ∩ Cp = ∅ for any q, p = 1, . . . , k; q 6= p (i. e., the subsets should not overlap);

• ρ =
k⋃
q=1

Cq (i. e., each resource should definitely be allocated to a subset);

• no constraints are imposed on the subsets Cq, q = 1, . . . , k.

In another word, in hard clustering, one cloud resource can belong to one cluster only. In
contrast, soft clustering is a form of clustering where each cloud resource may belong to
multiple clusters according to a certain degree, called membership degree, and ranging
in the unit interval.

The subsets C = {Cq | q = 1, . . . , k} are called clusters. We assume that each cluster
Cq can be identified by its center Oq = (O1,q, . . . , On,q) ∈ Rn, q = 1, . . . , k The k-
means and k-nearest neighbor algorithms are well-known clustering algorithms. Various
improvements of these algorithms are still being made [31]. In this paper, we use the
k-means clustering algorithm. Then k-means clustering algorithm can be formulated
as follows. Find cluster centers O = (O1, . . . , Ok) ∈ Rn such that sum of the L2-norm
distance squared between each point ρj = (ρ1,j , . . . , ρn,j) ∈ Rn and its nearest cluster
center Oq = (O1,q, . . . , On,q) ∈ Rn is minimized:

F(x) =
1

m

k∑
q=1

m∑
j=1

‖ρj −Oq‖22 xq,j → min (10)

subject to
k∑
q=1

xq,j = 1 (11)

for any j = 1, . . . ,m where xq,j is the decision variable of the optimization problem,
which is defined as follows:

xq,j =

{
1 if resource ρj is allocated to the cluster Cq
0 otherwise

(12)

and ‖ρj −Oq‖2 is the L2-norm distance (i. e., Euclidean distance) between two vectors
ρj = (ρ1,j , . . . , ρn,j) ∈ Rn and Oq = (O1,q, . . . , On,q) ∈ Rn

‖ρj −Oq‖2 =

√√√√ n∑
i=1

(ρi,j −Oi,q)2 (13)
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and

Oq =

m∑
j=1

xq,jρj

m∑
j=1

xq,j

, q = 1, . . . , k. (14)

Eq. (11) provides that each resource will be allocated only one cluster.
The optimization problem (10) – (12) can be solved by the k-means algorithm itera-

tively [12].

Algorithm 1. (Classic k-means algorithm.) Given a dataset ρ = {ρ1, . . . , ρm}. Com-
pute cluster centers Ot+1

1 , . . . , Ot+1
k at iteration (t+ 1) using the following steps:

Step 1 (Number of clusters). Choose the number of clusters k.

Step 2 (Initial cluster centers). Set t = 0 and select k random data from the dataset
as cluster centers Ot = (Ot1, . . . , O

t
k).

Step 3 (Cluster assignment). For each data ρj= (ρ1,j , . . . ,ρn,j) ∈Rn, assign ρj to clus-
ter Cq such that center Otq is nearest to ρj in the L2-norm.

Step 4 (Cluster update). Recompute the center Ot+1
q of newly formed cluster Cq using

Eq. (14):

Ot+1
q =

m∑
j=1

xtq,jρj

m∑
j=1

xtq,j

, q = 1, . . . , k. (15)

Step 5 (Stopping criterion). Stop the algorithm if one of the following criteria is
satisfied:

1) Centers of newly formed clusters do not change, i. e., Ot+1
q = Otq, q = 1, . . . , k;

or 2) maximum number of iterations tmax is met,
else increment t by 1 and go to Step 3.

It can be easily seen that the solution to the problem (10) – (12) may not be the
solution to the problem stated in this article. Because the k-means the algorithm does
not guarantee that empty clusters will not emerge, on the other hands, the sum of
volumes of resources placed in clusters (i. e., cloud servers) will not be greater than the
server storage capacity. Therefore, it is required to impose additional constraints on the
clusters based on the problem statement. Given the above, the constrained k-means
clustering the problem can be modeled as follows:

F(x) =
1

m

k∑
q=1

m∑
j=1

‖ρj −Oq‖22 xq,j → min (16)

subject to
k∑
q=1

xq,j = 1 (17)
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for any j = 1, . . . ,m
m∑
j=1

vjxq,j ≤ Vq (18)

for any q = 1, . . . , k.

1 ≤
m∑
j=1

xq,j < m (19)

for any q = 1, . . . , k.
Eq. (17) provides that each cloud resource will be allocated only to one server. Eq. (18)

guarantees that the sum of the volume of cloud resources to be allocated on the server
cannot exceed its storage capacity. And Eq. (19) guarantees that each cluster should
have at least one cloud resource allocated and all the resources cannot be allocated to
one server only.

Analogously to Algorithm 1 (classic k-means algorithm), below given an iterative
algorithm to solve constrained k-means clustering problem (16)-(19) [12].

Algorithm 2. (Constrained k-means algorithm.) Given a dataset ρ = {ρ1, . . . , ρm}.
Compute Ot+1

1 , . . . , Ot+1
k at iteration (t+ 1) using the following steps:

Step 1 (Number of clusters). Choose the number of clusters k.

Step 2 (Initial cluster centers). Set t = 0 and select k random data from the dataset
as cluster centers Ot = (Ot1, . . . , O

t
k).

Step 3 (Cluster assignment). Fix Ot = (Ot1, . . . , O
t
k) and find a solution xtq,j of linear

assignment problem (16)-(19).

Step 4 (Cluster update). Recompute the center Ot+1
q of newly formed cluster Cq as

follows:

Ot+1
q =



m∑
j=1

xt
q,jρj

m∑
j=1

xt
q,j

if
m∑
j=1

xtq,j ≥ 1

Otq otherwise

, q = 1, ...k. (20)

Step 5 (Stopping criterion). Stop the algorithm if one of the following criteria:
1) Centers of newly formed clusters do not change, i. e., Ot+1

q = Otq, q = 1, ...k;
or 2) maximum number of iterations tmax is met,
else increment t by 1 and go to Step 3.

6. EXPERIMENTAL RESULTS

Let’s assume that there are 7 users, 30 resources, and 3 cloudlets. The resources usage
frequency matrix (F) and their activity (αi) are given in Table 1. The normalized usage
frequency matrix is given in Table 2. The distance matrix and normalized distance
matrix are given in Tables 3 and 4, respectively. Table 5 lists the volume of cloud
resources and the storage capacity of servers. The user-resource matrix calculated by
using Eq. (9) is given in Table 6.
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F = ‖fi,j‖ , ( i = 1, . . . , 7; j = 1, . . . , 30)

R βj
U = {Ui | i = 1, . . . , 7}

U1 U2 U3 U4 U5 U6 U7

R1 β1 = 0.0222 25 75 25 23 38 26 59
R2 β2 = 0.0389 90 56 54 92 68 55 59
R3 β3 = 0.0368 32 31 99 61 85 85 55
R4 β4 = 0.0336 42 64 97 83 72 19 33
R5 β5 = 0.0340 56 28 33 81 64 85 68
R6 β6 = 0.0405 80 68 64 36 68 89 89
R7 β7 = 0.0359 81 41 64 94 64 30 64
R8 β8 = 0.0328 93 35 11 17 89 84 71
R9 β9 = 0.0276 90 85 45 16 33 45 22
R10 β10 = 0.0324 58 64 77 51 51 76 18
R11 β11 = 0.0306 37 25 38 34 72 77 90
R12 β12 = 0.0399 94 27 89 36 83 87 71
R13 β13 = 0.0377 95 55 45 63 38 69 95
R14 β14 = 0.0421 87 51 46 85 97 47 100
R15 β15 = 0.0282 24 47 22 74 90 25 62
R16 β16 = 0.0269 52 50 61 16 24 99 26
R17 β17 = 0.0386 91 63 46 82 43 72 73
R18 β18 = 0.0328 69 42 32 86 31 97 43
R19 β19 = 0.0241 44 74 31 28 49 49 19
R20 β20 = 0.0277 55 24 15 92 92 26 33
R21 β21 = 0.0360 31 37 47 92 71 64 97
R22 β22 = 0.0353 34 56 76 72 25 78 89
R23 β23 = 0.0412 57 81 90 63 67 81 63
R24 β24 = 0.0340 80 75 88 28 33 75 36
R25 β25 = 0.0390 89 70 66 85 60 82 24
R26 β26 = 0.0231 53 18 32 55 71 29 24
R27 β27 = 0.0297 17 39 24 74 94 60 54
R28 β28 = 0.0325 56 57 17 81 73 79 33
R29 β29 = 0.0325 97 29 12 58 27 73 100
R30 β30 = 0.0334 18 98 66 90 41 50 44

αi (i = 1, . . . , 7)
α1 =
0.1498

α2 =
0.1284

α3 =
0.1240

α4 =
0.1516

α5 =
0.1487

α6 =
0.1569

α7 =
0.1406

Tab. 1. Frequency matrix (F), users’ activity (αi) and resource usage

frequency (βj).
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Λ = ‖λi,j‖ , i = 1, . . . , 7; j = 1, . . . , 30
R = {Rj | j =

1, . . . , 30}
U = {Ui | i = 1, . . . , 7}

U1 U2 U3 U4 U5 U6 U7

R1 0.0137 0.0479 0.0165 0.0124 0.0210 0.0136 0.0344
R2 0.0493 0.0358 0.0357 0.0498 0.0375 0.0288 0.0344
R3 0.0175 0.0198 0.0655 0.033 0.0469 0.0444 0.0321
R4 0.0230 0.0409 0.0642 0.0449 0.0397 0.0099 0.0193
R5 0.0307 0.0179 0.0218 0.0438 0.0353 0.0444 0.0397
R6 0.0438 0.0435 0.0423 0.0195 0.0375 0.0465 0.0519
R7 0.0443 0.0262 0.0423 0.0509 0.0353 0.0157 0.0373
R8 0.0509 0.0224 0.0073 0.0092 0.0491 0.0439 0.0414
R9 0.0493 0.0543 0.0298 0.0087 0.0182 0.0235 0.0128
R10 0.0317 0.0409 0.0509 0.0276 0.0281 0.0397 0.0105
R11 0.0203 0.016 0.0251 0.0184 0.0397 0.0403 0.0525
R12 0.0515 0.0173 0.0589 0.0195 0.0458 0.0455 0.0414
R13 0.0520 0.0351 0.0298 0.0341 0.0210 0.0361 0.0554
R14 0.0476 0.0326 0.0304 0.0460 0.0535 0.0246 0.0583
R15 0.0131 0.0300 0.0146 0.0400 0.0496 0.0131 0.0362
R16 0.0285 0.0319 0.0403 0.0087 0.0132 0.0518 0.0152
R17 0.0498 0.0403 0.0304 0.0444 0.0237 0.0376 0.0426
R18 0.0378 0.0268 0.0212 0.0465 0.0171 0.0507 0.0251
R19 0.0241 0.0473 0.0205 0.0152 0.0270 0.0256 0.0111
R20 0.0301 0.0153 0.0099 0.0498 0.0507 0.0136 0.0193
R21 0.0170 0.0236 0.0311 0.0498 0.0392 0.0335 0.0566
R22 0.0186 0.0358 0.0503 0.0390 0.0138 0.0408 0.0519
R23 0.0312 0.0518 0.0595 0.0341 0.0370 0.0423 0.0368
R24 0.0438 0.0479 0.0582 0.0152 0.0182 0.0392 0.0210
R25 0.0487 0.0447 0.0437 0.0460 0.0331 0.0429 0.0140
R26 0.0290 0.0115 0.0212 0.0298 0.0392 0.0152 0.0140
R27 0.0093 0.0249 0.0159 0.0400 0.0518 0.0314 0.0315
R28 0.0307 0.0364 0.0112 0.0438 0.0403 0.0413 0.0193
R29 0.0531 0.0185 0.0079 0.0314 0.0149 0.0382 0.0583
R30 0.0099 0.0626 0.0437 0.0487 0.0226 0.0261 0.0257

Tab. 2. Normalized frequency matrix (Λ).
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D = ‖di,j‖ , i = 1, . . . , 7; j = 1, . . . , 30
R = {Rj | j =

1, . . . , 30}
U = {Ui | i = 1, . . . , 7}

U1 U2 U3 U4 U5 U6 U7

R1 8369 5935 4814 3222 2915 9309 5134
R2 4516 2390 6828 2280 3971 9225 8967
R3 3796 2770 7462 8471 4634 7078 8271
R4 7273 2676 7387 6803 2776 7622 6681
R5 5927 6123 3590 7648 6328 6499 4479
R6 7868 7085 8281 6274 9151 5900 5175
R7 9184 5153 8909 9927 3062 2242 6266
R8 4646 6613 6708 3101 7189 8077 8136
R9 5914 1552 6853 4108 2794 9003 6629
R10 7632 9909 3210 7496 4358 8778 7014
R11 4863 1954 5605 7025 5103 6686 5598
R12 1979 3757 4968 5799 6625 4308 7314
R13 9289 4015 9909 6299 2917 6853 2579
R14 3941 2583 4550 9440 6586 5031 3940
R15 5181 1039 8109 4316 7825 8620 5951
R16 4517 4393 5786 4138 7053 5788 9679
R17 7910 9264 3816 4758 6785 6313 6239
R18 9742 4114 1763 9928 9463 7586 4194
R19 5022 4871 1882 7477 5414 4442 4349
R20 5297 2520 6884 7023 8179 4117 6336
R21 6447 9697 5579 5778 3596 8298 2225
R22 4204 8628 5381 9786 8423 6686 3552
R23 8400 9878 2884 9835 2095 4956 8148
R24 8765 1754 3131 3100 4756 7854 4949
R25 1754 1471 4637 4755 2127 2914 9850
R26 3488 9875 5569 8524 3599 3897 5989
R27 7648 1178 2053 8633 6983 2445 5044
R28 9763 7268 8792 7895 9730 3228 6074
R29 4904 4994 9297 2906 8717 9890 3196
R30 2314 8070 4814 6512 3436 8387 3351

Tab. 3. Distance matrix (D).
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� = ‖δi,j‖ , i = 1, . . . , 7; j = 1, . . . , 30
R = {Rj | j =

1, . . . , 30}
U = {Ui | i = 1, . . . , 7}

U1 U2 U3 U4 U5 U6 U7

R1 0.0464 0.0392 0.0284 0.0167 0.0175 0.0485 0.0293
R2 0.0250 0.0158 0.0403 0.0118 0.0238 0.0480 0.0511
R3 0.0210 0.0183 0.0440 0.0438 0.0278 0.0369 0.0472
R4 0.0403 0.0177 0.0436 0.0352 0.0167 0.0397 0.0381
R5 0.0328 0.0404 0.0212 0.0396 0.0380 0.0338 0.0255
R6 0.0436 0.0468 0.0489 0.0325 0.0549 0.0307 0.0295
R7 0.0509 0.0340 0.0526 0.0514 0.0184 0.0117 0.0357
R8 0.0257 0.0436 0.0396 0.0160 0.0432 0.0421 0.0464
R9 0.0328 0.0102 0.0404 0.0213 0.0168 0.0469 0.0378
R10 0.0328 0.0102 0.0404 0.0213 0.0168 0.0469 0.0378
R11 0.0269 0.0129 0.0331 0.0364 0.0306 0.0348 0.0319
R12 0.0110 0.0248 0.0293 0.0300 0.0398 0.0224 0.0417
R13 0.0514 0.0265 0.0585 0.0326 0.0175 0.0357 0.0147
R14 0.0218 0.0170 0.0269 0.0488 0.0395 0.0262 0.0225
R15 0.0287 0.0069 0.0479 0.0223 0.0470 0.0449 0.0339
R16 0.0250 0.0290 0.0341 0.0214 0.0423 0.0301 0.0552
R17 0.0438 0.0611 0.0225 0.0246 0.0407 0.0329 0.0356
R18 0.0540 0.0271 0.0104 0.0514 0.0568 0.0395 0.0239
R19 0.0278 0.0321 0.0111 0.0387 0.0325 0.0231 0.0248
R20 0.0293 0.0166 0.0406 0.0363 0.0491 0.0214 0.0361
R21 0.0357 0.0640 0.0329 0.0299 0.0216 0.0432 0.0127
R22 0.0233 0.0569 0.0318 0.0506 0.0506 0.0348 0.0203
R23 0.0465 0.0652 0.0170 0.0509 0.0126 0.0258 0.0465
R24 0.0485 0.0116 0.0185 0.0160 0.0285 0.0409 0.0282
R25 0.0097 0.0097 0.0274 0.0246 0.0128 0.0152 0.0562
R26 0.0193 0.0652 0.0329 0.0441 0.0216 0.0203 0.0342
R27 0.0424 0.0078 0.0121 0.0447 0.0419 0.0127 0.0288
R28 0.0541 0.0480 0.0519 0.0409 0.0584 0.0168 0.0346
R29 0.0272 0.0330 0.0549 0.0150 0.0523 0.0515 0.0182
R30 0.0128 0.0533 0.0284 0.0337 0.0206 0.0437 0.0191

Tab. 4. Normalized distance matrix (∆).
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Volume of cloud resources, v = {vj | j = 1, . . . , 30}
v1 =
5

v2 =
24

v3 =
17

v4 =
25

v5 =
8

v6 =
8

v7 =
23

v8 =
24

v9 =
31

v10 =
20

v11 =
25

v12 =
17

v13 =
7

v14 =
8

v15 =
26

v16 =
9

v17 =
20

v18 =
8

v19 =
21

v20 =
29

v21 =
15

v22 =
14

v23 =
15

v24 =
10

v25 =
5

v26 =
19

v27 =
26

v28 =
23

v29 =
23

v30 =
34

Storage capacity of servers, V = {Vq|q = 1, 2, 3}
V1 = 118 V2 = 137 V3 = 169

Tab. 5. Volume of resources (v) and storage capacity of servers (V).

In order to evaluate the effectiveness of the proposed model, it was compared to the
models proposed in [7]. The solutions of the models are provided in Table 7.

The Algorithm 2 was implemented with Matlab 2022a. To solve the optimization
problem (16)-(19) the mixed-integer linear programming package of the Optimization
Toolbox was used. The characteristics of the computer on which the experiments were
carried out: Lenovo Y50, Intel Core i7, 2.5 GHz, x64; RAM: 8 GB; CPU: 4 cores, 8
logical processors; GPU: NVIDIA GeForce GTX 860M, 4 Gb; HDD: 1 TB.

The maximum number of iterations is set to 1000, tmax = 1000. The result of the
experiment (xclusterq,j ) is given in the first column of Table 7. The solutions of the models
proposed in [7] are also included in Table 7 to evaluate the effectiveness of the proposed
model. Here, xclusterq,j denotes the solution provided by the model (16)-(19), while x2q,j
denotes the solution corresponding to the objective function F2 proposed in [7].

In Table 7, xγ=0.4
q,j , xγ=0.5

q,j and xγ=0.6
q,j are the solutions corresponding to the 0.4, 0.5 and

0.6 values of the parameter γ for the objective function F1 proposed in [7]. To compare
the model’s value of the objective function provided in (16) is also calculated. The values
of the objective function F (x) (16) for all solutions are provided in the last row of Table
7. As seen from Table 7, xclusterq,j is the best solution. Thus, for this solution, the value
of the objective function F (x) is the smallest, is equal to 0.001049. This value is 18.3%
better than the value provided by the second-best solution, F(xγ=0.4

q,j ) = F(xγ=0.6
q,j ) =

0.001284. It confirms that the proposed model provides a sufficiently good result

7. CONCLUSION

As a result of the rapid increase in the number of mobile devices connected to the
Internet network, there are large delays in the delivery of data to mobile users due to
network loading. Edge computing (edge, cloudlet, etc.) technologies are widely used to
eliminate network delays. The article proposes to use mobile edge computing systems
(cloudlet networks) to eliminate resource scarcity, power consumption in mobile devices
and delays in communication channels Reduction of network delays is demonstrated
by optimally placing cloud resources in the cloudlets close to users. In the article, a
clustering-based model was proposed for the optimal placement of cloud resources in
cloudlets. The proposed model takes into account the activity of users, usage frequency
of cloud resources, physical distance between users and cloud resources, as well as the
storage capacity of cloudlets in order to optimally allocate cloud resources in cloudlets.
The proposed model is formalized as an optimization problem. Then, in order to solve
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ρ = ‖ρi,j‖ , i = 1, . . . , 7; j = 1, . . . , 30
R =

{Rj | j =

1, . . . , 30}

U = {Ui | i = 1, . . . , 7}

U1 U2 U3 U4 U5 U6 U7

R1 2.11E-06 5.36E-06 1.29E-06 6.99E-07 1.21E-06 2.30E-06 3.15E-06

R2 7.18E-06 2.82E-06 6.94E-06 3.46E-06 5.17E-06 8.43E-06 9.62E-06

R3 2.03E-06 1.71E-06 1.31E-05 8.06E-06 7.13E-06 9.44E-06 7.82E-06

R4 4.67E-06 3.12E-06 1.17E-05 8.06E-06 3.31E-06 2.08E-06 3.47E-06

R5 5.13E-06 3.16E-06 1.95E-06 8.95E-06 6.79E-06 8.03E-06 4.85E-06

R6 1.16E-05 1.06E-05 1.04E-05 3.88E-06 1.24E-05 9.09E-06 8.73E-06

R7 1.21E-05 4.11E-06 9.91E-06 1.42E-05 3.47E-06 1.03E-06 6.74E-06

R8 6.44E-06 4.11E-06 1.17E-06 7.34E-07 1.03E-05 9.51E-06 8.87E-06

R9 6.66E-06 1.97E-06 4.11E-06 7.69E-07 1.25E-06 4.77E-06 1.88E-06

R10 6.51E-06 1.11E-05 3.88E-06 5.26E-06 3.55E-06 9.23E-06 1.91E-06

R11 2.50E-06 8.09E-07 3.15E-06 3.10E-06 5.53E-06 6.73E-06 7.21E-06

R12 3.38E-06 2.19E-06 8.55E-06 3.54E-06 1.08E-05 6.39E-06 9.70E-06

R13 1.51E-05 4.51E-06 8.14E-06 6.35E-06 2.06E-06 7.62E-06 4.32E-06

R14 6.55E-06 3.00E-06 4.26E-06 1.43E-05 1.32E-05 4.25E-06 7.76E-06

R15 1.59E-06 7.46E-07 2.44E-06 3.82E-06 9.78E-06 2.60E-06 4.87E-06

R16 2.87E-06 3.20E-06 4.60E-06 7.56E-07 2.24E-06 6.58E-06 3.17E-06

R17 1.26E-05 1.22E-05 3.28E-06 6.38E-06 5.54E-06 7.48E-06 8.21E-06

R18 1.00E-05 3.07E-06 8.96E-07 1.19E-05 4.74E-06 1.03E-05 2.77E-06

R19 2.42E-06 4.70E-06 6.81E-07 2.14E-06 3.15E-06 2.24E-06 9.32E-07

R20 3.66E-06 9.05E-07 1.38E-06 7.58E-06 1.02E-05 1.26E-06 2.70E-06

R21 3.27E-06 6.99E-06 4.57E-06 8.12E-06 4.53E-06 8.17E-06 3.64E-06

R22 2.29E-06 9.22E-06 6.98E-06 1.05E-05 3.66E-06 7.86E-06 5.22E-06

R23 8.96E-06 1.78E-05 5.17E-06 1.08E-05 2.85E-06 7.06E-06 9.89E-06

R24 1.08E-05 2.42E-06 4.54E-06 1.25E-06 2.63E-06 8.56E-06 2.84E-06

R25 2.77E-06 2.18E-06 5.78E-06 6.70E-06 2.45E-06 3.98E-06 4.32E-06

R26 1.94E-06 2.23E-06 2.00E-06 4.60E-06 2.91E-06 1.12E-06 1.56E-06

R27 1.75E-06 7.38E-07 7.08E-07 8.05E-06 9.60E-06 1.86E-06 3.78E-06

R28 8.07E-06 7.28E-06 2.35E-06 8.82E-06 1.14E-05 3.54E-06 3.05E-06

R29 7.02E-06 2.55E-06 1.75E-06 2.32E-06 3.76E-06 1.00E-05 4.86E-06

R30 6.32E-07 1.43E-05 5.13E-06 8.30E-06 2.32E-06 5.98E-06 2.30E-06

Tab. 6. User-resource matrix.

the optimization problem, the constrained k-means algorithm is developed. It is shown
that the proposed algorithm provides increased power sustainability in mobile devices,
saving time spent on data processing, as well as reducing network delays. The results
of the experiment showed that the proposed model is superior to other models and
therefore, is promising.
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xclusterq,j x2q,j xγ=0.4
q,j xγ=0.5

q,j xγ=0.6
q,j

x3,1 = 1 x1,1 = 1 x3,1 = 1 x1,1 = 1 x3,1 = 1
x2,2 = 1 x1,2 = 1 x2,2 = 1 x2,2 = 1 x2,2 = 1
x2,3 = 1 x1,3 = 1 x1,3 = 1 x1,3 = 1 x1,3 = 1
x3,4 = 1 x1,4 = 1 x3,4 = 1 x1,4 = 1 x3,4 = 1
x2,5 = 1 x1,5 = 1 x1,5 = 1 x1,5 = 1 x1,5 = 1
x2,6 = 1 x1,6 = 1 x1,6 = 1 x1,6 = 1 x1,6 = 1
x2,7 = 1 x1,7 = 1 x1,7 = 1 x1,7 = 1 x1,7 = 1
x1,8 = 1 x1,8 = 1 x1,8 = 1 x1,8 = 1 x1,8 = 1
x3,9 = 1 x1,9 = 1 x1,9 = 1 x1,9 = 1 x1,9 = 1
x3,10 = 1 x1,10 = 1 x1,10 = 1 x1,10 = 1 x1,10 = 1
x2,11 = 1 x1,11 = 1 x1,11 = 1 x3,11 = 1 x1,11 = 1
x2,12 = 1 x1,12 = 1 x1,12 = 1 x1,12 = 1 x1,12 = 1
x1,13 = 1 x2,13 = 1 x1,13 = 1 x1,13 = 1 x1,13 = 1
x2,14 = 1 x1,14 = 1 x1,14 = 1 x1,14 = 1 x1,14 = 1
x3,15 = 1 x1,15 = 1 x1,15 = 1 x1,15 = 1 x1,15 = 1
x3,16 = 1 x1,16 = 1 x1,16 = 1 x1,16 = 1 x1,16 = 1
x2,17 = 1 x1,17 = 1 x1,17 = 1 x1,17 = 1 x1,17 = 1
x2,18 = 1 x1,18 = 1 x3,18 = 1 x1,18 = 1 x3,18 = 1
x3,19 = 1 x1,19 = 1 x1,19 = 1 x1,19 = 1 x1,19 = 1
x3,20 = 1 x1,20 = 1 x1,20 = 1 x1,20 = 1 x1,20 = 1
x2,21 = 1 x3,21 = 1 x3,21 = 1 x3,21 = 1 x3,21 = 1
x2,22 = 1 x1,22 = 1 x1,22 = 1 x1,22 = 1 x1,22 = 1
x2,23 = 1 x1,23 = 1 x1,23 = 1 x1,23 = 1 x1,23 = 1
x3,24 = 1 x3,24 = 1 x1,24 = 1 x1,24 = 1 x1,24 = 1
x3,25 = 1 x1,25 = 1 x1,25 = 1 x2,25 = 1 x1,25 = 1
x3,26 = 1 x3,26 = 1 x3,26 = 1 x3,26 = 1 x3,26 = 1
x3,27 = 1 x3,27 = 1 x3,27 = 1 x1,27 = 1 x3,27 = 1
x3,28 = 1 x1,28 = 1 x1,28 = 1 x1,28 = 1 x1,28 = 1
x1,29 = 1 x2,29 = 1 x1,29 = 1 x2,29 = 1 x1,29 = 1
x3,30 = 1 x2,30 = 1 x1,30 = 1 x2,30 = 1 x1,30 = 1

F
(
xclusterq,j

)
= 0001049

F
(
x2q,j

)
= 0.001287

F
(
xγ=0.4
q,j

)
= 0.001284

F
(
xγ=0.5
q,j

)
= 0.001309

F
(
xγ=0.6
q,j

)
= 0.001284

Tab. 7. Solutions of the proposed model and the models proposed in [7].

In the future, we are planning to improve the model and develop an algorithm to
solve an optimization problem, conduct experiments on real data, and compare it with
the state-of-the-art methods.
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