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INFINITE PROBABILISTIC SECRET SHARING

Laszlo Csirmaz

A probabilistic secret sharing scheme is a joint probability distribution of the shares and
the secret together with a collection of secret recovery functions. The study of schemes using
arbitrary probability spaces and unbounded number of participants allows us to investigate their
abstract properties, to connect the topic to other branches of mathematics, and to discover new
design paradigms. A scheme is perfect if unqualified subsets have no information on the secret,
that is, their total share is independent of the secret. By relaxing this security requirement,
three other scheme types are defined. Our first result is that every (infinite) access structure
can be realized by a perfect scheme where the recovery functions are non-measurable. The
construction is based on a paradoxical pair of independent random variables which determine
each other. Restricting the recovery functions to be measurable ones, we give a complete
characterization of access structures realizable by each type of the schemes. In addition, either
a vector-space or a Hilbert-space based scheme is constructed realizing the access structure.
While the former one uses the traditional uniform distributions, the latter one uses Gaussian
distributions, leading to a new design paradigm.

Keywords: secret sharing, abstract probability space, Sierpiński topology, product mea-
sure, span program, Hilbert space program

Classification: 60B05, 94A62, 46C99, 54D10

1. INTRODUCTION

The topic of this paper is secret sharing schemes where the domain of the secret, the
domain of the shares, or the set of players is not necessarily finite. This type of approach,
namely studying infinite objects instead of finitary ones, is not novel even in the realm
of cryptography, see, e. g., [3, 5, 14, 15, 16]. Further motivation and several examples
can be found in [7]. As can be expected, even finding the right definition can be hard
and far from trivial. We elaborate on this issue in Section 6.

Secret sharing has several faces; it can be investigated equally from either combina-
torial or probabilistic point of view, see the survey paper [2]. The combinatorial view
leads to set theoretical generalizations which are discussed in [6]. In this paper we take
the probabilistic view and consider a secret sharing scheme as the (joint) probability
distribution of the shares and the secret. Defining probability measures on arbitrary
product spaces is not without problem, see [1, 10, 17] for a general description of the
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problems, especially how and when the conditional distribution can be defined. Our def-
initions avoid referring to conditional distributions at the expense of a less transparent
and less intuitive formulation. In Sections 2.3 and 2.4 we give all necessary definitions
from probability theory that will be used later on. Nevertheless, a good working knowl-
edge of measure theory and probability spaces, as can be found, e. g., in [12], definitely
helps.

A basic requirement in secret sharing – usually called correctness – is that qualified
subsets, joining their shares, should be able to recover the secret. The most straight-
forward way to ensure this property is via recovery functions: for each qualified subset
A there is a function hA which, given the shares of members of A, returns the value
of the secret. In the classical case high complexity recovery functions can only make
the scheme more efficient. Quite surprisingly, this is not true in general. In Section
3 we present a scheme in which every share determines the secret, while, at the same
time, every collection of the shares is independent of the secret. This latter property
is interpreted as that the shares give “no information” on the secret, and considered to
be the strongest security requirement. Such a pathological situation can be avoided by
requiring the recovery functions to be measurable. This is exactly what we do: we focus
on measurable schemes where all recovery functions are measurable.

Depending on how much information an unqualified subset might have on the secret –
the security requirement –, we define four scheme types. In a perfect scheme unqualified
subsets should have no information at all, meaning that the conditional distribution of
the secret, given the shares of the subset, is the same as the unconditional distribution.
The scheme is weakly perfect, if, for some constant c ≥ 1, the ratio of the conditional and
unconditional probabilities is always between 1/c and c. A perfect scheme is a weakly
perfect scheme with c = 1. Weakly perfect schemes were introduced in [5] where they
were called “c-schemes.”

The scheme is ramp when the constant which bounds the ratio of conditional and
unconditional probabilities is not necessarily uniform but might depend on the unqual-
ified set (but not on the value of the actual shares). Finally the scheme is weakly ramp
if the constant c might depend on the actual values of the shares as well. The last case
can be rephrased as unqualified subsets cannot exclude any secret value with positive
probability.

In Sections 4 and 5 we characterize access structures which can be realized by schemes
of these types. We have both topological and structural characterizations. Subsets of the
set P of the participants can be considered as elements of the product {0, 1}P , therefore
an access structure – the collection of qualified sets – is a subset of this space. Equipping
{0, 1}P with some topology we can speak about the topological properties of the access
structure. The Sierpiński topology [19] is especially promising. If P is finite, a collection
of subsets of P , as a subset of the topological space {0, 1}P is open if and only if the
collection is upward closed, which is a natural requirement for access structures. For
definitions and examples for this topology, see Section 2.2. We prove that a scheme can
be realized by a perfect or weakly perfect scheme if and only if it is an open set in this
topology. Moreover, a scheme can be realized by a ramp or a weakly ramp scheme if
and only if it is Gδ, that is, it is the intersection of countably many open sets.

The structural characterization uses span programs introduced in [13] and its general-
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ization, Hilbert-space programs. In a span program we are given a vector space, a target
vector, and every participant is assigned one or more vectors. A structure realized by the
span program consists of those subsets of participants whose vectors span a linear space
containing the target vector. In a Hilbert-space program the vector space is replaced
by a Hilbert space, and a subset is qualified if the target vector is in the closure of the
linear span of their vectors. We prove that exactly the open structures are realizable by
span programs, and exactly the Gδ structures are realizable by Hilbert-space programs.

Finally Section 6 concludes the paper where we show that not every access structure
is realizable by a measurable scheme, discuss additional scheme types, and list some
open problems.

2. DEFINITIONS

This section defines access structures, then continues with Sierpiński topology and some
basic properties of this topology. The definition of probability secret sharing scheme is
followed by properties of probability measures on product spaces. Finally four scheme
types are defined corresponding to different security requirements. Motivations and
examples are omitted, they can be found, e. g., in [7].

2.1. Access structure

An access structure A ⊂ 2P is a non-trivial upward closed (or monotone) family of
subsets of the set P of participants. To avoid trivialities, an access structure does not
contain singletons, and is not empty. Given the collection A0 ⊂ 2P , the access structure
generated by A0 is

gen(A0)
def
= {A ⊆ P : B ⊆ A for some B ∈ A0 }.

By monotonicity, an access structure is determined uniquely by any of its generators.
The access structure A is finitely generated if generated by a collection of finite subsets
of P .

2.2. Sierpiński topology

The Sierpiński space is a topological space defined on the two element set 2 = {0, 1},
where the open sets are the empty set, {1}, and {0, 1}. This topology is T0, but not T1,
and is universal in the sense that every T0 space can be embedded into a high enough
power, see [19]. As only the Sierpiński topology is used, all topological notions in this
paper refer to this topology. The elements of the product topological space {0, 1}P
are the characteristic functions of subsets of P , so its points can be identified with the
subsets of P . Consequently a collection A of subsets of P naturally corresponds to
a subset of {0, 1}P . The following claim is an easy consequence of the definition of the
product topology.

Claim 2.1. The collection A ⊆ 2P is open in {0, 1}P if and only if it is a finitely
generated monotone structure.
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In particular, if P is finite, then a non-trivial A ⊂ 2P is an access structure if and only
if it is open.

Definition 2.2. A set A ⊆ 2P is Gδ if it is the intersection of countably many open
sets.

Claim 2.3. A ⊆ 2P is Gδ if and only if there are families B1 ⊇ B2 ⊇ · · · consisting of
finite subsets of P such that

A ∈ A ⇔ A ∈ gen(Bi) for all i,

or, in other words, A =
⋂
i gen(Bi).

P r o o f . As Bi has only finite elements, gen(Bi) is open, and then
⋂
i gen(Bi) is Gδ.

In the other direction, assumeA =
⋂
Ui, where Ui is open. Define Vi =

⋂
{Uj : j ≤ i},

and put

Bi
def
= {A ⊆ P : A ∈ Vi, A is finite }.

As Vi is open, Vi = gen(Bi), and, of course, A =
⋂
i Vi as well. Moreover Vi+1 ⊆ Vi,

thus Vi contains every finite set that Vi+1 does. �

As an example, suppose P is infinite and let A be the family of all infinite subsets of
P . Then A is not open, but it is Gδ as it is the intersection of the families generated by
the n-element subsets of P – all of which are open.

For another example let A1, A2, . . . be disjoint infinite subsets of P and let A be
the family generated by these subsets. Then A is upward closed, but it is not Gδ. To
show this, suppose otherwise, and let B1 ⊇ B2 ⊇ · · · be the families as in Claim 2.3. As
Ai ∈ A ⊆ gen(Bi), there is a (finite) Bi ∈ Bi with Bi ⊆ Ai. Consider the set B =

⋃
iBi.

Clearly B ∈ gen(Bi) as Bi ∈ Bi is a subset of B, thus B ∈
⋂
i gen(Bi). On the other

hand, B ∩ Ai = Bi is finite thus B does not extend any Ai, and therefore it is not an
element of A.

In the third example we have countably many forbidden subsets F1, F2, . . . , and A
consists of those subsets which are not covered by any of the forbidden sets:

A = {A ⊆ P : A 6⊆ Fi, i = 1, 2, . . . }.

A is obviously upward closed, and it is also Gδ. To conclude so, it is enough to show
that

An = {A ⊆ P : A 6⊆ Fi, i = 1, 2, . . . , n }

is open, as clearly A =
⋂
iAi. But A ∈ An iff A has a point outside F1, a point outside

F2, . . . , a point outside Fn. That is, A has a subset with at most n elements which is
also in An. Therefore An is finitely generated, that is, it is open.
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2.3. Probabilistic secret sharing scheme

A secret sharing scheme is a method to distribute some kind of information among the
participants P so that qualified subsets could recover the secret’s value from their shares
– the scheme is correct, while forbidden subsets have no, or limited information on the
secret – the security requirement. In probabilistic schemes the shares and the secret
come from a (joint) probability distribution on the product space of the corresponding
domains.

Definition 2.4. The domain of secrets is Xs, and the domain of shares of the partic-
ipant i ∈ P is Xi. We always assume that none of these sets is empty, and Xs has at
least two elements, i. e. there is indeed a secret to be shared.

To make our notation simpler, we denote P ∪{s} by I for the set of indices. If A ⊆ P
then As denotes the set A ∪ {s}, in particular, I = Ps. We put X =

∏
i∈I Xi, and for

a subset J ⊆ I we let XJ =
∏
i∈J Xi be the restriction of X into coordinates in J .

Informally, a probabilistic secret sharing scheme is a probability distribution on the
set X together with a collection of recovery functions. Equivalently, it can be considered
as a collection of random variables {ξi : i ∈ I} with some joint distribution so that ξi
takes values from Xi. The share of participant i ∈ P is the value of ξi, and the secret is
the value of ξs.

Definition 2.5. A probabilistic secret sharing scheme is a pair S = 〈µ, h〉, such that µ
is a probability measure on the product space X =

∏
i∈I Xi, where I = P ∪ {s}, Xs is

the set of (possible) secrets, and Xi is the set of (possible) shares for participant i ∈ P ;
and h is the collection of recovery functions: for each A ⊆ P the deterministic function
hA : XA → Xs gives a secret value given the shares of members of A.

When the dealer uses the scheme S = 〈µ, h〉, she chooses an element x ∈ X according
to the given distribution µ, sets the secret to be ξs = x(s), the s-coordinate of x, and
send privately the participant i ∈ P the share ξi = x(i), the ith coordinate of x. When
members of A ⊆ P want to recover the secret, they use the recovery function hA on
their shares to pinpoint the secret value.

The scheme is correct if qualified subsets recover the secret value, at least with prob-
ability 1. To formalize this notion, we look at the distribution of shares of A and the
secret value computed by the recovery function hA. When x ∈ X is a distribution of
all shares, the projection πA(x) is its restriction to coordinates (indices) in A, and the
recovery function gives the secret value hA(πA(x)) ∈ Xs. So the probability of those
sequences x for which xs equals this value must be 1.

Definition 2.6. The scheme S = 〈µ, h〉 is correct for the access structure A ⊂ 2P if for
all A ∈ A,

µ
(
{x ∈ X : hA(πA(x)) = xs}

)
= 1.

In a correct scheme the recovery functions of qualified sets are determined almost
uniquely. Indeed, let hA and h∗A be two correct recovery functions. The set of those
points where hA and h∗A differ is a subset of

{x ∈ X : hA(πA(x)) 6= xs} ∪ {x ∈ X : h∗A(πA(x)) 6= xs},
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and both sets have measure zero. It follows that the recovery functions form a coherent
family in the following sense: if A is qualified and A ⊆ B, then h∗B(y) = hA(πA(y)) is
also a correct recovery function, thus it must be equal to hB almost everywhere.

A secret sharing scheme must also provide security, meaning that unqualified subsets
should have no or limited information on the secret. As the precise definition requires
some preparations from Probability Theory, we postpone it to Section 2.5.

2.4. Probability measure on product spaces

As usual in probability theory [12], the definition of a probability measure µ on the
product space X =

∏
iXi requires a σ-algebra Σ on X. Let J be a subset of I, then

XJ =
∏
i∈J Xi. A cylinder is a set of the form C = U ×

∏
i/∈J Xi where U ⊆

∏
i∈J Xi

is the base of the cylinder, and J is its support. Let moreover

ΣJ =
{
E ⊆ XJ :

(
E ×

∏
i 6∈J

Xi

)
∈ Σ

}
.

It is easy to check that ΣJ is a σ-algebra on XJ if Σ is a σ-algebra on X. For each J ⊂ I
the projection function πJ maps the element x ∈ X into XJ keeping those coordinates
of x which are in J . With this notation a subset E of XJ is in ΣJ if and only if its
inverse image under πJ is in Σ, namely, if π−1J (E) ∈ Σ. The σ-algebra on the product
space X should be generated by its finite-support cylinders, i. e. all sets from Σ of the
form

U ×
∏
i/∈J

Xi, where J is finite and U ∈ ΣJ .

Let µ be a probability measure on 〈X,Σ〉. Elements of Σ are the events, and the
probability of the event E ∈ Σ is just µ(E). As usual, µ is completed, that is, not only
elements of Σ have probability, but subsets of zero probability events are also measurable.
This means that for each µ-measurable U ⊆ X there is a V ∈ Σ such that the symmetric
difference of U and V is a µ-zero set (i. e., it is a subset of a set in Σ with µ-measure
zero).

For a subset J ⊆ I the marginal probability is provided by the probability measure
µJ defined on XJ as follows. E ⊆ XJ is µJ -measurable iff π−1J (E) is µ-measurable, and

µJ(E) = µ
(
π−1J (E)

)
.

If J has a single element J = {j} then we also write µj instead of µ{j}. In particular,
µs is the marginal measure on the set of secrets. With this notation, if C is a cylinder
with support J and base U ∈ ΣJ , then µ(C) = µJ(U).

As the probability measure µ determines the joint distribution of the random variables
ξi for i ∈ I (that is the σ-algebra Σ on the whole space X as well as the σ-algebras on
each XJ) uniquely, we can, and will, use this measure µ only in probabilistic secret
sharing schemes.

The following essential facts about probability measures will be used frequently and
without further notice.
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Claim 2.7. (a) For each E ∈ Σ there is a countable set J ⊆ I such that E =
π−1J

(
πJ(E)

)
, that is, E is a cylinder with countable support.

(b) For any µ-measurable set E ⊆ X and any J ⊆ I, µJ
(
πJ(E)

)
≥ µ(E).

(c) For any µ-measurable E ⊆ X and ε > 0 there is a cylinder E′ with finite support
such that µ(E − E′) = 0, and µ(E′ − E) < ε.

(d) For any µ-measurable E ⊆ X and ε > 0 there is a finite J ⊆ I such that µ(E) ≤
µJ(πJ(E)) < µ(E) + ε.

P r o o f .

(a) Cylinders with finite support have the stated property. Also, this property is
preserved by taking complements and countable unions. Thus all elements in the
smallest σ-algebra generated by finite support cylinders have the property claimed.

(b) The statement is immediate from the fact that π−1J
(
πJ(E)

)
⊇ E.

(c) By part (a), any µ-measurable E ⊆ X is, up to a set of measure zero, a cylinder C
with countable support. Thus it is the intersection of the finite support cylinders
Cn = π−1Jn

(
πJn(C)

)
where Jn is the set of first n elements of the support of C. As

Cn+1 ⊆ Cn, limn→∞ µ(Cn) = µ(C) decreasingly, and the claim follows.

(d) The first inequality comes from (b). By (c), there is a cylinder E′ with finite
support such that E−E′ is a zero set, while µ(E′) < µ(E)+ε/2. As µ(E−E′) = 0,
there is a zero set Z ∈ Σ such that Z ⊇ E − E′. By (a) Z is a cylinder with
countable support, thus there is a finite support cylinder E′′ ⊇ Z with µ(E′′) <
ε/2. Let J be the (finite) support of E′ ∪ E′′, then µJ(πJ(E′)) = µ(E′) and
µJ(πJ(E′′)) = µ(E′′). As E ⊆ E′ ∪ Z ⊆ E′ ∪ E′′,

µJ(πJ(E)) ≤ µJ(πJ(E′ ∪ E′′))
≤ µJ(πJ(E′)) + µJ(πJ(E′′)) = µ(E′) + µ(E′′)

< (µ(E) + ε/2) + ε/2 = µ(E) + ε,

as was required.

�

Let B ⊆ P be any subset of participants. The collective set of shares they receive
falls into the (measurable) set U ⊆ XB with probability µB(U). Similarly, if E ⊆ Xs is
measurable, then the probability that the secret falls into E is µs(E). The conditional
probability distribution of the secret, assuming that the shares of B come from the set
U with µB(U) > 0, is defined as

µs(E|U) =
µBs(U × E)

µB(U)
.
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Here we wrote Bs for B ∪ {s}. Observe that µs(E|XB) = µs(E), and µs(·|U) is a
probability measure on Xs.

It would be tempting to define the conditional distribution given not a (measurable)
subset of the shares, but the shares themselves. Unfortunately such conditional distri-
butions do not always exist [4], nevertheless in statistics their existence is almost always
assumed. Fortunately, at the expense of a slightly more complicated and less intuitive
formulation, we can avoid those conditional distributions.

2.5. Security requirements

In a secret sharing scheme unqualified subsets are required to have no, or limited infor-
mation on the secret. Depending on how strong the security guarantee is we distinguish
four scheme types.

Definition 2.8. Let S = 〈µ, h〉 be a secret sharing scheme on the set P of participants.
The scheme is perfect, weakly perfect, ramp, or weakly ramp if the collective set of shares
of an unqualified subset B ⊆ P satisfies the following condition:

perfect B gets no information on the secret, meaning that the set of shares and the

secret are (statistically) independent. That is, for every measurable U ⊆ XB and
E ⊆ Xs we have

µBs(U × E) = µB(U) · µs(E).

This can also be expressed as the conditional probability µs(·|U) coincides with the
unconditional probability µs(·) for all U ⊆ XB with µB(U) > 0.

weakly perfect For U ⊆ XB the conditional probability µs(·|U) deviates from µs(·)
by a constant factor only, i. e., for some positive constant c ≥ 1 (independently of the
unqualified set B), for all measurable U ⊆ XB and E ⊆ Xs,

1

c
· µB(U) · µs(E) ≤ µBs(U × E) ≤ c · µB(U) · µs(E). (1)

ramp The constant c = cB in (1) might depend on the subset B (but not on U and
E).

weakly ramp Based on their collective shares, B cannot exclude any subset of the
secrets with positive measure:

µB(U) · µs(E) > 0 implies µBs(U × E) > 0.

(Observe that the reverse implication always holds.)

These definitions reflect and extend the usual ones in classical secret sharing schemes.
The traditional requirement for perfect schemes is the statistical independence as defined
here. Weakly perfect schemes were introduced in [5], where such schemes with constant c
are called “c-schemes.” No universally accepted definition exists for ramp schemes. The
best approach is that in a ramp scheme under no circumstances an unqualified subset
should be able to recover the secret. Our definitions reflect this idea. However, see the
discussion in Section 6.
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When the scheme S is classical, namely the number of participants is finite and both
the shares and the secret come from a finite domain (that is, X is finite), then the
conditions for weakly perfect, ramp, and weakly ramp schemes are equivalent, while not
equivalent to perfect schemes.

Claim 2.9. The types above are listed in decreasing strength, namely

perfect ⇒ weakly perfect ⇒ ramp ⇒ weakly ramp.

None of the implications can be reversed.

P r o o f . It is not difficult to construct schemes witnessing the irreversibility of these
implications. For concrete examples consult [7]. �

3. NON-MEASURABLE SCHEMES REALIZE ALL

The probabilistic secret sharing scheme S = 〈µ, h〉 is measurable if all recovery functions
hA are measurable. Requesting measurability seems to be a technical issue. It is not,
as is shown by Theorem 3.2. The proof uses a paradoxical construction of two random
variables due to Gábor Tardos, and is included here with his permission.

Theorem 3.1. (G. Tardos) Let I denote the unit interval [0, 1]. There are two random
variables ξ and η with at joint distribution on I× I such that

(a) both ξ and η are uniformly distributed on I,
(b) ξ and η are independent,
(c) both of them determine the other’s value.

P r o o f . The idea of the construction is to find a subset H ⊆ I × I with the following
properties:

(i) H is a graph of a bijection from I to I,

(ii) H has a point in every positive (Lebesgue) measurable subset of I× I.

When we have such anH, then define the σ-algebra Σ onH as the trace of the (Lebesgue)
measurable sets of I× I, and define the probability measure µ on H as

µ(U ∩H) = λ(U)

whenever U is a measurable subset of I×I. This definition is sound as if U1∩H = U2∩H
for two measurable subsets U1 and U2, then property (ii) ensures λ(U1) = λ(U2). Let
(ξ, η) be a random element of H distributed according to the measure µ. As H is a graph
of a bijective function, property (c) holds. Now let E ⊆ I be (Lebesgue) measurable.
Then

Prob(ξ ∈ E) = µ(H ∩ (E × I)) = λ(E × I) = λ(E),
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thus ξ is indeed uniformly distributed on I, and similarly for η. Finally, let E and F be
measurable subsets of I. Then

Prob( ξ ∈ E and η ∈ F ) = µ(H ∩ (E × F ))

= λ(E × F ) = λ(E) · λ(F )

= Prob( ξ ∈ E) · Prob( η ∈ F ),

which shows that ξ and η are independent.

Thus we need to find a subset H ⊂ I× I satisfying (i) and (ii). We will use transfinite
induction (thus the axiom of choice) to add points of H. First note that every positive
measurable set contains a positive closed set, and there are only continuum many closed
sets. Let F ⊆ I × I be closed and positive, then F contains a generalized continuum
by continuum grid. Namely, there are subsets U , V ⊆ I such that both U and V have
continuum many elements and U × V ⊆ F [8]. Using these properties we proceed as
follows.

Enumerate all closed positive sets as Fα, and all real numbers in I as xα where α runs
over all ordinals less than continuum. At each stage we add at most three new points
to H. Suppose we are at stage indexed by α. As there is a continuum by continuum
grid in Fα and until so far we added less than continuum many points to H, there is
a point in Fα such that neither its x nor its y-coordinate has been chosen as an x (or
y respectively) coordinate of any previous point. Add this element of Fα to H. Then
look at the real number xα. If there is no point in H so far with an x-coordinate (or
y-coordinate) equal to xα, then add the point (xα, z) (the point (z, xα)) to H, where z
is not among the y-coordinates (x-coordinates) of points in H so far.

The set H we constructed during this process satisfies properties (i) and (ii). Indeed,
every real number in I is a first (second) coordinate of some element of H. During the
construction we made sure that every horizontal (vertical) line intersects H in at most
a single point. Thus H is indeed a graph of a bijection of I. Finally H contains a point
from each positive closed subset of I× I, and thus from each positive measurable subset
as well. �

Remark that the bijection encoded by H is not measurable in the product space
(which, incidentally, is the standard Lebesgue measure on I× I).

Theorem 3.2. Given any access structure A ⊂ 2P , there is a perfect (non-measurable)
secret sharing scheme realizing A.

P r o o f . Take the pair of random variables 〈ξ, η〉 from Theorem 3.1. Give every partici-
pant ξ as a share, and set η as the secret. Now ξ determines η, therefore qualified subsets
can recover the secret. Similarly, ξ and η are independent, therefore unqualified subsets
have “no information on the secret.” Consequently this is a perfect probabilistic secret
sharing scheme realizing A. Note that it is not measurable as the recovery function is
not measurable. �
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4. STRUCTURES REALIZED BY PERFECT AND WEAKLY PERFECT SCHEMES

From this point on only measurable schemes are considered. This section gives a com-
plete characterization of access structures which can be realized by perfect or weakly
perfect measurable schemes as defined in Definition 2.8. Recall that an access structure
A ⊂ 2P is open if the qualified sets form an open set in the Sierpiński topology.

Monotone span programs were introduced by Karchmer and Wigderson [13], and they
are used to study linear schemes. To fit into our framework we extend it by allowing
infinitely many participants and arbitrary vector spaces. Given a vector space V and
a subset H ⊂ V , the linear span of H is the set of all (finite) linear combinations of
elements of H. The linear span is a linear subspace of V .

Definition 4.1. Let P be the (possibly infinite) set of participants. A span program
consists of a vector space V , a target vector v ∈ V , and a function ϕ : P → 2V which
assigns a (not necessarily finite) collection of vectors to each participant. The structure
A ⊂ 2P is realized by the span program if

A ∈ A ⇔ v ∈ linear span of
⋃
{ϕ(p) : p ∈ A}.

It is clear that structures realized by span programs are monotone and finitely generated.

Theorem 4.2. The following statements are equivalent for any access structure A ⊂
2P .

1 A is realized by a span program.

2 A is realized by a perfect measurable probabilistic scheme.

3 A is realized by a weakly perfect measurable probabilistic scheme.

4 A is open.

5 A is finitely generated.

P r o o f . The equivalence 4 ⇔ 5 is the statement of Claim 2.1. The implication 2 ⇒ 3
is trivial, thus we need to prove the implications 3⇒ 5, 5⇔ 1, and 5⇒ 2.

3⇒ 5: We remark that A is finitely generated if and only if every qualified set contains
a finite qualified set. Suppose that the weakly perfect measurable scheme S = 〈µ, h〉
realizes A and let c ≥ 1 be the constant from Definition 2.8, equation (1).

Choose a subset E1 ⊂ Xs of the secrets so that both E1 and its complement E2 =
Xs − E1 is positive:

p1 = µs(E1) > 0, p2 = µs(E2) > 0,

and, of course, p1 + p2 = 1. Let A ∈ A be infinite, we must show that it has a finite
qualified subset. The recovery function hA is measurable, thus the sets Ui = h−1A (Ei)
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are measurable, and µAs(U1×E2) = µAs(U2×E1) = 0 as hA gives the right secret with
probability 1. Consequently

µA(U1) = µAs(U1 ×Xs) = µAs(U1 × E1) + µAs(U1 × E2)

= µAs(U1 × E1)

= µAs(U1 × E1) + µAs(U2 × E1)

= µAs(XA × E1) = µs(E1) = p1.

By item (d) of Claim 2.7, for every positive ε > 0 there is a finite subset B ⊂ A such
that setting V1 = πB(U1) ⊆ XB ,

µBs(V1 × E2) < µAs(U1 × E2) + ε = ε,

and, by item (b) of the same Claim,

µB(V1) ≥ µA(U1) = p1.

Now we claim that if ε is small enough, then B is qualified. Indeed, S is weakly perfect
with constant c, thus if B were unqualified then applying condition (1) for V1 ⊆ XB

and E2 ⊆ Xs we get

1

c
· p1 · p2 ≤

1

c
· µB(V1) · µs(E2) ≤ µBs(V1 × E2) < ε.

But this inequality clearly does not hold when ε is small enough, proving the implication.

5 ⇒ 1: Suppose A ⊂ 2P is finitely generated, say A = gen(B), where every B ∈ B is
finite. Let V be a large enough (infinite dimensional) vector space, and fix the target
vector v ∈ V . We want to assign vectors to participants so that v is in the linear span
of the vectors assigned to members of A ⊆ P if and only if A is qualified. This can be
done as follows. For each B ∈ B (B is finite!) choose |B| − 1 vectors from V which are
linearly independent from everything chosen so far (including the target vector), and
set the |B|th vector so that the sum of these |B| many vectors equals v. Assign these
vectors to the corresponding members of B. A participant p ∈ P will receive all vectors
assigned to him.

1 ⇒ 5: This is true as if v is in the linear span of
⋃
{ϕ(p) : p ∈ A}, then it is a finite

linear combination, thus v is in the linear span of
⋃
{ϕ(p) : p ∈ A′} for some finite

A′ ⊆ A.

5 ⇒ 2: The proof of the implication 5 ⇒ 1 above gives the stronger result that if A is
finitely generated, then it can be realized by a span program in which the vector space
V is over some (in fact, any) finite field F. This span program will be used to create the
required probabilistic scheme.

Fix an arbitrary base H of the vector space V . For each h ∈ H from this base the
dealer picks a random rh ∈ F independently and uniformly (this is where we need F
to be finite). Every element x of the vector space V has a unique representation as a
finite linear combination of base elements, say x =

∑
i αihi. Define r(x) to be the field

element
∑
i αirhi

. Clearly, this r is a linear function, and r(h) = rh whenever h ∈ H.
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The dealer sets the secret to r(v) where v is the goal vector. Participant p’s share
will be the collection 〈x, r(x)〉 where x runs over the vectors in ϕ(p). That is, p receives
the share r(x) (an element of F) labeled by the public vector x for each vector x assigned
to him. It is clear from the linearity of r that subsets of participants which have v in
their linear span can compute the secret (as an appropriate linear combination of their
shares), and shares of an unqualified set is independent of the secret, as was required.

�

5. STRUCTURES REALIZED BY RAMP AND WEAKLY RAMP SCHEMES

This section characterizes access structures which can be realized by measurable (weakly)
ramp schemes. The characterization uses the notion of Hilbert-space programs, which
is similar to that of span programs, only the vector space is replaced by a Hilbert space,
and the target vector should be in the closure of the linear span rather than in the linear
span of the generating vectors.

We also prove a generalization of the main result of Chor and Kushilevitz [5] saying
that if the scheme distributes infinitely many secrets, then the share domain of important
participants should be large. Finally we give a ramp scheme which distributes infinitely
many secrets, while every share domain is finite. Of course, in this scheme no participant
can be important.

Definition 5.1. A Hilbert-space program consists of a Hilbert space H, a target vector
v ∈ H, and a function ϕ : P → 2H which assigns a subset of the Hilbert space to each
participant. The structure A ⊂ 2P realized by the Hilbert-space program is

A ∈ A ⇔ v ∈ closure of the linear span of
⋃
{ϕ(p) : p ∈ A}.

Theorem 5.2. The following statements are equivalent for any access structure A ⊆
2P .

1 A is realized by a Hilbert-space program;

2 A is realized by a ramp measurable probabilistic secret sharing scheme;

3 A is realized by a weakly ramp measurable scheme;

4 A is Gδ.

P r o o f . The implication 2⇒ 3 is trivial; we will show 1⇒ 2, 3⇒ 4 and 4⇒ 1. Also,
we will use Claim 2.3 which gives an equivalent characterization of Gδ structures.

3⇒ 4: Let S = 〈µ, h〉 be a weakly ramp scheme which realizes A ⊂ 2P . As in the proof
of Theorem 4.2, choose E1 ⊂ Xs, E2 = Xs − E1 so that

p1 = µs(E1) > 0, p2 = µs(E2) > 0, p1 + p2 = 1.

As the set of all participants is always qualified, and hP is measurable, the sets Ui =
h−1P (Ei) ⊆ XP are measurable, µPs(U1 × E2) = µPs(U2 × E1) = 0, and

µP (U1) = µPs(U1 × E1) = p1.
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Let us define the family Bn of finite subsets of P as follows:

B ∈ Bn ⇔ B is finite, and µBs(πB(U1)× E2) <
1

n
.

It is clear that Bn+1 ⊆ Bn, thus B =
⋂
n gen(Bn) is Gδ. We claim that a subset of

participants is qualified if and only it is in B. First, let A ⊆ P be qualified. Then
gA = hP ◦ πA is a (measurable) recovery function for A, thus letting V1 = g−1A (E1),
µAs(V1 × E2) = 0, and then for each n there is a finite Bn ⊆ A such that

µBns(πBn
(V1)× E2) <

1

n
.

Observing that V1 = πA(U1), we get that A ∈ gen(Bn) for each n, as was required.
In the other direction, let B ⊆ P be not qualified, and let V1 = πB(U1) ⊆ XB . As
µB(V1) ≥ µP (U1) = p1 > 0 and µs(E2) = p2 > 0, the weakly ramp property gives

µBs(V1 × E2) = µBs(πB(U1)× E2) > 0.

For any subset B′ of B, µB
′s(πB′(U1) × E2) ≥ µBs(V1 × E2), consequently B is not in

genBn when n ≥ 1/µBs(V1 × E2).

4⇒ 1: Let B1 ⊇ B2 ⊇ · · · be families of finite subsets of P such that A =
⋂
n gen(Bn),

as given by Claim 2.3. Then A ∈ A if and only if A is in gen(Bn) for infinitely many
n. Let H be a huge dimensional (not separable) Hilbert space, and fix an orthonormal
base e1, e2, . . . , (countably many elements) plus {ēα : α ∈ I} for some index set I. The
target vector will be

v = e1 +
e2
2

+
e3
3

+ · · · ,

and let vn =
∑n
i=1 ei/i. (Actually, instead of 1/i one can take arbitrary non-zero

coefficients ai as long as
∑
i a

2
i converges.) For each (finite) B ∈ Bn, the first |B| − 1

members of B will be assigned new base elements from among ēα, and the last member
will be assigned an element from H so that the sum of these |B| elements be equal to
vn.

The target vector is in the closure of the linear span of Hilbert space elements assigned
to members of A ⊆ P if and only if vn is in their linear span for infinitely many n. But
this latter event happens if and only if A is in gen(Bn), thus this Hilbert-space program
realizes A, as required.

1⇒ 2: Let H be the (real) Hilbert space over which the program is defined, and fix an
orthonormal base {eα : α ∈ I} of H. For each element in this base assign a standard
normal random variable ξα so that they are totally independent. An element a ∈ H can
be written as

a =
∑

λαeα, where
∑

λ2α <∞.

Assign the (random) variable ξa =
∑
λαξα to this element a ∈ H. More information

about these Gaussian spaces can be found in [11]. We list here only some basic properties
which will be needed for our construction.

The random variable ξa is normal with expected value 0 and variance ‖a‖2, further-
more ξa and ξb are independent if and only if a and b are orthogonal. If v is in the
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closure of the linear span of E ⊆ H, then ξv is determined (with probability 1) by the
values of {ξa : a ∈ E}.

Let L ⊆ H be a closed linear subspace. Any v ∈ H has an orthogonal decomposition
v = v1 +v2 such that v1 ⊥ L and v2 ∈ L. If v1 6= 0 then ξv has a conditional distribution
given the values of all ξa for a ∈ L, and this distribution is normal with variance ‖v1‖2
(the expected value depends on the values of the variables ξa).

We define a secret sharing scheme S realizing A as follows. Every domain will be
either the set of reals or some power of the reals. Let v ∈ H be the target vector. The
secret is the value of ξv. The share of participant p ∈ P is the collection of the values of
ξa for all elements a ∈ H assigned to p.

If A ⊆ P is qualified, then v is in the closure of the linear span, thus ξv is determined
by the shares of A. If B ⊆ P is unqualified, then the target vector is not in the closure of
the linear span, let v1 6= 0 be its orthogonal component. The conditional distribution of
the secret, given all shares of B, is normal with ‖v1‖2 variance. As the density function
of the normal distribution is nowhere zero, the probability that the secret is in the set
E ⊆ R, both in the unconditional and in the conditional case, is zero if and only if E is a
zero set. Consequently this S is a weakly ramp scheme realizing A. It is easy to see that
this scheme is never ramp as the ratio of the conditional and unconditional distribution
function is never bounded.

10

σ = 3

σ = 1.5

σ = 1

Fig. 1. Density function of the fractional part of a normal variable.

However, one can twist this scheme to be a ramp one. The only change is to set
the secret to be the fractional part of ξv, see this trick in [7]. The density function of
the fractional part of a normal random variable is depicted on Figure 1 for different
variances. There is a c > 1, depending on the variance only, such that this density
function is between 1/c and c. Consequently the conditional distribution of the secret
given the shares of an unqualified set (which is the fractional part of another normal
distribution) is also bounded, where the bound depends on the subset only and not on
the actual values of the shares. Consequently this scheme is a ramp scheme realizing A.

�

Next we prove a generalization of the main result of Chor and Kushilevitz [5]. It
follows from a slightly more general statement which we prove first.
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Theorem 5.3. Suppose S is a measurable ramp scheme, A and B are disjoint unqual-
ified sets such that A ∪B is qualified. Suppose moreover that there are infinitely many
secrets. Then µA is atomless.

An immediate consequence is that under the same conditions the set of shares of A,
namely XA, must have cardinality (at least) continuum.

P r o o f . Suppose by contradiction that XA is atomic and µX({a}) > 0 for some a ∈
XA. Partition the set of secrets into countably many positive sets as Xs =

⋃
iEi where

µs(Ei) is positive. Let h : XA ×XB 7→ Xs be the function which determines the secret
given the shares of A and B. Let

Vi = {y ∈ XB : h(a, y) ∈ Ei}.

As h is measurable, each Vi is measurable, moreover the sets {a} × Vi × Ei and {a} ×
XB × Ei have the same measure. Using the boundedness property for A we get

µBs(Vi × Ei) ≥ µABs({a} × Vi × Ei)
= µABs({a} ×XB × Ei)
= µAs({a} × Ei)

≥ 1

cA
· µA({a}) · µs(Ei).

Applying the boundedness twice for B we have

µBs(Vi × E1) ≥ 1

cB
· µB(Vi) · µs(E1)

=
µs(E1)

c2B · µs(Ei)
· cBµB(Vi) · µs(Ei)

≥ µs(E1)

c2B · µs(Ei)
µBs(Vi × Ei)

≥ 1

c2BcA
· µs(E1) · µA({a}),

where we used µ(Ei) > 0 and the previous estimate in the last step. As h is defined
on XA ×XB and

⋃
iEi = Xs, we have

⋃
i Vi = XB , furthermore the Vi’s are pairwise

disjoint. Thus

1 ≥ µBs(XB × E1) =
∑
i

µBs(Vi × E1) ≥
∑
i

( 1

c2BcA
· µs(E1) · µA({a})

)
,

which can happen only when µA({a}) = 0, a contradiction. �

A participant p ∈ P is important if there is an unqualified set B ⊆ P such that
B ∪ {p} is qualified.

Corollary 5.4. Suppose S is a measurable ramp scheme which distributes infinitely
many secrets. Then the share domain of every important participant must have cardi-
nality at least continuum.
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P r o o f . By assumption, no singleton is qualified, thus we can apply Theorem 5.3 with
A = {p} and the unqualified B such that A∪B is qualified. As µp is atomless, Xp must
have at least continuum many elements. �

Surprisingly there are interesting ramp schemes where no participant is important,
thus this Corollary is not applicable. We sketch here a ramp scheme which distributes
infinitely many secrets, while every participant has a finite share domain – consequently
no participant can be important.

In the scheme participants are indexed by the positive integers, and Xs – the set
of secrets – is also the set of positive integers. The dealer chooses the secret s ∈ Xs

with probability 2−s. After choosing the secret, she picks a threshold number t > s with
probability 2−t+s. The participant with index i ≤ t gets an integer from [1, i] uniformly
and independently distributed, participant with index i > t gets s as the share.

The secret can be recovered by any infinite set of participants as the eventual value
of their shares, while any finite set is unqualified. It is easy to see that this scheme
is (measurable) ramp realizing all infinite subsets of the positive integers, and has the
required properties.

6. CONCLUSION

In this paper we looked at the theoretical problems of infinite probabilistic secret sharing
schemes. It is quite natural to look at the classical secret sharing schemes from a
probabilistic point of view. While the first few steps towards an abstract definition are
easy, interesting and unexpected phenomena appear quite early. The non-measurable
scheme in Section 3 was our first surprise. Without such a “technical” restriction as the
measurability of the recovery function, nothing can be said.

Some interesting infinite schemes in [7] do not seem to fit into the security types
defined in Section 2.5. Also, there are access structures which cannot be realized by any
measurable scheme which could be considered to be secure in any sense shown by the
following example.

Let P be the lattice points in the positive quadrant; minimal qualified sets
are the “horizontal” lines.

Suppose there are only two secrets (this can always be assumed). As the first row is
qualified, there are finitely many participants in the first row who can determine the
secret up to probability at least 0.9. Similarly, finitely many participants from the
second row know the secret up to probability 0.99; finitely many from the third row
with probability 0.999, etc. The union of these finite sets will know the secret with
probability 1, thus this set will be qualified, while it intersects each row in finitely many
elements. (We actually showed that this structure is not Gδ at the end of Section 2.2.)

The nice, and surprisingly natural, characterization of ramp and weakly ramp schemes
in Section 5 hints that our definition is “the” right one. As remarked earlier, no uni-
versally accepted definition exists for weakly perfect, or ramp schemes. One flavor of
definition uses entropies. If A is qualified, then the conditional entropy of the secret,
given the shares of A, is zero. If the shares of B are independent of the secret, then the
conditional entropy equals the entropy of the secret. A scheme is ramp, if for unqualified
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subsets, this conditional entropy is never zero. While this definition is widely applied
in getting lower bounds on the size of the shares in ramp schemes, it does not fit our
definition. The correct translation would be requiring the min-entropy to be positive: a
classical scheme S is ramp if for each value the secret can take with positive probability,
the conditional probability of the same value for secret, given the value of the shares,
is still positive. In other words: in a ramp scheme unqualified subsets cannot exclude
any possible secret value (while the posterior probability that the secret takes that value
might be much smaller than the a priori probability).

There are other interesting probabilistic schemes in [7] which have weaker security
guarantees than weakly ramp schemes. In those schemes unqualified subsets can exclude
large subsets of the secret space, while still some uncertainty remains. A typical example
is where participant i ∈ N+ has a uniform random real number from [0, 2−i] as a share,
and the secret is the sum of all shares. If participant i is missing, the rest can determine
the secret up to an interval of length 2−i, and within that interval the secret is uniformly
distributed. Is there any structure which can be realized by such a scheme, but not by
any ramp scheme? How can these scheme types be captured by a definition similar to
those in Definition 2.8?

Finally we pose a question in another direction. Given an access structure A, is
there an easy way to recognize whether it is Gδ? Given any collection of qualified and
unqualified subsets, decide if there is a Gδ structure separating them. As a concrete
example: suppose there is a collection of unqualified subsets of P so that the union of
any two of them is qualified. Under what conditions is there a ramp scheme realizing
such a structure?
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Probabilités XXVII, volume 1557 of Lecture Notes in Mathematics, pages Springer Berlin
– Heidelberg 1993, pp. 15–21. DOI:10.1007/BFb0087958

[2] A. Beimel: Secret-sharing schemes: A survey. In: IWCC (Y.-M. Chee, Z. Guo, S. Ling, F.
Shao, Y. Tang, H. Wang, and Ch. Xing, eds.), volume 6639 of Lecture Notes in Computer
Science, Springer 2011, pp 11–46.

[3] G. R. Blakley and L. Swanson: Infinite structures in information theory. In: CRYPTO
1982, pp. 39–50. DOI:10.1080/15244118208548018

https://doi.org/10.1007/BFb0087958
https://doi.org/10.1080/15244118208548018


Infinite probabilistic secret sharing 197

[4] J. T. Chang and D. D. Pollard: Conditioning as disintegration. Statistica Neerlandica 51
(1997), 3, 287–317. DOI:10.1111/1467-9574.00056

[5] B. Chor and E. Kushilevitz: Secret sharing over infinite domain. J. Cryptology 6 (1993),
2, 97–86. DOI:10.1007/BF02620137

[6] A. Dibert: Generalized Secret Sharing. Master’s Thesis, Central European University,
Budapest 2011.

[7] A. Dibert and I. Csirmaz: Infinite secret sharing – Exmples. J. Math. Cryptology 8 (2014),
2, 141–168. DOI:10.1515/jmc-2013-0005

[8] H. G. Eggleston: Two measure properties of cartesian product sets. Quater. J. Math.
Oxford 5 (1954), 108–115. DOI:10.1093/qmath/5.1.108

[9] D. H. Fremlin: Measure Theory, Volume 2. Torres Fremlin, Colchester 2003.

[10] J. Haezendonck: Abstract Lebesgue–Rokhlin spaces. Bull. Soc. Math. Belgique 25 (1973),
243–258.

[11] S. Janson: Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics. Cambridge Uni-
versity Press, 1997.

[12] O. Kallenberg: Foundations of Modern Probability. Probability and Its Applications
Series. Springer, 2010.

[13] M. Karchmer and A. Wigderson: On span programs. In: Structure in Complexity Theory
Conference 1993, pp. 102–111.

[14] B. H. Makar: Transfinite cryptography. Cryptologia 4 (1980), 4, 230–237.
DOI:10.1080/0161-118091855176

[15] J. Patarin: Transfinite cryptography. IJUC 8 (2012), 11–72.

[16] R. Phan and S. Vaudenay: On the impossibility of strong encryption over ℵ0. In: Coding
and Cryptology (Y. Chee, Ch. Li, S. Ling, H. Wang, and Ch. Xing, eds.), volume 5557
of Lecture Notes in Computer Science, Springer, Berlin–Heidelberg 2009, pp. 202–218.
DOI:10.1007/978-3-642-01877-0 17

[17] V. A. Rokhlin: On the fundamental ideas of measure theory. Trans. Amer. Math. Soc. 10
(1962), 1–54.

[18] T. Tao: An introduction to measure theory. Amer. Math. Soc., Graduate Studies Math.
126 (2011), 206 pp. DOI:10.1090/gsm/126
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