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EVENT-TRIGGERED OPTIMAL CONTROL OF
COMPLETELY UNKNOWN NONLINEAR SYSTEMS
VIA IDENTIFIER-CRITIC LEARNING

Zhinan Peng, Zhiquan Zhang, Rui Luo, Yiqun Kuang, Jiangping Hu,
Hong Cheng and Bijoy Kumar Ghosh

This paper proposes an online identifier-critic learning framework for event-triggered opti-
mal control of completely unknown nonlinear systems. Unlike classical adaptive dynamic pro-
gramming (ADP) methods with actor-critic neural networks (NNs), a filter-regression-based
approach is developed to reconstruct the unknown system dynamics, and thus avoid the depen-
dence on an accurate system model in the control design loop. Meanwhile, NN adaptive laws are
designed for the parameter estimation by using only the measured system state and input data,
and facilitate the identifier-critic NN design. The convergence of the adaptive laws is analyzed.
Furthermore, in order to reduce state sampling frequency, two kinds of aperiodic sampling
schemes, namely static and dynamic event triggers, are embedded into the proposed optimal
control design. Finally, simulation results are presented to demonstrate the effectiveness of the
proposed event-triggered optimal control strategy.

Keywords: optimal control, unknown nonlinear system, adaptive dynamic programming,
identifier-critic neural networks, event-triggered mechanism

Classification: 93C10, 68T07

1. INTRODUCTION

With the rapid progress of control theory, numerous engineering applications have rec-
ognized that developing an admissible controller to ensure the system stability is a basic
requirement, and that the resulting control cost should also be minimized. As a result,
researchers have dedicated decades of effort to optimal control of uncertain nonlinear
systems [12, 15].

From the principle of optimality, an optimal control problem can be generally solved
with the help of a Hamilton-Jacobi-Bellman (HJB) equation, which is a partial dif-
ferential equation (PDE). Werbos proposed an adaptive dynamic programming (ADP)
method to compute approximate solutions to HJB equations [27], which combined neural
networks (NNs) and dynamic programming into an actor-critic adaptive control archi-
tecture. Till now, the ADP framework has been developed to address a variety of control
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issues, including stabilization control, tracking control, H∞ control for single-agent sys-
tems [3, 9, 22] or multi-agent systems [19, 20].

It is important to note that the ADP framework often relies on the system dynamics
information, but accurate system modeling is generally challenging in many real-world
scenarios. For instance, autonomous underwater vehicles and exoskeleton systems have
complex and uncertain dynamics and thus difficult to model accurately [2]. Alternatively,
the structure of the system dynamics may be known in some application scenarios, but
the model parameters may be unknown or uncertain, as in the case of hypersonic vehicles
[16]. When faced with the lack of system information, identifier/observer-based recon-
struction methods have been employed to facilitate the ADP framework. Particularly,
NNs have been applied for system identification in recent years due to their exceptional
performance in nonlinear function fitting. For example, for a partially unknown system
(drift dynamic), S. Bhasin et al. combined the prior actor-critic ADP architecture with
a NN identifier and proposed a triple-NNs structure, namely, actor-critic-identifier NNs
in [1]. Under this framework, Lv et al. proposed NN weight tuning laws for online
system identification based on an auxiliary filtering operation [14]. Luo et al. studied
an adaptive optimal control of unknown nonlinear systems by using an identifier-critic
learning framework with relaxed persistence of excitation [13]. Different from the NN
identifier methods, Jiang et al. [7] developed a model-free control method based on pol-
icy iteration (PI) to solve the algebraic Riccati equation (ARE), which is another way
that does not rely on complete system information. However, it is noted that, in the
above mentioned literature, data sampling and control updating are both implemented
in a periodic manner, which results in frequent data updates and heavy computational
burden.

In recent years, researchers have been attempting to reduce the update frequency
of controllers due to limited resources and computational bandwidth in practical con-
trol systems. To achieve this goal, event-triggered communication mechanisms have
been proposed by designing an event generator that updates control inputs aperiodically
[5, 6, 23, 26, 31]. Tabuada proposed a static triggering mechanism (STM) by designing
a triggering rule based on the system state in [23], which promoted subsequent studies.
For instance, Yang [31] proposed a STM-based event-sampled robust control method for
unknown nonlinear systems by using adaptive critic learning. An event-triggered data-
driven iterative learning control method was proposed for disturbed nonlinear discrete-
time systems in [21]. To further reduce the triggering frequency, Girard developed a
dynamic triggering mechanism (DTM) by incorporating an internal filter variable into
the design of triggering rules [4]. It has been shown that the closed-loop system’s sta-
bility can be guaranteed under STM and DTM, respectively. Recently, event-triggered
mechanisms have been applied to the ADP framework and improve learning and control
efficiency [18, 29]. For example, Wang et al. embedded STM into critic learning frame-
work to solve optimal H∞ control problems [25]. Xu et al. proposed an event-triggered
ADP control method to solve a tracking control problem under STM in [28].

To the best of our knowledge, there are still some open issues in the existing studies:
1) Most of the literatures did not study optimal control with dynamic event-triggered
schemes. Meanwhile, although some event-triggered mechanisms were adopted in the
field of learning control of nonlinear systems [25], they need complete or partial knowl-
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edge of system dynamics; 2) The reference in [24] tried to relax the dependence of partial
system dynamics g(x) by utilizing an NN-based identification; however, drift dynamics
were still required and the identification process was only implemented offline, which is
not practical in many real-time cases. As a result, we try to combine system identifica-
tion methods, online learning frameworks, and event-triggered mechanisms to cope with
these issues, which becomes the motivation of this paper.

Based on the previous discussions, this paper presents a novel online identifier-critic
learning framework for event-triggered optimal control of completely unknown nonlinear
systems. The main contributions of the paper are summarized as follows:

1. Unlike existing ADP methods that used classical actor-critic NNs, this paper
proposes a simplified online identifier-critic learning framework to address event-
triggered optimal control of completely unknown nonlinear systems. The proposed
method uses a filter regressor based parameter estimation method to reconstruct
the unknown system dynamics, thereby reducing the dependence on accurate sys-
tem models in control designs.

2. In contrast to previous methods that use gradient-descent based NN adaptive
laws [24, 25], which only converge to the bounded neighborhood of their actual
values, this paper proposes novel NN weight adaptive laws for the identifier NN
and the critic NN based on parameter estimation. The convergence performance
of the estimated weight is ensured, and the learning process of the identifier and
critic NNs is simultaneous and online, using only the measured system state and
input data.

3. To reduce the state sampling frequency, two aperiodic sampling schemes, namely
static and dynamic event- triggers, are embedded into the proposed learning con-
trol framework. Additionally, the stability of the closed-loop system is proven with
the help of a Lyapunov function method.

The rest of this paper is organized as follows. Section II describes the system model
and optimal control problem. Section III proposes the identifier-critic learning frame-
work and the NNs’ adaptive laws. Section IV introduces two event-triggered mechanisms
and the main theoretical results. Section V demonstrates the effectiveness of the pro-
posed learning control methods via numerical simulations. Finally, Section VI concludes
this paper.

2. PRELIMINARIES AND PROBLEM FORMULATION

In this paper, we consider a class of nonlinear continuous-time systems

ẋ = f (x) + g (x)u, (1)

where x ∈ Rn and u ∈ Rm denote the system state and control input, respectively.
f(x) ∈ Rn is the drift dynamics and g(x) ∈ Rn×m is the input dynamics. It is assumed
that f(x) and g(x) are unknown. f(x) + g(x)u is Lipschitz continuous, and can be
stabilized on a compact set Ω ⊆ Rn.

In order to analyze the stability of the closed-loop system of 1, we need the following
notation:
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Definition 1. (Uniform Ultimate Boundedness, Lewis et al. [11]) The solution of the
system (1) is said to be uniform ultimate boundedness (UUB) if there exists a compact
set C ⊂ Rn contiaining the initial value x(t0) = x0, a constant B > 0 and a time
T = T (B, x0) such that ||x(t)− x0|| < B for all t ≥ t0 + T .

In order to evaluate the system performance, an infinite-horizon cost function J(x(t))
is defined as follows:

J(x(t)) =

∫ ∞
t

r(x(τ), u(τ)) dτ, (2)

where r(x(t)) = x(t)>Qx(t) + u(t)>Ru(t) denotes the utility function, Q ∈ Rn×n and
R ∈ Rm×m are symmetric positive definite matrices, respectively.

The objective of this paper is to design a controller to stabilize the system (1) and,
simultaneously, minimize the cost function J(x(t)). According to the optimal principle,
the Bellman equation is obtained by taking time derivative of (2):

r (x, u) +∇J> (x) (f (x) + g (x)u) = 0, (3)

where ∇J (x) = ∂J (x)/∂x. Based on (3), we define the Hamilton function as

H (x, u,∇J) = r (x, u) +∇J> (f (x) + g (x)u) . (4)

The optimal cost function J∗ satisfies the following Hamilton-Jacobi-Bellman equation:

min
u

[H (x, u,∇J∗)] = 0. (5)

Then, the optimal controller can be obtained as follows:

0 =
∂H (x, u, d,∇J∗ (x))

∂u
, (6)

u∗ (x) = −1

2
R−1g> (x) (∇J∗ (x)) . (7)

By applying (7) to (5), the HJB equation can be expressed as

0 = x>Qx+∇J∗>f (x)− 1

4
∇J∗>g (x)R−1g> (x)∇J∗. (8)

As we know, it is difficult to compute the solution to the HJB equation because of
the existence of the partial differential part in (8). In addition, since the information of
f(x) and g(x) is unknown, thus the optimal controller u∗ still cannot be applied directly
to stabilize the nonlinear system.

In order to address these difficulties, in Section 3, a filter-regressor-based system iden-
tification will be proposed for reconstructing the unknown dynamics (f(x) and g(x)), and
then a critic NN is established to solve the approximate solution to the HJB equation,
where an online NN weight adaption laws are proposed based on filtering operations.

3. ONLINE IDENTIFIER-CRITIC NNS LEARNING FRAMEWORK DESIGNS

This section presents an online NN-based identifier-critic learning control structure. It
contains two NNs, i. e., identifier and critic neural networks, and is used to estimate the
unknown dynamics and approximate the cost function.
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3.1. Filter-regressor based system identification

In this subsection, we will describe the design process of the NN-based identifier with a
filter-regressor method. Two NN-based identifiers are designed as follows:

f (x) = αδ (x) + ef , (9)

g (x) = βγ (x) + eg, (10)

where α ∈ Rn×lα and β ∈ Rn×lβ are the ideal and unknown bounded weights of drift
and input dynamics, respectively. δ(x) : Rn → Rlα and γ(x) : Rn → Rlβ×m are the
activation functions. lα and lβ respectively represent the dimensions of the NNs’ hidden
layers. ef ∈ Rn and eg ∈ Rn×m are reconstruction errors, respectively.

According to (9) and (10), the system dynamics can be reformulated by a compact
form:

ẋ = W>i θi (x, u) + εi, (11)

whereW>i = [α, β]
> ∈ R(lα+lβ)×n denotes the unknown identifier weight. θi = [δ>, u>γ>]

is the regressor vector, and εi = ef + egu is the integrated reconstruction error. Before
continuing the discussion, the following assumption is made.

Assumption 1. The signal θi is assumed to be persistently excited (PE) if there exist
two positive constants λ1 and λ2 such that the following condition holds during the time
interval [t, t+ T ],

λ1I ≤
∫ t+T

t

θi (τ)θi (τ)
>

dτ ≤ λ2I. (12)

To estimate the unknown weight of the NN identifier, inspired by [10], a filtering
operation is employed to transfer the system identification to a linear regression problem.
First, x and θi are filtered by a low-pass filter operator 1/(lis+ 1), that is,

liẋf + xf = x, (13)

liθ̇if + θif = θi, (14)

where li is the filter constant. xf and θif are the filtered variables of x and θi. The
reconstruction error εi is filtered by liε̇if + εif = εi.

By the filtering operation, according to (13) and (14), the NN-based system (11) can
be constructed by the following linear regression form, i. e.,

ẋf =
x− xf
li

= Wi
>θif + εif . (15)

To facilitate matrix processing, we multiply the transpose of the last two terms of equa-
tion (15) by θif . This yields:

θif

[
x− xf
li

]>
= θifθif

>Wi + θifεif
>. (16)
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Similar to the first filtering process, θif

[
x−xf
li

]>
and θifθif

> are filtered by a low-pass

filter 1/(s+ ξ), respectively, as

Ṡi = −ξSi + θifθ
>
if , (17)

Ṫi = −ξTi + θif

[
x− xf
li

]>
, (18)

where Si ∈ R(lα+lβ)×(lα+lβ) and Ti ∈ R(lα+lβ)×n denote two intermediate filtered regres-

sor matrices of θif

[
x−xf
li

]>
and θifθif

>, respectively.

Assuming zero initial conditions, that is, Si(0) = 0 and Ti(0) = 0, we can obtain
analytical solutions to the differential equations (17) and (18) in the following form:

Si (t) =

∫ t

0

e−ξ(t−τ)θif (τ) θif (τ)
>

dτ , (19)

Ti (t) =

∫ t

0

e−ξ(t−τ)θif (τ)

[
x (τ)− xif (τ)

li

]>
dτ . (20)

Based on Si and Ti, we define an another intermediate variable Pi ∈ R(lα+lβ)×n as

Pi = SiŴi − Ti. (21)

Then, the weight tuning law for identifier NN is designed as

˙̂
W i = −ΠiPi, (22)

where Ŵ =
[
α̂, β̂

]>
denotes the estimation of W . Πi denotes the learning gain matrix.

Remark 1. By using (15), (19), and (20), one can obtain Ti = SiWi − ei, where

ei =
∫ t

0
e−ξ(t−τ)θif (τ) εif (τ)

>
dτ . It should be noted that if the number of neuron

nodes is large enough, the reconstruction error εi will converge to zero, which will result
in ei → 0.

Remark 2. According to the core filtering steps (17), (18), and their solutions Si (t) =∫ t
0
e−ξ(t−τ)θif (τ) θif (τ)

>
dτ and Ti (t) =

∫ t
0
e−ξ(t−τ)θif (τ)

[
x(τ)−xif (τ)

li

]>
dτ , these fil-

tering steps allow for the accumulation of previous and current data, weighted by an
exponential term in the time domain. By applying this filtering process, we can im-
prove the excitation and adequacy of the original regressor vector θi in the NN-based
approximate system (11), by using only measured data.

3.2. Critic learning based optimal control

Based on the identification given in the previous subsection, the reconstructed system
dynamics of (1) can be re-expressed as

ẋ = α̂δ (x) + β̂γ (x) + eNi + εi, (23)
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where α̂ and β̂ denote the online estimated weights of identifier NNs, respectively. eNi
is an estimation error introduced by the NN, i. e., eNi = (Wi − Ŵi)

>θi(x). Since the
accurate dynamics f(x) and g(x) are unknown, the estimated system model (23) is
employed in the critic learning design below.

According to (4), the approximate Hamilton function can be written as

H (x, u,∇J) =r (x, u) +∇J>(α̂δ (x) + β̂γ (x) + eNi + εi). (24)

Therefore, with the approximate Hamiltonian function and HJB equation, the optimal
control policy u∗ can be re-written as:

u∗ = −1

2
R−1

[
β̂γ (x)

]>
∇J∗ (x) . (25)

As is well known, the HJB equation and optimal control (25) are difficult to be computed.
Thus, we introduce an approximation method to estimate the optimal cost function by
using a three-layer critic NNs, which is represented as

J∗ (x) = Wc
>θc (x) + εc, (26)

and its derivative is given by

∇J∗ (x) = ∇θc> (x)Wc +∇εc, (27)

where Wc ∈ Rk and θc ∈ Rk denote the ideal weight and activation function of the
critic NNs, respectively. k denotes the number of neurons of the critic NNs. ∇θc and
∇εc are the partial derivatives of the activation function θc(x) and approximation error
εc, respectively. Since the ideal weights are unknown in the learning process, the true
optimal cost function Ĵ(x) is approximated as

Ĵ(x) = Ŵ>c θc(x), (28)

where Ŵc is the estimated weights of critic NN. Thus, the estimated control policy û
can be expressed as

û = −1

2
R−1

[
β̂γ (x)

]>
∇θc>Ŵc. (29)

Based on critic and identifier NNs, the estimated HJB equation can be represented as

Wc
>∇θc

(
α̂δ + β̂γu

)
+ r (x, u) + εT = 0, (30)

where εT = Wc
>∇θc (eNi + εi)+∇εc

(
α̂δ + β̂γu+ eNi + εi

)
is the reconstruction error.

According to Weierstrass approximation theorem, if lα, lβ and k tend to infinity, εT will
be vanished.

Then, the approximated HJB equation can be formulated as a linear regression equa-
tion, that is,

Ψ = −Wc
>Γ− εT , (31)

where Γ = ∇θc(α̂δ + β̂γu) and Ψ = r (x, u).
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Similar to the filtering procedure proposed in the identifier NN designs, two interme-
diate filtered regressor matrix Sc ∈ R(k×k) and Tc ∈ Rk are introduced for filtering ΓΓ>

and ΓΨ in (31), respectively. By using a low-pass filter operator 1/(s + lc) with zero
initial conditions, we have

Ṡc = −lcSc + ΓΓ>, (32)

Ṫc = −lcSc + ΓΨ, (33)

where lc is a positive parameter. Then, we define an another vector Pc ∈ Rk based on
Sc and Tc as

Pc = ScŴc + Tc. (34)

Then, the weight tuning law of critic NN is designed as

˙̂
W c = −ΠcPc, (35)

where Πc is a learning rate matrix of the critic NN.

Remark 3. This paper proposes a new weight adaptation method based on a filter-
regressor approach, which diverges from existing system identification techniques [30, 31]
that aim to minimize the identifier error between the system state x and the estimation
state x̂. Although these methods show that the identifier state x̂ converges to its true
value x, they do not prove the convergence of the identifier weights to ideal model
parameters. In contrast, the proposed method is a direct weight adaptation method
based on the parameter estimation error. The advantage of this method is that the
weights can be ’directly’ estimated rather than updated to minimize the identifier error,
which guarantees the convergence of the NN weights to ideal model parameters.

Till now, the derivations of the identifier and critic NNs with weight estimation laws
have been completed. In the above controller designs, the system state must be period-
ically sampled to compute the controller, which results in high energy consumption and
communication bandwidth. In the following, to improve learning and control efficiency,
an event-triggered sampling mechanism is introduced into the proposed identifier-critic
learning control designs. The block diagram of the proposed event-triggered optimal
control method is shown in Figure 1.

4. EVENT-BASED IDENTIFIER-CRITIC LEARNING CONTROL

In this section, two triggering mechanisms are incorporated into the proposed learning-
based optimal control. By using the event-based scheme, the controller is updated only
when the triggering event occurs at τj , and remains unchanged in the time interval
[τj , τj+1). The system state vector at the triggering instant is denoted by

xj = x(τj) = x(t)|t=τj . (36)

Then, we define an error between the actual system state x(t) and the system state
at triggering instant τj xj as ej(t) = xj − x(t) in the time interval [τj , τj+1). The
event-based control policy û(xj) at triggering time τj is given by

û(xj) = −1

2
R−1

[
β̂γ (xj)

]>
∇θc>(xj)Ŵc, t ∈ [τj , τj+1) . (37)
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Fig. 1. Block diagram of the proposed identifier-critic-based

event-triggered optimal control methods.

Then, the weight tuning law of the critic NN is designed as

˙̂
W c = −Πc

(
Sc(û(xj))Ŵc + Tc(û(xj))

)
, (38)

where Sc(û(xj)) and Tc(û(xj)) are computed by using (32) and (33) with Γ(û(xj)) =

∇θc(α̂δ + β̂γû(xj)) and Ψ(û(xj)) = r (x, û(xj)).

Remark 4. In critic NNs, most available weight adaptation laws are designed to mini-
mize the Hamiltonian errors, i. e., Ĥ−H, by utilizing gradient descent methods [29, 31].
In contrast to these approaches, we propose a filter-regressor-based weight adaptation
method based on the parameter estimation error. By introducing some new filtered
variables, the problem of system identification can be transformed into a problem of
parameter estimation, such that the convergence of NN weights can be guaranteed.

Before presenting the triggering condition designs, we need to make the following
assumption, as proposed in [25].

Assumption 2. The control policy u(t) satisfies the Lipschitz condition, that is, there
exists a constant L such that, for all x, xj ∈ Ω, ‖u(x)− û (xj)‖ ≤ L‖ej (t)‖.
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4.1. Static and dynamic triggers mechanism design

We first present the design of the static trigger mechanism (STM), the triggering time
τj+1 is determined by

τj+1 = arg min
t

{
t ∈ R+

0 |t > τj ∩
[
ρxTQx

+ ‖µ‖2‖û (xj)‖2 − L2‖µ‖2‖ej(t)‖2 ≤ 0

]}
.

(39)

Based on (39), the static trigger condition is designed as

‖ej (t)‖2 ≤ ρx>Qx+ ‖µ‖2‖û (xj)‖2

L2‖µ‖2
= ES , (40)

where µ is decomposed from R, i. e., R = µµ>, and ρ ∈ (0, 1) is a positive constant. ES
is the trigger threshold of STM.

Inspired by [4], a dynamic trigger mechanism (DTM) is proposed based on the STM.
First, we introduce a filtered variable yd(t), which has the following equation

ẏd (t) =− φyd +
{
ρx>Qx+ ‖µ‖2‖û (xj)‖2 − L2‖µ‖2‖ej‖2

}
, (41)

where φ > 0 is a positive filtering constant. The initial value of the filtered variable
yd(0) ≥ 0. The triggering time τj+1 is determined by

τj+1 = arg min
t

{
t ∈ R+

0 |t > τj ∩
[
yd (t) + ρd

(
ρxTQx

+ ‖µ‖2‖û (xj)‖2 − L2‖µ‖2‖ej(t)‖2
)
≤ 0

]}
.

(42)

Hence, the dynamic trigger condition is designed as

‖ej (t)‖2 ≤
ρd

(
ρx>Qx+ ‖µ‖2‖û (xj)‖2

)
+ yd

ρdL2‖µ‖2
= ED, (43)

where ρd is a positive constant and ED is the trigger threshold of DTM.

Remark 5. It is worth noting that when yd equals zero, the dynamic triggering mech-
anism becomes equivalent to the static triggering mechanism. Furthermore, it can be
observed that the dynamic triggering condition has a higher threshold compared to that
of the static scheme, which means that the dynamic triggering condition is relatively
easier to satisfy, which results in fewer trigger events.

The convergence of the weight adaptation laws and the stability of the closed-loop
system under static and dynamic triggers will be proved in the following subsection.
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4.2. Stability and convergency analysis

Before giving the main theoretical results, the following assumptions are first made.

Assumption 3. The unknown dynamics f(x) and g(x) are bounded, such that
∃ tf > 0, tg > 0, ‖f (x)‖ ≤ tf ‖x‖ , ‖g (x)‖ ≤ tg.

Assumption 4. The critic NN weight ‖Wc‖, the derivative of critic NN activate
function ‖∇θc‖, the derivative of approximate error ‖∇εc‖ are all bounded, that is,

‖Wc‖ ≤ ‖Wcm‖, ‖∇θc‖ ≤ ‖θcm‖, ‖∇εc‖ ≤ ‖θcdm‖. tβγ = ‖β̂γ‖, tWc
= ‖Ŵc‖ are also

bounded variables.

Theorem 1. Let Assumptions 1-4 hold. Consider system (1) with weight tuning laws
of identifier NN and critic NN updated by (22) and (35), respectively. Then, if the
event is generated by the static triggering scheme (40), we can conclude: 1) Without
regard for reconstruction errors, the system is asymptotically stable and the weight
errors W̃i = Wi − Ŵi, W̃c = Wc − Ŵc all converge to zero; 2) If reconstruction errors
exist, the system stability and the convergence of the weight estimation errors W̃i and
W̃c are all ensured in the sense of uniformly ultimately bounded (UUB).

P r o o f . The Lyapunov function candidate L1 is constructed as

L1 =L11 + L12 + L13 + L14 + L15 + L16

=
1

2
tr
(
W̃>i Π−1

i W̃i

)
+

1

2
W̃>c Π−1

c W̃c

+ J∗ (x) + J∗ (xk) + σiei
>ei + σcec

>ec.

(44)

The whole proof process is divided into two cases: 1) the event is not triggered and 2)
the event is triggered.

Case 1. In event holding interval, we have L̇14 = 0. The derivative of Lyapunov
function L1 is given by

L̇1 = L̇11 + L̇12 + L̇13 + L̇15 + L̇16. (45)

For L̇11, a equivalent deformation related to variables Si, Ti and Wi are made based on
equations (15), (19) and (20):

Ti = SiWi +

∫ t

0

e−ξ(t−τ)θif (τ) ε>if dτ . (46)

We represent the integral term as ei = −
∫ t

0
e−ξ(t−τ)θif (τ) ε>if dτ . The variable Pi can

thus be re-expressed as

Pi = SiŴi − Ti = SiŴi − (SiWi − ei) = −SiW̃i + ei. (47)

Hence, L̇11 can be decomposed as

L̇11 = tr(W̃>i Π−1
i

˙̃Wi) = −tr(W̃>i SiW̃i) + tr(W̃>i ei). (48)
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According to Assumption 1, the intermediate variable Si satisfies λmin(Si) > ωi > 0,
where λmin(Si) denotes the minimal eigenvalue of matrix Si. Then, based on the the
Young’s inequality: ∃c > 0, ab ≤ a2c/2 + b2/2c, the following inequity can be further
derived as

L̇11 ≤ −ωi
∥∥∥W̃i

∥∥∥2

+
∥∥∥W̃>i ei∥∥∥2

≤ −
(
ωi +

1

2c

)∥∥∥W̃i

∥∥∥2

+
c‖ei‖2

2
.

(49)

The derivative of L12 can be deduced by a similar procedure. From (32), (33) and
(34), a linear equation related to Sc, Tc and Wc can be expressed as

Tc = −ScWc −
∫ t

0

e−lc(t−τ)εT (τ) Γ (τ) dτ

= −ScWc + ec,

(50)

where ec denotes the integral term ec = −
∫ t

0
e−lc(t−τ)Γ(τ)εT (τ) dτ . Further, plugging

(50) into (34) yields

Pc = −ScW̃c + ec. (51)

Therefore, if Sc satisfies PE condition in Assumption 1, we have λmin(Sc) ≥ ωc ≥ 0, L̇12

can be further derived as

L̇12 = W̃>c Π−1
c

˙̃Wc

= −W̃>c ScW̃c + W̃>c ec

≤ −ωc
∥∥∥W̃c

∥∥∥2

+
∥∥∥W̃>c ec∥∥∥2

≤ −
(
ωc +

1

2c

)∥∥∥W̃c

∥∥∥2

+
c‖ec‖2

2
.

(52)

By using (7) and (8), the following equations can be obtained

∇J∗>g (x) = −2u∗> (x)R, (53)

∇J∗>f (x) =
1

4
∇J∗>g (x)R−1g> (x)∇J∗ − x>Qx. (54)

For L̇13, by applying the chain rule, we can get

J̇∗ (x) =
∂J∗ (x)

∂x

∂x

∂t
= ∇J∗> (f (x) + g (x) û (xj)) . (55)
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By applying (53) and (54) to (55), we can make the following deformation

J̇∗ (x) =
1

4
∇J∗> (x) g> (x)R−1g (x)∇J∗ (x)

− x>Qx− 2u∗> (x)Rû (xj)

=u∗> (x)Ru∗ (x)− x>Qx− 2u∗> (x)Rû (xj)

= [u∗ (x)− û (xj) + û (xj)]R [u∗ (x)− û (xj)− û (xj)]

− x>Qx

=
∥∥µ> (u∗ (x)− û (xj))

∥∥2 −
∥∥µ>û (xj)

∥∥2

− ρx>Qx− (1− ρ)x>Qx.

(56)

According to
∫ t

0
e−ξ(t−τ)θif (τ) ε>if dτ in Remark 1, we have

ėi = −ξei + θifε
>
if . (57)

Using Young’s inequity, L̇15 can be derived as

L̇15 = 2σiei
>(−ξei + θifε

>
if )

≤ 1

c
‖σiθifεif‖2 + (−2σiξ + c) ‖ei‖2.

(58)

By using the fact ėc = −lcec + ΓεT and Young’s inequity, L̇16 is derived as

L̇16 =2σe>c ėc

=2σce
>
c

(
− lc‖ec‖+ Γ

[
Wc
>∇θc(eNi + εi) +∇εc(f + gu)

])
=

1

c
σ2
cW

2
cmθ

2
cm‖Γ‖

2‖eNi‖2 +
1

c
σ2
cW

2
cmθ

2
cm‖Γ‖

2‖εi‖2

+
1

c
σ2
c t

2
fθ

2
cdm‖Γ‖

2‖x‖2

+
1

4c
λ2

max

(
R−1

)
σ2
c t

2
gt

2
Wct

2
βγθ

2
cm‖Γ‖

2‖∇εc‖2

+ (4c− 2σclc) ‖ec‖2.

(59)
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Based on the aforementioned processing (49)-(59), we have

L̇1 =L̇11 + L̇12 + L̇13 + L̇15 + L̇16

≤
(
− (1− ρ)λmin (Q) +

1

c
σ2
c t

2
fθ

2
cdm‖Γ‖2

)
‖x‖2

−
(
ωi −

1

2c
− 1

c
σ2
cW

2
cmθ

2
cm‖Γ‖2‖θi‖2

)
‖W̃i‖2

−
(
ωc −

1

2c

)
‖W̃c‖2

+

(
−2σiξ +

3c

2

)
‖ei‖2 +

(
9c

2
− 2σclc

)
‖ec‖2

+
1

c
‖σiθifεif‖2 +

1

c
σ2
cW

2
cmθ

2
cm‖Γ‖2‖eNi‖2

+
1

c
σ2
cW

2
cmθ

2
cm‖Γ‖2‖εi‖2

+
1

4c
λ2

max

(
R−1

)
σ2
c t

2
gt

2
Wct

2
βγθ

2
cm‖Γ‖2‖∇εc‖2

+ ‖µ> (u∗ (x)− û (xj))‖2 − ‖µ>û (xj)‖2 − ρx>Qx.

(60)

To facilitate analysis, we define the following notations as

p1 =− (1− ρ)λmin (Q) +
1

c
σ2
c t

2
fθ

2
cdm‖Γ‖

2
,

p2 =−
(
ωi +

1

2c
− 1

c
σ2
cW

2
cmθ

2
cm‖Γ‖

2‖θi‖2
)
,

p3 =− (ωc +
1

2c
), p4 = −2σiξ +

3c

2
,

p5 =
9c

2
− 2σclc,

E =
1

c
‖σiθifεif‖2 +

1

c
σ2
cW

2
cmθ

2
cm‖Γ‖

2‖εi‖2

+
1

4c
λ2

max

(
R−1

)
σ2
c t

2
gt

2
Wct

2
βγθ

2
cm‖Γ‖

2‖∇εc‖2.

(61)

If parameters σi, σc and c, respectively, satisfy the following inequities:

c >max
{

(σ2
c t2

f θ
2
cdm‖Γ‖

2
/ (1− ρ)λmin (Q)), (1/2ωc),

((
1

2
+ σ2

cW
2
cmθ

2
cm‖Γ‖

2‖θi‖2)

/
ωi)
}
,

σi >
3c

4ξ
, σc >

9c

4lc
.

(62)



Event-triggered optimal control of completely unknown nonlinear systems 379

Then, inequality (60) can be further expressed as

L̇1 ≤p1‖x‖2 + p2‖W̃i‖2 + p3‖W̃c‖2 + p4‖ei‖2

+ p5‖ec‖2 + ‖µ> (u∗ (x)− û (xj))‖2

− ‖µ>û (xj)‖2 − ρx>Qx+ E

≤p1‖x‖2 + p2‖W̃i‖2 + p3‖W̃c‖2 + p4‖ei‖2

+ p5‖ec‖2 + L2‖µ‖2‖ej(t)‖2 − ‖µ‖2‖û (xj) ‖2

− ρx>Qx+ E.

(63)

(i) If the reconstruction errors of both identifier and critic NNs are zero, i. e., ‖εi‖ =
‖∇εc‖ = ‖εif‖ = 0, then L̇1 can be re-expressed as

L̇1 ≤ p1‖x‖2 + p2‖W̃i‖2 + p3‖W̃c‖2 + p4‖ei‖2

+ p5‖ec‖2 + L2‖µ‖2‖ej(t)‖2 − ‖µ‖2‖û (xj) ‖2

− ρx>Qx.
(64)

If the triggering error ‖ej(t)‖2 satisfies the triggering condition (40), according to Lya-

punov theorem, the NNs weight errors ‖W̃i‖ and ‖W̃c‖ will decay to zero when t→∞,
the closed-loop system is therefore asymptotically stable.

(ii) If the reconstruction errors of both identifier and critic NNs exist, i.e, E 6= 0. In
this sense, we can conclude that if the following inequalities

‖x‖ >
√
−E/p1,

‖W̃i‖ >
√
−E/p2, ‖W̃c‖ >

√
−E/p3,

‖ei‖ >
√
−E/p4, ‖ec‖ >

√
−E/p5,

(65)

hold, then the convergence of weight estimation errors for identifier NNs and critic NNs,
i. e., ‖W̃i‖ and ‖W̃c‖, and the stability of closed-loop system are all guaranteed in the
sense of uniformly ultimately bounded (UUB).

Case 2. We consider the situation when an event is triggered. The difference of Lya-
punov function L1 at triggering time t = τj+1 is defined as

∆L1 = ∆L13 + ∆L14 + ∆L11 + ∆L12 + ∆L15 + ∆L16︸ ︷︷ ︸
∆Lε

,
(66)

where
∆L13 = lim

∆t→0
{J∗ (xj+1)− J∗ (x (τj+1 −∆t))} , (67)

∆L14 = J∗ (xj+1)− J∗ (xj) , (68)

∆Lε = lim
∆t→0

{
Lε|t=τj+1

− Lε|t=τj+1−∆t

}
. (69)
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Since we have proved in Case 1 that L̇1 < 0 , and since W̃i, W̃c, ei, and ec are continuous
at t ∈ [τj , τj+1), we can further obtain

∆L1 ≤ J∗ (xj+1)− J∗ (xj) ≤ −K ‖xj+1 − xj‖ , (70)

where K(·) is a class-K function [8]. Based on the above two cases, we can conclude
that identifier NNs weight errors W̃i, critic NNs weight errors W̃c and the stability of
closed-loop system are all UUB. This completes the proof. �

Remark 6. It is noted from Theorem 1 that the PE condition is necessary for ensur-
ing the convergence performance of NN weights. To the best of our knowledge, adding
exploration noise to the controller during the learning process is an effective way of
meeting this condition. Additionally, some studies have explored relaxing the PE condi-
tion by introducing concurrent learning techniques [30], such that the PE condition can
be checked via the rank condition of historical data. Inspired by this idea, we plan to
investigate the potential of obtaining relaxed PE conditions for the proposed parameter
estimation method.

Theorem 2. Let Assumptions 1-4 hold. Consider system (1) with weight tuning laws
of identifier NN and critic NN updated by (22) and (35), respectively. If the event is
triggered by the dynamic triggering mechanism (43), then the system stability and the
convergence of the weight estimation errors W̃i and W̃c are all UUB.

P r o o f . We select the following Lyapunov function candidate L2 as

L2 = L1 + yd. (71)

Based on results of (63), the derivation of L2 can be deduced as

L̇2 =L̇1 + ẏd

≤p1‖x‖2 + p2‖W̃i‖2 + p3‖W̃c‖2 + p4‖ei‖2

+ p5‖ec‖2 + E − φyd.
(72)

By using comparison lemma [8] and (41), we can obtain yd ≥ yd (0) e−(φ+ 1
ρ )t, which

means that yd is non-negative. Then, if the conditions in (65) hold, one can conclude
that ‖x‖, ‖W̃i‖ and ‖W̃c‖ are all UUB. This finishes the proof. �

5. SIMULATION RESULTS

In this section, two simulation examples are given to verify the effectiveness of our main
results.

Example 1. Consider a nonlinear continuous system as follows:

ẋ =

[
−x1 + x2

−0.5x1 − 0.5x2

(
1− (cos (2x1) + 2)

2
) ]

+

[
0

cos (2x1) + 2

]
u.

(73)
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We first construct an identifier NN to estimate system parameters of both drift dynamics
f(x) and input dynamics g(x), simultaneously. The activation function θc is chosen as

θc =
[
x1, x2, x2

(
1− (cos (2x1) + 2)

2
)
, cos (2x1)u, u

]>
. (74)

According to the system model (73), the ideal weight matrix Wi is

Wi =

[
W 11
i ,W 12

i ,W 13
i ,W 14

i ,W 15
i

W 21
i ,W 22

i ,W 23
i ,W 24

i ,W 25
i

]
=

[
−1, 1, 0, 0, 0

−0.5, 0,−0.5, 1, 2

]
.

Some parameters of system identification are chosen as: li = 0.001, ξ = 1, Πi = 200.
The initial system state is x(0) = [3,−1]>, and the initial identifier NN weights are

Wi(0) =

[
0.4854, 0.1419, 0.9157, 0.9595, 0.0357
0.8003, 0.4218, 0.7922, 0.6557, 0.8491

]
.

For critic NNs, the activation function θc is selected as

θc =
[
x2

1 x1x2 x2
2

]>
. (75)

Some parameters of critic NNs are chosen as: lc = 150, Πc = 200diag(0.3, 1, 1). Q
and R are all identity matrices. The initial critic NN weights are set to be Wc (0) =[
W 1
c (0) ,W 2

c (0) ,W 3
c (0)

]>
= [0.9509, 0.7223, 0.4001]

>
. In the proposed event-triggered

designs, some parameters are set as: φ = 1, ρ = 0.84, L = 30, µ = 1 and ρd = 10, and
yd(0) = 1. To satisfy PE condition in Assumption 1 in the training process, a probing
noise δp is added to control input u for 1 second, i. e.,

δp = 0.25e−t(sin2 (t) cos (t) + sin2 (2t) cos (0.1t) + sin2 (−1.2t) cos (0.5t) + sin5 (t)).

Figure 2(a) shows the training process of the identifier weights W 11
i , W 12

i , W 21
i , W 23

i ,
W 24
i , W 25

i under dynamic trigger mechanisms. It shows that the weight tuning law can
drive the estimated weights approach the true values, that is,

Wi =

[
−1.0029, 0.9818,−0.0015, 0.0061,−0.0030
−0.4945, 0.0341,−0.4972, 0.9886, 2.0057

]
.

Figure 2(b) illustrates the training process of the critic NN weights. Figure 3 compares
the trajectories of system states x = [x1, x2]> under the proposed STM and DTM-based

critic learning control approaches, as well as the event-triggered scheme, ‖ej (t)‖2 ≤
(1−ρ2)λmin(Q)

(1+ε2)L2 ‖x‖2 with ε = 1, proposed in [30]. It is observed that the evolution of

the system state is similar across all three methods. Figure 4 shows the comparison of
control inputs under the proposed STM and DTM, as well as the event-triggered scheme
proposed in [30].

The performance of the event-triggered control is presented in Figure 5 and Fig-
ure 6. Figure 5(a) and Figure 5(b) illustrate the relationship between triggering error
and triggering threshold for the static and dynamic triggering methods, respectively.
With the static and dynamic triggering schemes, the triggering times are reduced to
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(a) (b)

Fig. 2. Training process of (a) the identifier NN weight Wi and (b)

the critic NN weight Wc.

Fig. 3. The evolution of the state x = [x1, x2]> under STM, DTM

and the event-triggered mechanism in [30].
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Fig. 4. The trajectories of control inputs û(xk) under STM, DTM

and in [30].



384 Z. PENG, Z. ZHANG, ET AL.

175 and 92, respectively, compared to 5000 times for the time-based triggering scheme.
In other words, the static and dynamic triggering mechanisms reduce sampling times
by approximately 96.50% and 98.16%, respectively. Figure 6 depicts the trigger inter-
val Ttrig = τj − τj−1 of the two triggering schemes. These results demonstrate that
there are two advantages of the dynamic triggering mechanism when compared with the
static triggering mechanism: 1) it triggers fewer state samples and 2) the triggering in-
terval gradually increases over time. Therefore, the simulation results demonstrate that
the proposed event-triggered mechanisms can effectively reduce system’s computational
resources.

(a) (b)

Fig. 5. Triggering error and threshold under (a) STM and (b) DTM.

Fig. 6. The trigger instants under STM and DTM.
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Fig. 7. Diagram of a 2-DOF robotic manipulator.

Example 2. Consider a 2-degree-of-freedom (DOF) robotic manipulator (RM) sys-
tem [17], which is shown in Figure 7 to test the effectiveness of the proposed event-
triggered optimal control method. The 2-DOF RM system model and system parameters
are represented as

H(q)q̈ +D(q, q̇)q̇ +G(q) = τ, (76)

H(q) =

[
s1 + s2 + 2s3 cos(q2) s2 + s3 cos(q2)

s2 + s3 cos(q2) s2

]
,

D(q, q̇) =

[
−s3q̇2 sin(q2) −s3(q̇1 + q̇2) sin(q2)
−s3q̇1 sin(q2) 0

]
,

G(q) =

[
0
0

]
,

where s1 = m1lc1
2 +m2l1

2 +S1, s2 = m2l
2
c2 +S2, s3 = m2l1l2, s4 = m1lc2 +m2l1, s5 =

m2lc2 with lc1 = l1/2, lc2 = l2/2. The joint state vector is q = [q1, q2]> and velocity
vector is q̇ = [q3, q4]>. τ = [τ1, τ2]> is the control input of the system. The system
model parameters are given in the Table 1.

Length of link 1 l1 1.01m
Length of link 2 l2 0.82m
Mass of link 1 m1 4kg
Mass of link 2 m2 3kg
Inertia of link1 S1 1.021kgm2

Inertia of link2 S2 0.5043kgm2

Tab. 1. Parameters of the 2-DOF robotic system.
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Fig. 8. The trajectories of robot system states x = [q1, q2, q̇1, q̇2]>

under DTM-based control methods.

Fig. 9. The comparisons of control inputs û(xk) under time-triggered

method and DTM.
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In the critic NN, the activation function is chosen as

θc = [q2
1 , q1q2, q1q3, q1q4, q

2
2 , q2q3, q2q4, q

2
3 , q3q4, q

2
4 ]>.

Fig. 10. (a) Triggering error and threshold under DTM; (b) The

evolution of filtered variable yd(t).

The initial joint states of the 2-DOF robotic system are q(0) = [0.3, 0.3]> and q̇(0) =
[0, 0]> . The initial critic NN weights are set to be

Wc (0) = [0.4795, 0.6393, 0.5447, 0.6473, 0.5439, 0.7210, 0.5225, 0.9937, 0.2187, 0.1058]
>
.

Q = 10I4 and R = I2. In our event-triggered scheme, some parameters are set to be:
φ = 1, ρ = 0.84, L = 27, µ = 3 and ρd = 3. The initial value of filtered variable
is yd(0) = 3. Figure 8 illustrates the trajectory of the system states. Figure 9 shows
the comparisons of control inputs under the proposed DTM method and the traditional
time-based control method. Figure 10 (a) reflects the relationship between the triggering

error ‖ej (t)‖2 and dynamic triggering threshold ED. The evolution of filtered variable
yd(t) is shown in Figure 10 (b), which confirms that the filtered variable yd(t) is non-
negative. Therefore, the simulation results demonstrate the effectiveness of the proposed
event-triggered identifier-critic learning control method.

Remark 7. Note that in order to test the proposed control methods on the RM sys-
tem (Example 2), we should first transfer the RM system (76) to a general nonlinear
continuous-time system (1). In this sense, as shown in [17], only G = 0 can satisfy
f(0) = 0, which is a common assumption to obtain the main results in the ADP field.
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6. CONCLUSIONS

This paper proposed an online identifier-critic learning control framework for unknown
nonlinear systems based on event-triggered methods. Different from traditional ADP
methods, a filter-regressor-based parameter estimation approach was proposed to recon-
struct unknown system dynamics, thereby removing the need for an accurate system
model in the control design loop. Meanwhile, NN weight adaptation rules of the identi-
fier NN and the critic NN were designed for the parameter estimation by utilizing only
measured system state and input data. Furthermore, two kinds of aperiodic sampling
schemes were included in the proposed learning control framework to reduce state sam-
pling frequency. The stability of the closed-loop system and the convergence of adaptive
laws were analyzed. Finally, the simulation results were presented to demonstrate the
performance of the proposed event-triggered learning control strategy.
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