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K Y B E R N E T I K A — V O L U M E 5 9 ( 2 0 2 3 ) , N U M B E R 3 , P A G E S 4 3 7 – 4 6 0

GENERALIZED SYNCHRONIZATION IN THE NETWORKS
WITH DIRECTED ACYCLIC STRUCTURE

Sergej Čelikovský, Volodymyr Lynnyk, Anna Lynnyk
and Branislav Rehák

Generalized synchronization in the direct acyclic networks, i.e. the networks represented
by the directed tree, is presented here. Network nodes consist of copies of the so-called gener-
alized Lorenz system with possibly different parameters yet mutually structurally equivalent.
The difference in parameters actually requires the generalized synchronization rather than the
identical one. As the class of generalized Lorenz systems includes the well-known particular
classes such as (classical) Lorenz system, Chen system, or Lü system, all these classes can be
synchronized using the presented approach as well. The main theorem is rigorously mathe-
matically formulated and proved in detail. Extensive numerical simulations are included to
illustrate and further substantiate these theoretical results. Moreover, during these numerical
experiments, the so-called duplicated system approach is used to double-check the generalized
synchronization.

Keywords: generalized Lorenz system, generalized synchronization, chaos, networks

Classification: 93C10, 05C82, 34D06

1. INTRODUCTION

1.1. State of the art

The generalized synchronization of the direct acyclic network (DAG) having copies of
the so-called generalized Lorenz system (GLS) at its nodes is investigated here. GLS is a
three-dimensional system of ordinary differential equations presenting for a wide range
of its parameters chaotic behavior. Connections between nodes correspond to scalar
information transmissions enabling synchronization of all states of all nodes. Since
nodes may have different parameters, only the so-called generalized synchronization is
achieved, which is weaker than identical synchronization. Note, that DAG topology is
represented by a special graph, the directed tree, where all edges are directed and
each node has no more than one incoming and out-coming edge; moreover, any tree is
by definition a connected graph. Obviously, there should be a unique node without an
incoming edge, called in the sequel as the master node of the network or the root of
the tree.
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During the last decades, there has been widespread and intense interest in studying
complex networks (CN) consisting of dynamical systems. The network may serve as
the diagrammatic representation of the structure or physical systems [9]. CN structure
is the graph of the nodes and links with a specific topology, represented by different
types of typologies, depending on the structure of the physical system or structure.
The main topologies, for example, are star, chain, tree, ring, lattice, etc. Natural and
artificial systems, like social networks, metabolic networks, electric power grids, neural
networks, biochemical networks, communication networks, etc., can be described by CN.
Among problems to be addressed when studying CN, the synchronization phenomena
have played a prominent role.

The synchronization can be viewed as a presence of a collective state of intercon-
nected systems [5] and has various specific and mathematically exact formulated types.
The studies of the so-called identical synchronization of the couples systems were first
presented in [10, 20]. Interconnected chaotic systems and their identical synchroniza-
tion phenomena were first investigated in [19]. Identical synchronization (IS), when the
states of the interconnected systems mutually asymptotically converge to each other,
represents one of the most studied types of synchronization. Among the other kinds
of synchronization in coupled chaotic systems or complex networks, there is general-
ized synchronization (GS) [12, 29], projective synchronization [17], lag synchronization
[28], phase synchronization [27], among others. It is known that disturbances and/or
time delays, quantization, and bandwidth limitation can heavily influence the quality
and speed of the synchronization between nodes of the CN. These obstacles that may
naturally occur in the communication channels were studied in [3, 22, 23, 25, 26], and
references within there.

This paper focuses on the study of the specific case of the synchronization of struc-
turally equivalent systems (identical systems or identical systems with a parameter mis-
match rectifiable by the state transformation, representing either smooth or topological
equivalence). The respective area is still rather wide, and it is studied by a large portion
of the existing literature in the field, cf. [3, 29, 31] and references within there. Yet,
even for structurally equivalent, but non-identical systems, identical synchronization is
not possible. The suitable alternative is the so-called generalized synchronization
(GS) [4] where the state of one system is synchronized with an image of the state
of other system under suitable smooth, or non-smooth mappings, possibly even non-
invertible ones. The functional relationship between coupled systems is the primary
synchronization condition in GS of structurally equivalent systems. The stability of the
synchronization manifold of GS can be such as in the case of IS, i. e., by the negativ-
ity of conditional Lyapunov exponents [21]. GS of two interconnected systems in the
master-slave configuration was first reported in [2]. Later, in [29], the method of mutual
false neighbor for detecting the GS was introduced. Then in [1], the auxiliary system
approach (ASA) was proposed and widely used to verify the presence of the GS between
the unidirectional coupled chaotic systems. The so-called duplicated systems approach
(DSA), the simplified method based on the ASA method, was introduced by authors in
[16]. This method required fewer additional nodes than the ASA method.

As we noted before, many theoretical results about synchronization focus on struc-
turally equivalent coupled systems, but, at the same time, the study of the synchroniza-
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tion phenomena between strictly different (including systems with different dimensions)
dynamical systems is also essential, especially in the case of biological and social sciences
[3, 13, 18, 30].

In this paper, the main theoretical approach is based on the explicit construction of a
diffeomorphism between systems that allows demonstrating directly GS between them.
Practically, the GS is double-checked using the DSA in the numerical simulations.

1.2. Purpose and outline of the paper

This paper studies the generalized synchronization in DAG complex networks having
structurally equivalent coupled chaotic systems as their nodes. Each node of the CN is
a chaotic system described by the generalized Lorenz system (GLS), introduced in [6, 7]
and repeated later on in this paper for the reader’s convenience. Many famous chaotic
systems, for example, the Chen system [8], the Lorenz system [14], the Lü system [15],
etc., are actually subclasses of GLS. The detailed classification of these chaotic systems
with respect to GLS, is summed up in Table I. More specifically, the theoretical result
addressing the generalized synchronization of the DAG complex network with nodes
being GLS is rigorously formulated and proved. This result uses some synchronizing
gains l1 and l2 identical for each node incoming connection. Using the same gains for
all nodes opens some interesting application avenues in secure communications between
nodes. Further, the duplicated system approach is applied to detecting the GS in the
DAG complex network in numerical experiments.

The rest of the paper is organized as follows. Section 2 collects some definitions
and preliminary results. Main theoretical results are given in section 3 and numerical
simulations and experiments are presented in section 4. The conclusions and future
research directions are discussed in the final section.

Notations. Some abbreviations are collected here: DAG – direct acyclic graph, CN –
complex network, GS – generalized synchronization, GLS – generalized Lorenz system,
DSA – duplicated system approach, ASA – auxiliary system approach, IS – identical
synchronization.

2. DEFINITIONS AND PRELIMINARY RESULTS

Some known definitions and results are repeated here for further exposition, including
proof where appropriate for the self-contained reading.

Definition 2.1. The GLS is the three-dimensional dynamical system with real param-
eters a11, a12, a21, a22, λ3 given by the following ordinary differential equations: ẋ1

ẋ2
ẋ3

 =

 a11 a12 0
a21 a22 0
0 0 λ3

 x1
x2
x3

+ x1

 0 0 0
0 0 −1
0 1 0

 x1
x2
x3

 , (1)

a11a22 − a12a21 < 0, a11 + a22 < 0, λ3 < 0 . (2)
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Remark 2.2. GLS (1) – (2) possesses the main structural characteristics of the Lorenz
system; in particular, it includes the “classical” Lorenz system for a11 = −σ, a12 =
σ, a21 = r, a22 = −1, λ3 = −b. The right-hand side of GLS (1) consists of two parts:
the linear one and the quadratic one. The quadratic part is the same as in the classical
Lorenz system, but the linear one has the same more general block triangular structure
mimicking the classical Lorenz system. Condition (2) guarantees that the respective
linear part has two negative eigenvalues and one positive real eigenvalue.

Theorem 2.3. (Lynnyk et al. [16]) GLS (1) with a12 6= 0 is state equivalent to ẇ1

ẇ2

ẇ3

 =

 a11 a12 0
a21 a22 0
0 0 λ3

 w1

w2

w3

+

 0

−w1w3 − w3
1

2a12

Kw2
1

 , K =
λ3 − 2a11

2a12
, (3)

where the corresponding state transformation and its inverse are

w1 = x1, w2 = x2, w3 = x3 −
x21

2a12
, x1 = w1, x2 = w2, x3 = w3 +

w2
1

2a12
. (4)

P r o o f . Straightforward computations using (3) and (4) give

ẇ1 = ẋ1 = a11x1 + a12x2 = a11w1 + a12w2,

ẇ2 = ẋ2 = a12x1 + a22x2 − x1x3 = a12w1 + a22w2 − w1w3 −
w3

1

2a12
,

and one has by differentiation of the definition of w3 in (4) that

ẇ3 = ẋ3 −
2x1
2a12

ẋ1 = λ3x3 + x1x2 −
2x1
2a12

(a11x1 + a12x2) = λ3x3 −
a11x

2
1

a12
.

Substituting in the last expression x1, x2, x3 from (4) gives

ẇ3 = λ3x3 −
a11x

2
1

a12
= λ3

(
w3 +

w2
1

2a12

)
− a11w

2
1

a12
= λ3w3 +Kw2

1, (5)

where K is as in (3) and proof is completed. �

Theorem 2.3 provides the construction of the synchronization of two GLS’s in the
master-slave configuration which is facilitated by the special form 3. First, synchroniza-
tion is described for the respective transformed system by the following

Lemma 2.4. Consider (3) and the notation used there. Define the following system ˙̂w1

˙̂w2

˙̂w3

 =

 a11 a12 0
a21 a22 0
0 0 λ3

 ŵ1

ŵ2

ŵ3

+

 l1
l2
0

 (w1 − ŵ1) +

 0

−w1ŵ3 − w3
1

2a12

Kw2
1

 . (6)
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Let there exist W > 0 such that for solution of (3) it holds |w1(t)| ≤W, ∀t ≥ 0, let

a11 + a22 − l1 < 0, a11a22 − a12a21 − l1a22 + l2a12 > 0, (7)

and let λ3 < 0. Then there exist M > 0, L > 0, ∀t ∈ R+ such that

ŵ :=

 ŵ1

ŵ2

ŵ3

 , w :=

 w1

w2

w3

 , ‖ŵ(t)− w(t)‖ ≤M exp(−Lt)‖ŵ(0)− w(0)‖. (8)

P r o o f . Denote ε := ŵ − w = [ε1 ε2 ε3]>, subtracting (3) from (6) gives straightfor-
wardly  ε̇1

ε̇2
ε̇3

 =

 a11 − l1 a12 0
a21 − l2 a22 0

0 0 λ3

 ε−
 0
ε3
0

w1(t).

Since the above equations obviously give that ε3(t) = ε3(0) exp(λ3t), one has

[
ε̇1
ε̇2

]
= E

[
ε1
ε2

]
−
[

0
ε3(0) exp(λ3t)w1(t)

]
, E :=

[
a11 − l1 a12
a21 − l2 a22

]
,

[
ε1(t)
ε2(t)

]
= exp(Et)

[
ε1(0)
ε2(0)

]
+

∫ t

0

exp(E(t− s))
[

0
1

]
ε3(0) exp(λ3s)w1(s)ds. (9)

Straightforward computations using (7) show that the (2×2) matrix E has eigenvalues

with the negative real parts and therefore by Theorem 4.11 of [11] there exist M̃ > 0, L̃ >

0, such that ‖ exp(Et)‖ ≤ M̃ exp(−L̃t), ∀t ≥ 0. Moreover, L̃ > 0 can be taken such that

L̃ 6= −λ3. Indeed, if existing by Theorem 4.11 of [11] number L̃ = −λ3 > 0, it can be

replaced by any number L̃ ∈ (0,−λ3) obviously keeping the respective inequality valid

as well. Applying the inequality ‖ exp(Et)‖ ≤ M̃ exp(−L̃t), ∀t ≥ 0, the assumption
|w1(t)| ≤W, ∀t ≥ 0, and the obvious ‖[ε1(0), ε2(0)]>]‖ = 1 to (9) gives

∀t ≥ 0 : ‖[ε1(t), ε2(t)]>‖ ≤ M̃ exp(−L̃t)‖[ε1(0), ε2(0)]>]‖+WM̃ |ε3(0)|

×
∫ t

0

exp(−L̃(t− s))‖[0, 1]>‖ exp(λ3s)ds ≤ M̃ exp(−L̃t)‖[ε1(0), ε2(0)]>]‖

+WM̃ exp(−L̃t)|ε3(0)|
∫ t

0

exp((λ3 + L̃)s))ds

= M̃ exp(−L̃t)
[
‖[ε1(0), ε2(0)]>]‖+W |e3(0)|exp((λ3 + L̃)t)− 1

λ3 + L̃

]
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= M̃ exp(−L̃t)
[
‖[ε1(0), ε2(0)]>]‖ − |e3(0)| W

λ3 + L̃

]
+

M̃W

λ3 + L̃
exp(λ3t)|e3(0)|

≤ M̃‖ε(0)‖
[

exp(−L̃t) + exp(−L̃t) W

|λ3 + L̃|
+

W

|λ3 + L̃|
exp(λ3t)

]
≤ M̂ exp(−L̂t)‖ε(0)‖, L̂ := min(−λ3, L̃), M̂ := M̃

(
1 + 2

W

|λ3 + L̃|
)
.

The penultimate inequality above is due to the obvious inequalities ‖[ε1(0), ε2(0)]>]‖ ≤
‖ε(0)‖ and |e3(0)| ≤ ‖ε(0)‖ while the subsequent inequality is by definitions of M̂, L̂
given after it. In such a way, it has been proved that ∀t ≥ 0 it holds

‖[ε1(t), ε2(t)]>‖ ≤ M̂ exp(−L̂t)‖ε(0)‖, L̂ := min(−λ3, L̃), M̂ := M̃
(

1 + 2
W

|λ3 + L̃|

)
.

To complete the proof of Lemma, recall that ε := ŵ − w = [ε1, ε2, ε3]> and ε3(t) =
ε3(0) exp(λ3t). Triangle inequality gives ∀t ≥ 0

‖ε(t)‖ ≤ ‖[ε1(t), ε2(t)]>‖+ |e3(t)| ≤ M̂ exp(−L̂t)‖ε(0)‖+ |e3(0)| exp(λ3t)

≤ exp(−L̂t)
(
M̂‖ε(0)‖+ |ε3(0)|

)
≤ exp(−L̂t)

(
M̂ + 1

)
‖ε(0)‖,

where the penultimate inequality is due to L̂ := min(−λ3, L̃) while the subsequent one
is due to |e3(0)| ≤ ‖ε(0)‖. Summarizing, it has been proven that there exists M,L > 0
such that ∀t ≥ 0 it holds

‖ε(t)‖ ≤M exp(−Lt)‖ε(0)‖, L := min(−λ3, L̃), M := 1 + M̃
(

1 + 2
W

|λ3 + L̃|

)
.

Proof has been completed. �

Remark 2.5. Constants M,L > 0 can be estimated using the constructive proof just
presented. They depend on constants M̃ > 0, L̃ > 0, existing by Theorem 4.11 of [11],
where one can find also ideas on how to estimate them for a particular matrix E. Note,
that their quality can be affected by the observer gains l1, l2 that may be used as free
design parameters. Further, they depend on W > 0 bounding the component w1(t) of
the master system (3) and its linear part eigenvalue λ3 < 0, which can not be in any
way affected by the mentioned observer gains l1, l2 selection.

Corollary 2.6. Let any a11, a12, a21, a22 ∈ R be given such that a12 6= 0. Then, the
pair of conditions given in (7) holds if and only if l1 ∈ R, l2 ∈ R are such that

l1 > a11 + a22,

l2

{
> −a11a22+a12a21+l1a22

a12
if a12 > 0,

< −a11a22+a12a21+l1a22

a12
if a12 < 0.

(10)
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Remark 2.7. Corollary 2.6 shows that the assumption (7) of Lemma 2.4 can be always
satisfied by the proper selection of gains l1, l2 ∈ R when a12 6= 0. The latter is quite
reasonable as it is necessary for some complex nontrivial behavior of the master system
(1) and its observer form (3). Indeed, the first equation in system (1) is independent for
a12 = 0, so x1 either goes to zero or an infinity or stays constant, and in this case, the
behavior of GLS (1) is uninteresting (see Table I).

The following lemma was originally presented in [16]. It is recalled here including its
proof as its ideas are used later on to prove other results of the current paper as well.

Lemma 2.8. Consider the system with states x̂1, x̂2, x̂3 and other states ŵ1, ŵ2, ŵ3 as: ˙̂x1
˙̂x2
˙̂x3

 =

 a11 a12 0
a21 a22 0
0 0 λ3

 x̂1
x̂2
x̂3

+ x̂1

 0 0 0
0 0 −1
0 1 0

 x̂1
x̂2
x̂3



+ (x1 − x̂1)


l1

l2 − x̂3 − x1(x̂1+x1)
2a12

K(x̂1 + x1) + l1x̂1

a12

 , K =
λ3 − 2a11

2a12
,

(11)

ŵ1 = x̂1, ŵ2 = x̂2, ŵ3 = x̂3 −
x̂21

2a12
, x̂1 = ŵ1, x̂2 = ŵ2, x̂3 = ŵ3 +

ŵ2
1

2a12
. (12)

Then (4) – (12) mapping R6 7→ R6 transforms the system (3) – (6) having the state
w1, w2, w3, ŵ1, ŵ2, ŵ3 into the system (1) – (11) having the state x1, x2, x3, x̂1, x̂2, x̂3.

P r o o f . One has by (12) and by (6) that

˙̂x1 = ˙̂w1 = a11ŵ1 + a12ŵ2 + l1(w1 − ŵ1) = a11x̂1 + a12x̂2 + l1(x1 − x̂1),

˙̂x2 = ˙̂w2 = a21ŵ1 + a22ŵ2 + l2(w1 − ŵ1)− w1ŵ3 −
w3

1

2a12
= a21x̂1 + a22x̂2 + l2(x1 − x̂1)

−x1(x̂3 −
x̂21

2a12
)− x31

2a12
= a21x̂1 + a22x̂2 − x̂1x̂3 + (x1 − x̂1)

(
l2 − x̂3 −

x1(x̂1 + x1)

2a12

)
,

˙̂x3 = ˙̂w3 +
ŵ1

a12
˙̂w1 = λ3ŵ3 +Kw2

1 +
ŵ1

a12
(a11ŵ1 + a12ŵ2 + l1(w1 − ŵ1))

= λ3
(
x̂3 − x̂21/(2a12)

)
+Kx21 +

x̂1
a12

(a11x̂1 + a12x̂2 + l1(x1 − x̂1))

= λ3x̂3 +
x̂21

2a12
(2a11 − λ3 − 2l1) + x̂1x̂2 +Kx21 +

l1x1x̂1
a12

= λ3x̂3 + x̂1x̂2

+K(x21 − x̂21)− l1x̂
2
1

a12
+
l1x1x̂1
a12

= λ3x̂3 + x̂1x̂2 + (x1 − x̂1)

(
K(x1 + x̂1) +

l1x̂1
a12

)
,

which, after comparison with (11), completes the proof. �
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Remark 2.9. The right-hand side of the system (11) is the sum of the copy of GLS (1)
with state x̂ and the connection to (1), the latter obviously vanishes when x = x̂. As a
matter of fact, it is actually the so-called synchronizing connection; this terminology
is justified by Theorem 2.10 presented below.

Theorem 2.10. (Lynnyk et al. [16]) Consider system (1) and system (11) with l1, l2
satisfying (7). Let for a solution x(t) of system (1) there exists W > 0 such that
‖x(t)‖ ≤ W, ∀t ≥ 0. Further, denote by x̂(t) be the solution of (11). Then x̂(t) exists
for all t ≥ 0 and there exist positive constants M and L such that

‖x̂(t)− x(t)‖ ≤M exp(−Lt)‖x̂(0)− x(0)‖. (13)

P r o o f . Note that the existence of x̂(t) for all t ≥ 0 is the straightforward consequence
of (13) and the assumption that there is W > 0 such that ‖x(t)‖ ≤W, ∀t ≥ 0. To prove
(13), realize by Lemma 2.8 that (1) – (11) is state equivalent to (3) – (6) and by Lemma
2.4 the inequality (8) holds for w, ŵ in (3) – (6). Since x, x̂ are the images of w, ŵ via
the globally smooth one-to-one mapping (4) – (12), the inequality (13) should hold for
some suitable positive constants M and L as well. �

Generalized Lorenz system (1) – (2)

a12 = 0: trivial case
a21 = 0 ∧ a11 ≥ 0: trivial case
a21 = 0 ∧ a11 < 0: Lü system [15]
a12a21 > 0: Lorenz system [14]
a12a21 < 0: Chen system [8]

Tab. 1. Classification of the special cases of GLS (1) – (2) [?].

This section is concluded by recalling some basics from complex networks and graph
theory. The complex network structure is usually identified with either a directed or
undirected graph, having N nodes and some connections between them, called edges.
The overall graph structure can be described by the so-called adjacency matrix

C =

 c11 · · · c1N
...

. . .
...

cN1 · · · cNN

 , cij ∈ {0, 1}, i, j = 1, . . . , N.

If there exists edge going from the ith to the jth node, then cij = 1, otherwise cij = 0.
The node jM is called root (master) if cijM = 0, ∀j = 1, . . . , N . The path connecting
nodes i0 and iM is a sequence of ci0i1 = ci1j2 = · · · = ciM−2iM−1

= ciM−1jM = 1, M is
called the path length. The path is called cycle (or loop), if i0 = iM . The graph is
called connected if there is a path connecting any pair of nodes, the connected graph
may have only one root. Direct acyclic graph (or tree), see Figure 1, is a connected
graph having a master and a unique path between any two nodes, or, equivalently, with
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no loops. Most importantly (crucially used later on): each node of the tree has
exactly one incoming edge except the root with no incoming edge. More
detailed exposition can be found e. g. in [9]).

3. MAIN RESULT

Generalized synchronization (GS) in the unidirectional complex networks is studied in
this section to present the main novel theoretical result of the current paper, namely,
Theorem 3.2 characterizing the generalized synchronization of a complex network with
directed acyclic graph topology. First, the so-called generalized synchronization and
auxiliary system approach are recalled, and some important results are repeated.

3.1. Generalized synchronization in the master-slave configuration

Consider two interconnected continuous time systems given by the vector fields f and
g, where g includes the coupling, namely

ẋ = f(x) (14a)

˙̂x = g(x̂, x). (14b)

Here, x ∈ Rn and x̂ ∈ Rm are called the states of the drive and response systems,
respectively [?]. The system (14) is said to be globally generalized synchronized if
there exists continuous mapping Φ : Rn 7→ Rm such that for all solutions of (14) it holds

lim
t→∞

(
x̂(t)− Φ(x(t)

)
= 0. (15)

The presence of the asymptotically stable limit set of the response system is the essen-
tial condition of the generalized synchronization [12]. The GS between interconnected
chaotic systems could be detected by various methods, among them the so-called aux-
iliary system approach (ASA) and duplicated system approach (DSA).

Fig. 1. Example of the network with topology described by the

directed acyclic graph.



446 S. ČELIKOVSKÝ, V. LYNNYK, A. LYNNYK, AND B. REHÁK

3.2. Generalized synchronization and auxiliary system approach

The block scheme of the auxiliary system approach (ASA) [1] used for detection of the
generalized synchronization between two unidirectional coupled chaotic systems is shown
in Figure 2. This method uses the identical response system copy, influenced by the same
driving signal, i. e. N2 and N2’ in Figure 2 are driven by the same master driving signal.
In [31], the necessary conditions of the application of the auxiliary system approach for
detecting the GS regime in CN with directional coupling are reported. Consequently,
the auxiliary system approach can be applied for the GS detection in the CN with the
directed acyclic graph structure (Figure 1). However, the ASA competence was shown
as well in the case of the directed CNs with ring topology that is not described by DAG
topology [16].

Fig. 2. Auxiliary system approach scheme [1]. N1 is a drive node, N2

is a response node, and N2’ is an auxiliary node that copies the

response node N2.

3.3. Generalized synchronization of generalized Lorenz systems in master-
slave configuration

For the sake of self-complete exposition, the following theorem is repeated, [16].

Theorem 3.1. Consider system (1) and the system ˙̂x1
˙̂x2
˙̂x3

 =

 â11 â12 0
â21 â22 0
0 0 λ3

 x̂1
x̂2
x̂3

+

 0
−x̂1x̂3
x̂1x̂2



+ (x1 − x̂1)

 l1

l2 − x̂3 − x1(x̂1+x1)
2â12

K(x̂1 + x1) + l1x̂1

â12

 , K =
λ3 − 2â11

2â12
,

(16)

where l1, l2 ∈ R satisfy

l1 > â11 + â22, l2

{
> −â11â22+â12â21+l1â22

â12
if â12 > 0,

< −â11â22+â12â21+l1â22

â12
if â12 < 0.

(17)

Further, let there exists ν ∈ R, ν 6= 0 such that

â11 = a11, â22 = a22, a12 = νâ12, (18)

and denote

D =

 1 0 0
0 ν 0
0 0 ν

 . (19)
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Let for a given solution x(t) of system (1) there exist a constant W > 0, such that
‖x(t)‖ ≤W ∀t ∈ R+. Then there exists real positive constants M and L such that

‖x̂(t)−Dx(t)‖ ≤M exp(−Lt)‖x̂(0)−Dx(0)‖. (20)

P r o o f . Introduce the transformed state of GLS (1) and denote it x̃, namely x̃ = Dx,
where D is given by (19). Straightforward computations using GLS (1) give that

˙̃x = D

 ẋ1
ẋ2
ẋ3

 = D

 a11 a12 0
a21 a22 0
0 0 λ3

 x1
x2
x3

+Dx1

 0 0 0
0 0 −1
0 1 0

 x1
x2
x3

 ,
˙̃x = D

 a11 a12 0
a21 a22 0
0 0 λ3

D−1
 x̃1
x̃2
x̃3

+ x̃1D

 0 0 0
0 0 −1
0 1 0

D−1
 x̃1
x̃2
x̃3

 .
This gives

˙̃x =

 â11 â12 0
â21 â22 0
0 0 λ3

 x̃1
x̃2
x̃3

+ x̃1

 0 0 0
0 0 −1
0 1 0

 x̃1
x̃2
x̃3

 . (21)

Applying Theorem 2.10 with GLS (1) replaced by (21) completes the proof. �

Fig. 3. Example of DAG network subject to DSA using the

duplicated node.

3.4. Generalized synchronization of a complex network with topology
described by directed acyclic graph

The main theoretical contribution of the present paper is the following

Theorem 3.2. Consider the direct acyclic graph with N nodes and (N ×N) adjacency
matrix C = [cij ], i, j = 1, . . . , N and the respective complex network having at each node
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a copy of GLS with possibly different parameters node by node. Let the synchronizing
connections are as in (16) with unique pair of gains l1, l2 along all existing edges and let
the first node (i = 1) be the root. That is, consider the following (3N×3N)-dimensional
system

 ẋi1
ẋi2
ẋi3

 =

 ai11x
i
1 + ai12x

i
2

ai21x
i
1 + ai22x

i
2 − xi1xi3

λ3x
i
3 + xi1x

i
2

+

N∑
j=1

cji(x
j
1 − xi1)


l1

l2 − xi3 −
xj
1(x

i
1+xj

1)

2ai
12

Ki(xi1 + xj1) +
l1x

i
1

ai
12

 ,

xi :=

 xi1
xi2
xi3

 ∈ R3, Ki :=
λi3 − 2ai11

2ai12
, i = 1, . . . , N, ci1 = 0, i = 1, . . . , N. (22)

Let ai12 6= 0, let the synchronizing gains l1, l2 in (22) satisfy ∀i = 1, . . . , N

l1 > ai11 + ai22, l2a
i
12 > −ai11ai22 + ai12a

i
21 + l1a

i
22 (23)

and let for every i = 1, . . . , N there exist νi ∈ R \ {0}, such that

a111 = ai11, a
1
22 = ai22, a112 = νiai12, a

1
21 = ai21/ν

i. (24)

Let x1(t) be a solution of the master node GLS (i. e. (22) for i = 1 only) and let there
exist W > 0 such that ‖x1(t)‖ ≤ W, ∀t ≥ 0. Then there exist real positive constants
M i and Li, i = 1, . . . , N, such that ∀i = 1, . . . , N it holds

‖xi(t)−Dix
1(t)‖ ≤M i exp(−Lit)‖xi(0)−Dix

1(0)‖, Di :=

 1 0 0
0 νi 0
0 0 νi

 . (25)

The following lemma is needed to prove the previous theorem.

Lemma 3.3. Assume that φ(η) : Rn 7→ Rn and θ(t) : R 7→ Rn are continuously dif-
ferentiable and consider the system η̇ = φ(η), η ∈ Rn. Assume its solutions η(t) exist
∀t ≥ 0 and let there exist positive real constants M,L, µ, λ such that

‖η(t)‖ ≤M exp(−Lt)‖η(0)‖, ‖θ(t)‖ ≤ µ exp(−λt), ∀t ≥ 0.

Then solutions η̂(t), t ≥ 0, of the perturbed system ˙̂η = φ(η̂)+θ(t), η̂ ∈ Rn, exist ∀t ≥ 0

and there exist positive real constants M̂, L̂ such that

‖η̂(t)‖ ≤ M̂ exp(−L̂t)‖η̂(0)‖, ∀t ≥ 0.

P r o o f . By Converse Theorem on Exponential Stability, see e. g. [11], there exists
continuously differentiable V (η) : Rn 7→ R and positive constants c1, c2, c3, c4, such that

c1‖η‖2 ≤ V (η) ≤ c2‖η‖2,
∂V

∂η
φ(η) ≤ −c3‖η‖2, ‖

∂V

∂η
‖ ≤ c4‖η‖, η ∈ Rn.
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Consider any solution η̂(t), t ≥ 0, of the perturbed system ˙̂η = φ(η̂)+θ(t). This solution
exists uniquely locally ∀t ∈ [0, δ], δ > 0, since the perturbed system has continuously
differentiable right-hand side. Moreover, by the last two inequalities of V above and the
assumption on ‖θ(t)‖

∂V

∂η
(η̂(t))[φ(η̂(t)) + θ(t)] ≤ −c3‖η̂(t)‖2 + c4µ‖η̂(t)‖ exp(−λt).

First of all, this inequality excludes finite-time escape, and therefore any solution η̂(t)
exists ∀t ≥ 0. Further, let [tl1, t

l
2] be some time segment such that ∀t ∈ [tl1, t

l
2] it holds

∂V

∂η
(η̂(t))[φ(η̂(t)) + θ(t)] ≤ −c3‖η̂(t)‖2 + c4µ‖η̂(t)‖ exp(−λt) ≤ −(c3/2)‖η̂(t)‖2.

In such a way, using c1‖η‖2 ≤ V (η) ≤ c2‖η‖2, it holds ∀t ∈ [tl1, t
l
2] that

dV (η̂(t))

dt
=
∂V

∂η
(η̂(t))[φ(η̂(t)) + θ(t)] ≤ −(c3/2)‖η̂(t)‖2 ≤ −(c3/2)V (η̂(t))/c2

and using Comparison Lemma, see e. g. [11], it holds

V (η̂(t)) ≤ V (η̂(tl1)) exp(− c3
2c2

t) ⇒ ‖η̂(t)‖2 ≤ c2
c1

exp(− c3
2c2

t)‖η̂(tl1)‖2,

using c1‖η‖2 ≤ V (η) ≤ c2‖η‖2 again. So, it holds on [tl1, t
l
2] that

‖η̂(t)‖ ≤
√
c2
c1

exp(− c3
4c2

t)‖η̂(tl1)‖2.

Finally, let [th1 , t
h
2 ] be some time segment such that ∀t ∈ [th1 , t

h
2 ] it holds

−c3‖η̂(t)‖2 + c4µ‖η̂(t)‖ exp(−λt) > −(c3/2)‖η̂(t)‖2.

Straightforward manipulations show that the above inequality is equivalent to

‖η̂(t)‖ < (2c4µ/c3) exp(−λt), ∀t ∈ [th1 , t
h
2 ].

Obviously, for every t ≥ 0, it holds that it either belongs to some segment of type
[th1 , t

h
2 ], or to some segment of type [tl1, t

l
2], which easily completes the proof. Indeed, an

important crucial feature of both estimates obtained previously is that their constants
depend on c1, c2, c3, c4 and K only; they do not depend on a particular interval of each
type. �

P r o o f o f T h e o r e m 3.2. First, for clarity, note explicitly that by (22) and the first
node being the master (root), i. e. cj1 = 0, j = 1, . . . , N , the solution x1(t) satisfies: ẋ11

ẋ12
ẋ13

 =

 a111x
1
1 + a112x

1
2

a121x
1
1 + a122x

1
2 − x11x13

λ3x
1
3 + x11x

1
2

 , x1 :=

 x11
x12
x13

 . (26)
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Since (24) gives ν1 = 1 , (25) trivially holds, indeed, xi(t)−Dix
1(t) = x1(t)−x1(t) = 0.

Furthermore, by the assumption that the respective graph is the direct acyclic one, or a
tree, as already repeated in the review part of the paper before, every other node distinct
from the root has exactly one incoming edge, i. e. exactly one synchronizing connection.
That means that for every i = 2, . . . , N there exists unique j = 1, . . . , N − 1 such that ẋi1

ẋi2
ẋi3

 =

 ai11x
i
1 + ai12x

i
2

ai21x
i
1 + ai22x

i
2 − xi1xi3

λ3x
i
3 + xi1x

i
2

+ (xj1 − xi1)


l1

l2 − xi3 −
xj
1(x

i
1+xj

1)

2ai
12

Ki(xi1 + xj1) +
l1x

i
1

ai
12

 . (27)

Introduce the so-called depth of any ith node, i > 1, namely, the integer di equal to
a number of the edges connecting the root (the 1-st node) and the ith node. Obviously,
di ≤ N − 1, ∀i = 2, . . . , N and di is uniquely and well-defined ∀i = 2, . . . , N due to the
respective network being connected and acyclic. In such a way, the theorem claim can
be proved by induction using the depth of the nodes.

I. (25) is valid for any ith node with di = 1. Indeed, by (27) it holds ẋi1
ẋi2
ẋi3

 =

 ai11x
i
1 + ai12x

i
2

ai21x
i
1 + ai22x

i
2 − xi1xi3

λ3x
i
3 + xi1x

i
2

+ (x11 − xi1)


l1

l2 − xi3 −
xj
1(x

i
1+x1

1)

2ai
12

Ki(xi1 + x11) +
l1x

i
1

ai
12


and using Theorem 3.1 with x̂ := xi, x := x1 and D := Di obviously proves (25).

II. Let k > 1 and assume (25) is valid for any jth node with dj = k− 1. As a

matter of fact, the assumption just made means that there exist M̃, L̃ ∈ R+ such that

‖xj(t)−Djx
1(t)‖ ≤ M̃ exp(−L̃t)‖xj(0)−Djx

1(0)‖, ∀t ∈ R+, (28)

for every j such that dj = k − 1. Next, choose any i ∈ {2, . . . , N − 1} such that for the
ith node di = k. As already noted, the network is connected and there is a unique path
from the root to that chosen ith node and therefore there exists some j ∈ {2, . . . , N −1}
such that for the jth node dj = k − 1 and (27), (28) hold. Further, straightforward
computations show that (26) is transformed using (24) as follows ẋ

1
1

ẋ
1
2

ẋ
1
3

 =

 ai11x
1
1 + ai12x

1
2

ai21x
1
1 + ai22x

1
2 − x11x13

λ3x
1
3 + x11x

1
2

 , x := Dix
1 =

 x11
νix

1
2

νix
1
3

 , x1 :=

 x11
x12
x13

 . (29)

Applying transformations (4) – (12) with x := x1, x̂ := xi to (27) and (29) one gets
straightforwardly1 that the systems (27) and (29) are smoothly state transformed to ẇ1

ẇ2

ẇ3

 =

 a11 a12 0
a21 a22 0
0 0 λ3

 w1

w2

w3

+

 0

−w1w3 − w3
1

2a12

Kw2
1

 , K =
λ3 − 2a11

2a12
, (30)

1Lemma 2.8 can not be straightly applied since (27) does not precisely match its formulation. Yet,
the proof of Lemma 2.8 can be basically repeated giving (31) which is just (6) with w1 replaced by xj .
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 ˙̂w1

˙̂w2

˙̂w3

 =

 a11 a12 0
a21 a22 0
0 0 λ3

 ŵ1

ŵ2

ŵ3

+

 l1
l2
0

 (xj1 − ŵ1) +

 0

−xj1ŵ3 − (xj
1)

3

2a12

K(xj1)2

 (31)

Equations (31) can be further represented as follows ˙̂w1

˙̂w2

˙̂w3

 =

 a11 a12 0
a21 a22 0
0 0 λ3

 ŵ1

ŵ2

ŵ3

+

 l1
l2
0

 (w1 − ŵ1) +

 0

−w1ŵ3 − w3
1

2a12

Kw2
1


+ (w1 − xj1)ω(w1, ŵ3, x

j
1) , ‖ω(w1, ŵ3, x

j
1)‖ ≤ P, (32)

where ω : R3 7→ R is smooth and could be explicitly expressed, which is skipped for
brevity, yet, it is clear that ω is smooth. Furthermore, the inequality in (32) holds for
some suitable selected real constant P > 0 along all solutions of the above equations due
to the following justification. As already noted, ω is a smooth function and the solution
w1(t) = x11 = x11 is bounded by the assumption of the theorem being proved, xj1(t) is
bounded by the induction assumption that jth node globally exponentially converges to
that bounded w1(t). The only less trivial part is to show that ŵ3(t) is bounded which

is by the equation ˙̂w3 = λ3ŵ3 + K(xj1)2 with λ3 < 0 and already justified property xj1
being bounded.

Next, note that |w1(t) − xj1(t)| ≤ M̃ exp(−L̃t)|w1(t) − xj1(0)| due to the inductive
assumption (28) and w1 := Djx1

2

‖(w1 − xj1)ω(w1, ŵ3, x
j
1)‖ ≤ PM̃ exp(−L̃t)|w1(t)− xj1(0)|. (33)

Denote ε̂ := ŵ − w = [ε̂1 ε̂2 ε̂3]>, subtracting (30) from (31) gives straightforwardly ˙̂ε1
˙̂ε2
˙̂ε3

 =

 a11 − l1 a12 0
a21 − l2 a22 0

0 0 λ3

 ε̂−
 0
ε̂3
0

w1(t) + (w1 − xj1)ω(w1, ŵ3, x
j
1).

Further, during the proof of Lemma 2.4, it was shown that for the system ε̇1
ε̇2
ε̇3

 =

 a11 − l1 a12 0
a21 − l2 a22 0

0 0 λ3

 ε−
 0
ε3
0

w1(t)

it holds ‖ε(t)‖ ≤ M exp(−Lt)‖ε(0)‖ for some suitable M,L > 0. Now, due to (33) and

Lemma 3.3 one concludes that there exist positive real constants M̂, L̂ such that

‖ŵ(t)− w(t)‖ = ‖ε̂(t)‖ ≤ M̂ exp(−L̂t)‖ε̂(0)‖, ∀t ≥ 0.

Finally, since ŵ(t), w(t) are smooth images of x := x1, x̂ := xi applying transformations
(4) – (12) to (27) and (29), one concludes that (28) holds with i, di = k as well, possible

with some different constants M̃, L̃.

2Note that the first component is always kept unchanged everywhere in all transformations used
throughout the paper.
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Summarizing, the validity of (25) for every j with dj = k − 1, k > 1, implies the
validity of (25) for every i with di = k. The proof has been completed by induction.

�

Remark 3.4. Applying transformations (4) and (12) with x := x1, x̂ := xi to (27)
and (29) to w(t) and ŵ(t) coordinates was needed since in original coordinates it is not
guaranteed that xi3(t) bounded which would prevent the use of Lemma 3.3. Indeed,
dynamics of xi3(t) dynamics is more complex, as a matter of fact, the simple dynamics
of w3 is a crucial useful point of nonlinearly transformed GLS.

Fig. 4. The generalized synchronization of chaotic nodes – classical

Lorenz system case.

Remark 3.5. The choice of the gains l1, l2, which should satisfy the condition (23),
specifies the speed and accuracy of the network synchronization. Note that these gains
are the same for all connections between nodes, while every node may have different
parameters due to (24), indeed, the choice of nonzero νi, i = 1, . . . , N is arbitrary for
each node. These numbers are not visible from synchronizing connections, and each
particular node requires knowledge of its own νi, while other nodes, including the root
master node, need not know this value. In other words, all νi, i = 1, . . . , N actually
serve as kind of separate private keys for each node. The necessity to find l1, l2, satisfying
(23) being 2N inequalities for just 2 free parameters may seem to be demanding. Yet, it
was rather easy to satisfy them in simulations later on just manually, without engaging
e. g. linear programming codes.
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Fig. 5. Errors between N1 and N8, N9, N10, N10’ – classical Lorenz

system case.
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Fig. 6. Error between N10 and N10’ – classical Lorenz system case.

4. NUMERICAL EXAMPLES

Theorem 3.2 will be illustrated by the following three examples of generalized synchro-
nization. The structure of the respective DAG is the same in all three examples, and
it is shown in Figure 3 while the nodes are generalized Lorenz system with different
parameters representing classical Lorenz system, Chen system and Lü system. The root
(master) node drives all the other nodes in the network directly or indirectly by the
same synchronizing signal exactly as described in Theorem 3.2. Equivalently, topol-
ogy in Figure 3 cij = 1 is described by (10 × 10) adjacency matrix with cij = 1 for
(i, j) = (1, 2), (1, 3), (1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9), (7, 10) and cij = 0 elsewhere.
The node denoted as N10’ is the duplicated mode to be used for additional practical
synchronization tests via DSA.

Obviously, this network topology satisfies the assumptions of Theorem 3.2. Further,
for each particular case later on (classical Lorenz, Chen and Lü system), the specific (cf.
Table I) ai11, a

i
12, a

i
21, a

i
22, ν

i, i = 1, . . . , N satisfying (24) are selected. The particular
systems at each node are different, yet, in each of the cases, belong to the same specific
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Fig. 7. The generalized synchronization of chaotic nodes – Chen

system case.
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Fig. 8. Errors between N1 and N8, N9, N10, N10’ – Chen system

case.

subclass of GLS, i. e., either to classical Lorenz, or to Chen, or to Lü system. Indeed, all
these classes are known not to be mutually topologically equivalent, and therefore (24)
can not be satisfied for pair of systems from two different mentioned subclasses of GLS.

Next, for each case later on, the gains l1, l2 are rather easily found to satisfy (23).
For each case and each node, including the duplicated one, some initial conditions
[xi1(0), xi2(0), xi3(0)]>, i = 1, . . . , N , are selected. They are all mutually different, but all
of them have the norm less than one.
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Fig. 9. Error between N10 and N10’ – Chen system case.

With all that settings, the following three examples can be presented in detail. In
all examples, the duplicated node N10’ is the identical copy of the respective node N10,
but it is initialized with different initial conditions, which is obviously a key ingredient
to test synchronization using the DSA.

Fig. 10. The generalized synchronization of chaotic nodes – Lü

system case.
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4.1. Example 1. Lorenz system case.

In the first example, the nodes are represented by the generalized Lorenz systems with
the next parameters: a1,...,1011 = −10, a1,...,1022 = −1, a112 = 10, a121 = 28, a2,3,412 = 4,
a2,3,421 = 70, a5,6,712 = 5, a5,6,721 = 56, a8,9,1012 = 8, a8,9,1021 = 35, λ3 = −2.667. The values
of νi can be calculated to satisfy (24) as ν2,3,4 = 2.5, ν5,6,7 = 2, ν8,9,10 = 1.25. As a
matter of fact, the master node parameters are equal to the respective classical Lorenz
system parameters [14]. Based on the conditions (23) the gains l1 and l2 were selected,
namely, l1 = 1 > −11 and l2 = 68 > 67.25. The chaotic attractors generated by the
master node N1 of the network and by the influenced nodes N2, N5, and N8 are shown
in Figure 4, while Figure 5 represent the synchronization errors between master node
N1 and nodes N8, N9, N10, N10’. All these errors go to zero as time goes to infinity,
yet, one can see that the error between N1 and N10’ goes to zero much faster than the
others. This feature is due to the fact that there is a direct connection between N1 and
N10’, while N8, N9, and N10 are influenced indirectly.

Finally, to apply DSA, the error between node N10 and its duplicated copy N10’ has
been computed, see Figure 6. As this error goes to zero as time goes to infinity and
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the node N10’ is the duplicated one influenced directly by the master node, the DSA
thereby confirms synchronization of the whole network.

4.2. Example 2. Chen system case.

In the second example, the nodes are represented by the Chen systems with the next
parameters: a1,...,1011 = −35, a1,...,1022 = 28, a112 = 35, a121 = −7, a2,3,412 = 14, a2,3,421 =
−17.5, a5,6,712 = 17.5, a5,6,721 = −14, a8,9,1012 = 28, a8,9,1021 = −8.75, λ3 = −3. The values
of νi can be calculated to satisfy (24) as ν2,3,4 = 2.5, ν5,6,7 = 2, ν8,9,10 = 1.25. The
master node parameters are equal to the respective Chen system parameters [8]. Based
on the conditions (23) the gains l1 and l2 were selected, namely, l1 = 1 > −7 and
l2 = 55 > 54.5. The chaotic attractors generated by the master node N1 of the network
and by the influenced nodes N2, N5, and N8 are shown in Figure 7. Figure 8 represent
the synchronization errors between master node N1 and nodes N8, N9, N10, N10’. All
these errors go to zero as time goes to infinity, yet, one can see that the error between N1
and N10’ goes to zero much faster than the others. This feature is due to the fact that
there is a direct connection between N1 and N10’, while N8, N9, and N10 are influenced
indirectly.

Finally, to apply DSA, the error between node N10 and its duplicated copy N10’ has
been computed, see Figure 9. As this error goes to zero as time goes to infinity and
the node N10’ is the duplicated one influenced directly by the master node, the DSA
thereby confirms synchronization of the whole network.

4.3. Example 3. Lü systems case.

In the third example, the nodes are represented by the Lü systems with the next pa-
rameters:: a1,...,1011 = −36, a1,...,1022 = 20, a1,...,1021 = 0, a112 = 36, a2,3,412 = 6, a5,6,712 = 12,
a8,9,1012 = 18, λ3 = −3. The values of νi can be calculated to satisfy (24) as ν2,3,4 = 6,
ν5,6,7 = 3, ν8,9,10 = 2. The master node parameters are equal to the respective Lü
system parameters [15]. Based on the conditions (23) the gains l1 and l2 were selected,
namely, l1 = 1 > −16 and l2 = 124 > 123.3. The chaotic attractors generated by the
master node N1 of the network and by the influenced nodes N2, N5, and N8 are shown in
Figure 10. Figure 11 represent the synchronization errors between master node N1 and
nodes N8, N9, N10, N10’. All these errors go to zero as time goes to infinity, yet, one
can see that the error between N1 and N10’ goes to zero much faster than the others.
This feature is due to the fact that there is a direct connection between N1 and N10’,
while N8, N9, and N10 are influenced indirectly.

Finally, to apply DSA, the error between node N10 and its duplicated copy N10’ has
been computed, see Figure 12. As this error goes to zero as time goes to infinity and
the node N10’ is the duplicated one influenced directly by the master node, the DSA
thereby confirms synchronization of the whole network.

5. CONCLUSIONS AND OUTLOOKS

The generalized synchronization of the complex network having the directed acyclic
graph structure and generalized Lorenz systems at its nodes have been presented. The-
oretical results showing the generalized synchronization were rigorously formulated and
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proved. Numerical experiments confirm the viability of theoretical results. Moreover,
during the numerical experiments duplicated system approach was used to double-check
the generalized synchronization of the respective network. Ongoing and future related
research is focused on complex networks with time delays and/or more general network
topology, e. g. with more incoming edges to one node, or even networks with directed
loops.
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Sergej Čelikovský, The Czech Academy of Sciences, Institute of Information Theory and
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