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A FRANKEL TYPE THEOREM FOR CR SUBMANIFOLDS
OF SASAKIAN MANIFOLDS

Dario Di Pinto and Antonio Lotta

Abstract. We prove a Frankel type theorem for CR submanifolds of Sasakian
manifolds, under suitable hypotheses on the index of the scalar Levi forms
determined by normal directions. From this theorem we derive some topological
information about CR submanifolds of Sasakian space forms.

1. Introduction

In this paper we deal with CR submanifolds of a Sasakian manifold, and we
establish a sufficient condition for two of them to have non empty intersection,
following Frankel’s classical approach, which goes back to [7]. We shall also consider
the case when one of the submanifolds is invariant. In [3] and [10] this kind of
results were discussed for the case of two invariant submanifolds.

We shall refer to the standard reference [4] for the notation and basic facts
concerning Sasakian geometry. Let (M,ϕ, ξ, η, g) be a Sasakian manifold. By a
CR submanifold we mean a submanifold N of M for which, at every x ∈ N , the
subspace HxN ⊂ TxN defined by

HxN := {X ∈ TxN | η(X) = 0, ϕX ∈ TxN}
has positive dimension k, which does not depend on x. In this case we denote by
HN the subbundle of TN of rank k, whose fiber at x ∈ N is HxN . We remark
that this definition generalizes the notion of contact CR submanifold introduced by
Bejancu and Papaghiuc in [2] and studied by several authors (see also [1, 15]). It is
closer to the classical concept of CR submanifold of a complex manifold, see for
instance [5, Ch. 7]. For a discussion of some natural examples of CR submanifolds
in our sense, see §3.

Our treatment will be based on the fact that such a submanifold is naturally
endowed with a CR structure (HN, J), where J denotes the restriction of ϕ to the
subbundle HN . Like the canonical CR structure of the ambient Sasakian manifold
M , this induced structure is also strongly pseudoconvex, namely the scalar Levi
form Lη determined by the restriction to N of the contact form η is, up to a
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constant factor, the restriction to HN of the Riemannian metric g. We refer the
reader to §2 for the definition of the (scalar) Levi forms of a CR manifold; here
we just recall that each of them is a Hermitian symmetric bilinear form on the
holomorphic tangent space HxN at a point x ∈ N , intrinsically attached to a
cotangent vector ω ∈ T ∗xN annihilating HxN .

We shall focus on the Levi forms Lν determined by the normal directions ν to
N ; by definition, Lν is attached to the covector:

ω(X) = g(ϕν,X).

Each of these Levi forms will be called characteristic; we shall denote its index by
i(Lν) and its nullity by n(Lν).

With this terminology, our main result is the following.

Theorem 1.1. Let (M,ϕ, ξ, η, g) be a connected, complete Sasakian manifold with
nonnegative ϕ-bisectional curvature. Let N and P be two CR submanifolds of M ,
and assume that one of them is closed and the other is compact. Set

(1.1) q := min
ν∈TN⊥

i(Lν) and s := min
ν′∈TP⊥

(
i(Lν′) + n(Lν′)

)
.

Then we have
N ∩ P 6= ∅ ,

provided that q > 0, s > 0 and

(1.2) q + s ≥ dim(M)− 1 .

Corollary 1.2. Let (M,ϕ, ξ, η, g) be a connected, complete Sasakian manifold
with nonnegative ϕ-bisectional curvature. Let N and P be a CR and an invariant
submanifold of M respectively and assume one of them is closed and the other is
compact. Then we have that N ∩ P 6= ∅, provided that for each characteristic Levi
form of N :

(1.3) i(Lν) ≥ dim(M)− dim(P ) > 0 .

As an application, we shall prove the following results:

Corollary 1.3. Let (M,ϕ, ξ, η, g) be a complete, connected, regular Sasakian ma-
nifold with nonnegative ϕ-bisectional curvature and assume that M fibers onto a
Kähler manifold biholomorphic to a product S ×C, where S is a complex manifold.
Then every CR submanifold N of M whose characteristic Levi forms have all
positive index is not compact.

Corollary 1.4. Let N be a CR submanifold of the Sasakian space form S2n+1(c)
with ϕ-sectional curvature c, c > −3. If all the characteristic Levi forms of N have
positive index, then N cannot be contained in an open hemisphere.
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2. Levi forms of a CR manifold

Let us start by recalling the definitions of CR manifold, Levi-Tanaka form and
scalar Levi forms. In the following, given a vector bundle E over a smooth manifold
M , we will denote by Γ(E) the C∞(M)-module of global smooth sections of E.

Let M be a real smooth manifold of dimension n, and let m, k ∈ N such that
2m+ k = n. If HM is a real vector subbundle of rank 2m of the tangent bundle
TM and J : HM → HM is a bundle isomorphism such that J2 = −Id, the couple
(HM,J) is called a CR structure on M if the following properties hold for all
X,Y ∈ Γ(HM):

(i) [JX, JY ]− [X,Y ] ∈ Γ(HM);
(ii) NJ(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ] = 0.

In this case (M,HM,J) is called a CR manifold of type (m,k) and m, k are the
CR dimension and the CR codimension of the CR structure, respectively.

Definition 2.1. Let (M,HM,J) be a CR manifold. Given a point x ∈ M , the
Levi-Tanaka form of M at x is the bilinear map

Lx : HxM ×HxM → TxM/HxM

defined by

(2.1) Lx(X,Y ) := πx([X̃, JỸ ]x) ∀X,Y ∈ HxM ,

where X̃, Ỹ ∈ Γ(HM) are two arbitrary extensions of X, Y and π : TM →
TM/HM is the canonical projection on the quotient bundle TM/HM .

It is known that Lx is well defined because the value πx([X̃, JỸ ]x) only depends
on the values of X̃, Ỹ at x, that is on X and Y .
Moreover, according to (i) above, Lx turns out to be a vector valued symmetric
Hermitian form on the holomorphic tangent space HxM with respect to the complex
structure J := Jx, that is

(2.2) Lx(X,Y ) = Lx(JX, JY ), Lx(X,Y ) = Lx(Y,X)

for all X,Y ∈ HxM .
Given a point x on the CR manifold (M,HM,J), we will denote by

H0
xM := {ω ∈ T ∗xM | ω(X) = 0 ∀X ∈ HxM}

the annihilator of HxM ⊂ TxM . Then we have the following definition.

Definition 2.2. Let (M,HM,J) be a CR manifold, x ∈M and ω ∈ H0
xM . The

Hermitian form

(2.3) Lω : HxM ×HxM → R s.t. Lω(X,Y ) := ωLx(X,Y )

is called the scalar Levi form determined by ω at x.

Remark 2.3. Since the scalar Levi forms Lω are symmetric, it makes sense to
consider their index i(Lω), defined as the minimum between the number of positive
and negative eigenvalues of Lω.
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More specifically we recall the following terminology from CR geometry; see for
instance [9].

Definition 2.4. Let (M,HM,J) be a CR manifold of type (m, k) and let x ∈M .
M is called pseudoconvex at x if Lω is positive definite for some ω ∈ H0

xM . If there
exists a global section ω ∈ Γ(H0M) such that Lω is positive definite at each point
x ∈M , M is called strongly pseudoconvex.
M is called pseudoconcave at x if i(Lω) > 0 for every ω ∈ H0

xM , ω 6= 0.

We close this section by recalling that a Sasakian manifold (M,ϕ, ξ, η, g), as
defined in [4], is a particular kind of strongly pseudoconvex CR manifold of
hypersurface type, i.e. of CR codimension 1. We only remark that in this case the
CR structure is (HM,J), where HM = ker η = 〈ξ〉⊥ is the contact distribution
and the almost complex structure is J = ϕ|HM . Therefore, for any x ∈M , H0

xM is
spanned by ηx and, up to scaling, we have only one scalar Levi form Lηx . Moreover,
since M is a contact metric manifold, the identity

dη(X,Y ) = g(X,ϕY )
yields that

Lηx = 2gx|HxM×HxM .

In all that follows, the contact distribution of a Sasakian manifold will be always
denoted by D.

3. CR submanifolds of Sasakian manifolds

We begin by discussing some classes and examples of CR submanifolds according
to our definition, that we reformulate here, for the sake of convenience.

Definition 3.1. Let (M,ϕ, ξ, η, g) be a Sasakian manifold and let N ⊂ M be a
real submanifold. For every x ∈ N set
(3.1) HxN := {X ∈ TxN | η(X) = 0, ϕX ∈ TxN} .
If the dimension of HxN is a positive constant, N is called a CR submanifold. In
this case we denote by HN the subbundle of TN whose fiber at x ∈ N is HxN .

Example 3.2. A contact CR submanifold of M is a submanifold N tangent to
the Reeb vector field ξ and endowed with a differentiable distribution E such
that ϕ(E) ⊂ E and ϕ(E⊥) ⊂ TN⊥, E⊥ being the complementary orthogonal
distribution in TN .
In this case, it is known that the tangent bundle of N decomposes orthogonally as

TN = 〈ξ〉 ⊕HN ⊕W ,

where HN = E ∩ D and W = E⊥ ∩ D are two distributions of TN such that
ϕ(HN) ⊂ HN and ϕW ⊂ TN⊥.
Clearly, HN tuns to be as in (3.1) and then, if it is non trivial, i.e. if N is not
anti-invariant, then N is a CR submanifold according to our definition.

As particular cases of contact CR submanifolds we have the following widely
studied classes.
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Example 3.3. An invariant submanifold of M is a real submanifold N of M such
that dimN < dimM and ϕ(TN) ⊂ TN .
It is known that invariant submanifolds are always tangent to ξ and so they are
contact CR submanifolds with trivial distribution W . Moreover they inherit a
Sasakian structure from that of the ambient manifold by restriction ([4]). It follows
that HN = TN ∩D is the contact distribution related to the induced structure on
N and hence, at each point x ∈ N , dimHxN = dimN − 1 > 0 .
Example 3.4. A submanifold N of a Sasakian manifold (M,ϕ, ξ, η, g) is called
generic provided that the Reeb vector field ξ is tangent to N and ϕ(TN⊥) ⊂ TN
(see [14, 16]).
In this case, at each point x ∈ N , we have the following orthogonal decomposition
of the tangent space of N at x:

TxN = 〈ξx〉 ⊕ ϕ(TxN⊥)⊕HxN,

with HxN as in (3.1). From this decomposition it follows that HxN has constant
dimension 2p− n− 1, being n = dimM and p = dimN .
In particular, N is a contact CR submanifold with W = ϕ(TN⊥). So, if N is not
anti-invariant, then it is a CR submanifold of M in our sense.
Example 3.5. If (M,ϕ, ξ, η, g) is a Sasakian manifold with dimM ≥ 5, then every
hypersurface N tangent to ξ is a CR submanifold of M .
Indeed, at each point x ∈ N , TxN⊥ = 〈ν〉 and g(ϕν, ν) = 0 implies that ϕ(TN⊥) ⊂
TN , namely N is generic. Moreover, with respect to the notations of the previous
example, p = n− 1 and hence dimHxN = 2p− n− 1 = n− 3 > 0.

Next we discuss two natural ways to construct examples.
Example 3.6. Let (M,ϕ, ξ, η, g) be a regular Sasakian manifold which fibers
onto a Kähler manifold (N, J, g′). Then it is given a Riemannian submersion
π : M → N whose fibers are 1-dimensional submanifolds of M tangent to ξ and
whose differential dπ commutes with the tensor field ϕ and the complex structure
J :
(3.2) dπ ◦ ϕ = J ◦ dπ.
We show that for every CR submanifold S′ of N , the preimage S := π−1(S′) is a
CR submanifold of M tangent to ξ.
According to the definition, S′ carries the CR structure (HS′, J), where HS′ is
the subbundle of TS′ given by:
(3.3) HS′ := TS′ ∩ J(TS′) .
Moreover, since π is a surjective submersion, S is a submanifold of M with the
same codimension of S′, whose tangent space at x ∈ S is

TxS = (dπ)−1
x (Tπ(x)S

′) .
It follows that S is tangent to ξ and, by using (3.2) and (3.3), a straightforward
verification yields that
(3.4) (dπ)x(HxS) = Hπ(x)S

′.
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Thus, since (dπ)x : Dx → Tπ(x)N is a linear isomorphism for every x ∈ S, and since
the dimension of Hπ(x)S

′ is constant, we conclude that the same holds for HxS, so
that S is a CR submanifold.

Example 3.7. Let (M,ϕ, ξ, η, g) be a Sasakian manifold with dimM = 2n + 1
and let G be a Lie group of automorphisms of the Sasakian structure, acting
smoothly on M . Then each orbit N := G · x (x ∈M) is a CR submanifold of M ,
provided that at x we have HxN 6= {0}. This is an immediate consequence of the
homogeneity of N . In particular, we point out that this is true if dimN ≥ n+ 2.

Indeed, set p := dimN ≥ n+ 2 and E := TxN ∩ Dx. We note that, if ξx were
normal to N , N would be an integral submanifold of the contact distribution D by
the homogeneity, thus contradicting the fact that integral submanifolds of D have
dimension no greater than n (see [4], Theorem 5.1). Hence ξ has to be nowhere
normal to N and then dimE = dimϕE = p− 1. It follows that E ∩ ϕE ⊂ HxN is
non trivial since 2(p− 1) > 2n+ 1 by assumption.

4. Characteristic Levi forms

Let N be a CR submanifold of a Sasakian manifold (M,ϕ, ξ, η, g) and let us
consider the restriction J := ϕ|HN : HN → HN of the structure tensor field ϕ to
HN . J is well defined because ϕ(HN) ⊂ HN and, since HN ⊂ D, it turns out
to be an almost complex structure on HN , i.e. J2 = −Id. Moreover we have the
following result which justifies the name we adopted for this class of submanifolds.

Proposition 4.1. Let (M,ϕ, ξ, η, g) be a Sasakian manifold and let N ⊂M be a
CR submanifold. Then the couple (HN, J) defines a CR structure on N .

Proof. It follows in a straightforward manner according to the definition of (HN, J)
and the fact that (D, ϕ|D) is a CR structure on M . �

According to this result, for each point x ∈ N , it makes sense to consider the
Levi-Tanaka form at x and the scalar Levi forms Lω, where ω varies in H0

xN .
In particular, given a non zero normal direction ν ∈ TxN⊥, consider the 1-form
ω : TxN → R such that
(4.1) ω(X) := g(ϕν,X) ∀X ∈ TxN.
We note that for every X ∈ HxN , ω(X) = −g(ϕX, ν) = 0 since ϕX ∈ TxN ; hence
ω ∈ H0

xN .
The scalar Levi form Lω determined by ω will be denoted by Lν ; we shall adopt
the following terminology:

Definition 4.2. For any x ∈ N the scalar Levi forms Lν determined by ν ∈ TxN⊥,
ν 6= 0, will be called characteristic Levi forms of N at x.

Remark 4.3. In the particular case of invariant submanifolds, all the characteristic
Levi forms are identically zero, because so are the corresponding covectors ω. Indeed,
for every X ∈ TxN , ϕX is still tangent to N and hence ω(X) = −g(ν, ϕX) = 0.

Example 4.4. Consider a regular Sasakian manifold (M,ϕ, ξ, η, g) which fibers
on a Kähler manifold N and let π : M → N be the Riemannian submersion as in
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Example 3.6. We claim that if S′ is a pseudoconcave CR submanifold of N , then
all the characteristic Levi forms of S = π−1(S′) have positive index.
Fix x ∈ S, y = π(x) ∈ S′, X ∈ HxS and set X ′ := (dπ)xX ∈ HyS

′ by identity (3.4).
For any non zero normal vector ν ∈ TxS⊥, from the definition of the characteristic
Levi form Lν and using basic properties of Riemannian submersions (see for instance
Proposition 1.1 in [6]), we get:

Lν(X,X) = gx([X,ϕX], ϕν)
= gx(h[X,ϕX], ϕν)
= g′y([X ′, JX ′], Jν′)
= L′ν′(X ′, X ′) ,

where h[X,ϕX] is the horizontal component of [X,ϕX], ν′ = (dπ)xν ∈ (TyS′)⊥
and L′ν′ is the scalar Levi form on HyS

′ determined by the covector

ω′(X ′) = g′y(X ′, Jν′) ∀X ′ ∈ TyS′.

In conclusion we have proved that, for every CR submanifold S′ of N , one has

(4.2) Lν(X,X) = Lν′(X ′, X ′) ∀X ∈ HxS .

From this equality, our claim follows immediately.

The following proposition establishes a relationship between the second funda-
mental form of a CR submanifold N and its characteristic Levi forms.

Proposition 4.5. Let (M,ϕ, ξ, η, g) be a Sasakian manifold and let N ⊂M be a
CR submanifold with second fundamental form α. Given x ∈ N and 0 6= ν ∈ TxN⊥,
one has

(4.3) Lν(X,X) = gx(α(X,X) + α(ϕX,ϕX), ν)

for every X ∈ HxN .

Proof. First we recall that Sasakian manifolds are characterized by means of
the following identity, involving the covariant derivative of ϕ with respect to the
Levi-Civita connection (see [4]):

(4.4) (∇Xϕ)Y = g(X,Y )ξ − η(Y )X .

Now, fix x ∈ N , X ∈ HxN and consider a smooth section of HN which extends
X. Then ϕX is again tangent to N . Using the fact that X, ϕX and ϕν are all
orthogonal to ξ and identity (4.4), we get:

Lν(X,X) = gx([X,ϕX], ϕν)
= gx(∇XϕX,ϕν)− gx(∇ϕXX,ϕν)
= gx(ϕ∇XX,ϕν) + gx(ϕ∇ϕXX, ν)
= gx(∇XX, ν) + gx(∇ϕXϕX, ν)
= gx(α(X,X) + α(ϕX,ϕX), ν) . �
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5. Some remarks about ϕ-bisectional curvature

In the following we shall deal with Sasakian manifolds with nonnegative ϕ-bisec-
tional curvature. So, for the convenience of the reader, we recall the definition
of this kind of curvature which was introduced by Tanno and Baik in [13], and
used in [3] and [10] to obtain Frankel type theorems about the intersection of two
invariant submanifolds. It is an adaptation to the Sasakian case of the notion of
holomorphic bisectional curvature introduced by Goldberg and Kobayashi in [8]
for Kähler manifolds.

Definition 5.1. Let (M,ϕ, ξ, η, g) be a Sasakian manifold. We say that M has
nonnegative ϕ-bisectional curvature if
(5.1) H(X,Y ) := K(X,Y ) +K(X,ϕY ) ≥ 0
for every x ∈M andX, Y ∈ TxM such thatX, Y , ϕY , ξx are mutually orthonormal,
where

K(X,Y ) := R(X,Y,X, Y ) = g(R(X,Y )Y,X)
denotes the sectional curvature at x of the 2-plane 〈X,Y 〉 ⊂ TxM , and similarly
for K(X,ϕY ).

Example 5.2. Let (M,ϕ, ξ, η, g) be a regular Sasakian manifold which fibers
onto a Kähler manifold (N, J, g′) and let π : M → N = M/ξ be the Riemannian
submersion as in Examples 3.6 and 4.4. In [13] it is shown that, given a point
x ∈M and two tangent vectors X,Y ∈ TxM such that X,Y, ϕY, ξx are mutually
orthonormal, the ϕ-bisectional curvature H(X,Y ) is given by

H(X,Y ) = H ′(X ′, Y ′) ,
where H ′(X ′, Y ′) is the holomorphic bisectional curvature of N at p = π(x), related
to the vectors X ′ := (dπ)xX and Y ′ := (dπ)xY . Hence, if H ′ is nonnegative, so is
the ϕ-bisectional curvature H of M .
For instance, Takahashi’s globally ϕ-symmetric spaces are examples of regular
Sasakian manifolds and from Theorem 6.4 in [12] it follows that those of compact
type have nonnegative ϕ-bisectional curvature.

Proposition 5.3. Let (M,ϕ, ξ, η, g) be a Sasakian manifold with nonnegative
ϕ-bisectional curvature. Let x ∈ M and X,W ∈ TxM such that η(X) = 0 and
X,ϕX,W are mutually orthonormal. Then one has:

R(X,W,X,W ) +R(ϕX,W,ϕX,W ) ≥ 0 .

Proof. Here W might not be normal to ξx. However, decomposing W as W = Y +Z
with Y ∈ Dx and Z ∈ 〈ξx〉, we get:

R(X,W,X,W ) = R(X,Y,X, Y ) +R(X,Z,X,Z) + 2g(R(X,Y )Z,X)
= R(X,Y,X, Y ) +R(X,Z,X,Z) ,(5.2)

where we have used the following curvature characterization of Sasakian manifolds
(see [4]):

R(X,Y )ξ = η(Y )X − η(X)Y ∀X,Y ∈ Γ(TM) .
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From this formula we also get that R(X,Z,X,Z) is nonnegative. Similarly,
(5.3) R(ϕX,W,ϕX,W ) = R(ϕX, Y, ϕX, Y ) +R(ϕX,Z, ϕX,Z) ,
where R(ϕX,Z, ϕX,Z) ≥ 0. Thus, by adding the identities (5.2) and (5.3), we
have:

R(X,W,X,W ) +R(ϕX,W,ϕX,W ) ≥ 0 ,
since, up to scaling, the left-hand side is the sum of a ϕ-bisectional curvature and
two nonnegative terms. �

6. Proofs of the results

In this section we will give the proof of our Frankel type theorem. Firstly we
recall some basic facts about the second variation formula for the arc length func-
tional (see for instance [11]).

Let (M, g) be a Riemannian manifold, let N and P be two submanifolds of M
and let γ : [0, l] → M be a geodesic parametrized by arc length and intersecting
orthogonally N at x := γ(0) and P at y := γ(l). Taken a variation Γ: (−ε, ε) ×
[0, l]→M of γ such that the longitudinal curves Γs are curves from N to P , the
second variation formula for the arc length LΓ is given by

L′′Γ(0) := d2

ds2L(Γs)
∣∣∣∣
s=0

=
∫ l

0

[
‖∇γ̇X⊥‖2 − g(R(X⊥, γ̇)γ̇, X⊥)

]
dt

+ g(α(X,X), γ̇)|l0 ,(6.1)

where X is the variation vector field of Γ, X⊥ is its normal component with respect
to γ̇ and α denotes the second fundamental form of N or P with an abuse of
notation.
In particular, if X is normal to γ̇ and parallel along γ, the previous formula reduces
to the following:

(6.2) L′′Γ(0) = −
∫ l

0
R(X, γ̇,X, γ̇) dt+ g(α(X,X), γ̇)|l0 .

We also recall that given a geodesic γ as before and a vector field X along γ
such that X(0) ∈ TxN and X(l) ∈ TyP , there always exists a variation Γ of γ
made up by curves from N to P and having X as the variation vector field. Such a
variatiation of γ will be denoted by ΓX and for the related arc length functional
we will write LX instead of LΓX .
Furthermore, we shall denote by X(γ) the module of smooth vector fields along γ.

Now, coming back to our purpose, we prove a lemma which provides a way to
construct an orthonormal set {E,ϕE} consisting of parallel vector fields along a
geodesic γ.

Lemma 6.1. Let N be a CR submanifold of a Sasakian manifold (M,ϕ, ξ, η, g)
and let γ : [0, l] → M be a geodesic starting from x ∈ N and orthogonal to N
at x. If e ∈ HxN and E, Ẽ ∈ X(γ) are obtained by parallel translation of e, ϕe
respectively along γ, then E is orthogonal to ξ along γ and Ẽ = ϕE.
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Proof. To prove that Ẽ = ϕE we need to show that ϕE is parallel along γ and to
this aim we follow the same idea of a proof in [3].
Since e ∈ HxN is tangent to N , while γ̇(0) is normal to N , we have that e ⊥ γ̇(0).
Moreover, since E and γ̇ are parallel along γ, we have that E ⊥ γ̇ along γ, that is
g(E, γ̇)(t) = 0 for every t ∈ [0, l]. Hence:

(6.3) (∇γ̇ϕ)E = g(γ̇, E)ξ − η(E)γ̇ = −η(E)γ̇ .

On the other hand,

(6.4) (∇γ̇ϕ)E = ∇γ̇ϕE − ϕ(∇γ̇E) = ∇γ̇ϕE ,

since E is parallel along γ. Therefore ∇γ̇ϕE = −η(E)γ̇ and to prove our claim, we
just have to prove that η(E)(t) = 0 for every t ∈ [0, l]. From this will also follow
that E is normal to ξ along γ. So we consider the function

f : [0, l]→ R s.t. f(t) := η(E)(t) = gγ(t)(E(t), ξγ(t))

and we prove that f is identically zero. We note that

f ′ = g(∇γ̇E, ξ) + g(E,∇γ̇ξ) = −g(E,ϕγ̇) = g(ϕE, γ̇) ;(6.5)

f ′′ = g(∇γ̇ϕE, γ̇) + g(ϕE,∇γ̇ γ̇) = −η(E)g(γ̇, γ̇) = −‖γ̇‖2f ,(6.6)

where c := ‖γ̇‖2 ∈ R is constant. Moreover, f(0) = gx(e, ξx) = 0 by the definition
of HxN and f ′(0) = gx(ϕe, γ̇(0)) = 0 because of ϕe ∈ TxN and γ̇(0) ∈ TxN⊥.
In conclusion, we proved that f is a solution of the following Cauchy problem

f ′′ + cf = 0
f(0) = 0
f ′(0) = 0

so that f = 0. �

Proof of Theorem 1.1. Assume by contradiction that N ∩ P = ∅. Thanks to
the topological assumptions on the submanifolds, there exist two points x ∈ N
and y ∈ P such that l := d(x, y) = d(N,P ) > 0. Moreover, by the completeness
of M , there exists a length minimizing geodesic γ : [0, l] → M , parametrized by
arc length, joining x and y and intersecting orthogonally N and P . Clearly, since
L(γ) = d(N,P ), for every variation Γ of γ made up by curves from N to P , we
must have L′′Γ(0) ≥ 0.
Now, set ν := γ̇(0) ∈ TxN⊥ and ν′ := γ̇(l) ∈ TyP⊥. Since the numbers q and s
defined in (1.1) are strictly positive, there exist two linear subspaces V ⊂ HxN
and W ⊂ HyP of dimensions q and s respectively such that Lν is negative definite
on V and Lν′ is positive semi-definite on W .
Let us denote by V ′ ⊂ TyM the image of V under the parallel transport along γ:
since γ̇(0) is normal to N and V ⊂ HyN ⊂ 〈ξx〉⊥, using Lemma 6.1, we see that
V ′ ⊂ 〈γ̇(l), ξy〉⊥. Moreover, W ⊂ 〈γ̇(l), ξy〉⊥ as well. Therefore

V ′ +W ⊂ 〈γ̇(l), ξy〉⊥
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and
dim(V ′ +W ) ≤ dimM − 2 .

Thus, by using (1.2), we have:
dim(V ′ ∩W ) ≥ q + s− dimM + 2 ≥ 1 .

Hence we can consider a non zero vector e′ ∈ V ′∩W , which is the image of a vector
e ∈ V under parallel translation. In other words there exists a vector field E ∈ X(γ)
which is parallel along γ and such that E(0) = e, E(l) = e′. From Lemma 6.1 it
follows that ϕE is parallel along γ and ϕE(l) = ϕe′ ∈ TyP by the definition of
HyP .
Now, fix two variations ΓE , ΓϕE of γ, having E and ϕE as variation vector fields
respectively. Computing the second variation formula (6.2), we have:

L′′E(0) = −
∫ l

0
R(E, γ̇, E, γ̇) dt+ g(α(E,E), γ̇)|l0 ;

L′′ϕE(0) = −
∫ l

0
R(ϕE, γ̇, ϕE, γ̇) dt+ g(α(ϕE,ϕE), γ̇)|l0 .

By adding these two expressions and by using Proposition 4.5, we get:

L′′E(0) + L′′ϕE(0) =−
∫ l

0
[R(E, γ̇, E, γ̇) +R(ϕE, γ̇, ϕE, γ̇)] dt

+ Lν(e, e)− Lν′(e′, e′) .(6.7)

In view of Proposition 5.3, being e ∈ V and e′ ∈W , we conclude that expression
(6.7) is negative, thus arriving at a contradiction. �

Proof of Corollary 1.2. Hypothesis (1.3) implies that
q ≥ dimM − dimP > 0 .

Moreover, since P is invariant, according to Remark 4.3 we have that Lν′ = 0
for every y ∈ P and ν′ ∈ TyP⊥. Therefore n(Lν′) = dimHyP = dimP − 1 (cf.
Example 3.3) and

s = dimP − 1 > 0 .
It follows that q + s ≥ dimM − 1 and then we get N ∩ P 6= ∅ by applying the
theorem. �

Remark 6.2. In the same setting of Theorem 1.1, if N is a compact CR subma-
nifold whose characteristic Levi forms have all positive index, then N intersects
every closed, CR and totally geodesic hypersurface P .
Indeed, since characteristic Levi forms are Hermitian and symmetric, i(Lν) > 0 is
equivalent to i(Lν) ≥ 2 and hence q ≥ 2. Moreover, since P is a totally geodesic
hypersurface, it is a CR submanifold whose scalar Levi forms Lν′ (ν′ ∈ TP⊥) are
all identically zero by Proposition 4.5. Hence

s = dimHyP = dimP − 2 = dimM − 3.
Therefore q + s ≥ dimM − 1 and the claim is proved by applying the theorem.
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Finally we present the proofs of Corollary 1.3 and Corollary 1.4.

Proof of Corollary 1.3. Consider the fibration π : M →M/ξ and, by contradic-
tion, assume that M admits a compact CR submanifold N , whose characteristic
Levi forms have all positive index. Then π(N) is a compact set. Since M/ξ is
biholomorphic to S × C, one can always find a Levi flat real hypersurface P in it,
such that π(N) ∩ P = ∅ (to see this, it suffices to consider S × E, where E ⊂ C
is a real straight line disjoint from p(π(N)), where p : S × C → C is the natural
projection).
Then N ∩ π−1(P ) = ∅, but this is in contrast with the statement of Theorem 1.1,
because π−1(P ) is a CR hypersurface of M whose characteristic Levi forms all
vanish by (4.2). �

Remark 6.3. This last corollary can be applied to the Sasakian space form
M(−3) = R2n+1. In fact it is a complete, connected Sasakian manifold which has
constant ϕ-bisectional curvature equal to zero, fibering onto the complex Euclidean
space Cn.

Proof of Corollary 1.4. Recall that, as a manifold, S2n+1(c) is the unit sphere
S2n+1 ⊂ R2n+2 = Cn+1, where we adopt the following notation:

(z1, . . . , zn+1) = (x1, . . . , xn+1, xn+2, . . . , x2n+2) , zk = xk + ixn+1+k .

Moreover, the Sasakian structure on S2n+1(c) is obtained by applying aD-homothetic
deformation to the canonical Sasakian structure of S2n+1 and this deformed struc-
ture is invariant under the action of the unitary group U(n+ 1). As a consequence,
unitary transformations on S2n+1(c) map open hemispheres in open hemispheres
and CR submanifolds into CR ones, preserving the index of all characteristic
Levi forms. Therefore, given a CR submanifold N ⊂ S2n+1(c) as in the statement,
without loss of generality it suffices to prove that N cannot be contained in the
open hemisphere

S := {x ∈ S2n+1(c)| x2n+2 > 0} .

Let π : S2n+1(c) → CPn be the canonical projection and let us consider the
hyperplane σ : zn+1 = 0 of CPn: since σ is a holomorphic submanifold, π−1(σ) is
an invariant submanifold of S2n+1(c). Furthermore, since the characteristic Levi
forms are Hermitian and symmetric we have that i(Lν) > 0 is equivalent to

i(Lν) ≥ 2 = dimM − dim π−1(σ) .

Finally, since c > −3, S2n+1(c) has nonnegative ϕ-bisectional curvature and by
applying Corollary 1.2, we have that N ∩ π−1(σ) 6= ∅. This means that there exists
a point P ∈ N with coordinates P (z1, . . . , zn, 0); in particular P /∈ S. �
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