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GEOMETRY OF UNIVERSAL EMBEDDING SPACES FOR
ALMOST COMPLEX MANIFOLDS

Gabriella Clemente

Abstract. We investigate the geometry of universal embedding spaces for
compact almost-complex manifolds of a given dimension, and related construc-
tions that allow for an extrinsic study of the integrability of almost-complex
structures. These embedding spaces were introduced by J-P. Demailly and
H. Gaussier, and are complex algebraic analogues of twistor spaces. Their goal
was to study a conjecture made by F. Bogomolov asserting the “transverse
embeddability” of arbitrary compact complex manifolds into foliated algebraic
varieties. In this work, we introduce a more general category of universal
embedding spaces, and elucidate the geometric structure of related bundles,
such as the integrability locus characterizing integrable almost-complex struc-
tures. Our approach could potentially lead to finding new obstructions to
the existence of a complex structure, which may be useful for tackling Yau’s
Challenge.

1. Introduction

In the article [9], J-P. Demailly and H. Gaussier settled almost-complex, and
weakened versions of a conjecture made by F. Bogomolov [3] about the transverse
embeddability of compact complex manifolds into complex projective manifolds,
equipped with an algebraic foliation (cf. Basic Question 1.1, [9]). Their Theorem
1.2 addresses the almost-complex Bogomolov conjecture, while Theorem 1.6 does
so for the weakened version. Both theorems are stated in a combined way below
(Theorem 1).

The theme of our paper is the application of these results to the study of
almost-complex geometry from an extrinsic point of view. This perspective gives
rise to new ways of approaching what may be deemed the principal open question
in the field [12].

Yau’s Challenge (YC). Determine whether there exists a compact almost-com-
plex manifold of real dimension at least 6 that cannot be given a complex structure.
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In order to state the Demailly-Gaussier main results of interest to us, let us first
recall some basic concepts in (almost-)complex geometry.

1.1. Background on the Demailly-Gaussier paper. Recall that an almost-
-complex structure J is said to be integrable (or a complex structure) iff its Nijenhuis
tensor, which is given by the formula

NJ(ζ, η) = [J(ζ), J(η)]− J([J(ζ), η] + [ζ, J(η)])− [ζ, η] ,

vanishes identically [11].
Let W be a complex manifold. A real structure, s, on W is an anti-holomorphic

involution on W . The set of fixed points of s, which we denote by WR and
call the real part of W (w.r.t. s), is either empty or it is a real manifold with
dimR W

R = dimC W (see, for example, [2, 5]). Real structures can be defined
outside of the smooth category as well, but here we focus on manifolds as this is
enough for our purposes. Let X be a real manifold. An embedding f : X ↪→ W
is called totally real if there is a real structure on W such that the image, f(X),
is contained in the real part of W ; i.e. f(X) ⊂ WR. Moreover, if D ⊂ TW is a
holomorphic distribution, we say that the embedding f is transverse to D if for all
x ∈ X, TW,f(x) ' f∗(TX,x)⊕Df(x).

Theorem 1 (Theorem 1.2, Theorem 1.6, [9]). Let n ≥ 1 and k ≥ 4n be integers.
Every compact almost-complex manifold (X, JX) of real dimension 2n admits an
embedding F : X ↪→ Zn,k, where Zn,k is a complex affine algebraic manifold, that is

(1) totally real,
(2) transverse to a holomorphic complex algebraic distribution Dn,k ⊂ TZn,k ,

and
(3) JX-inducing (i.e. JX is a pullback by F of an almost-complex structure on

F (X), coming from an induced complex structure on TZn,k/Dn,k).

(4) Moreover, if JX is integrable, then Im(∂̄JXF ) is contained in a subvariety
In,k of the Grassmannian bundle GrC(Dn,k, n)→ Zn,k of n-planes in Dn,k
that is given as the isotropic locus of the torsion operator θ : Dn,k×Dn,k →
TZn,k/Dn,k, θ(ζ, η) = [ζ, η] mod Dn,k.

Deamailly and Gaussier called these embeddings, and embedding spaces uni-
versal – the name stems from the fact that they provide universal solutions to
the almost-complex, and weakened Bogomolov conjectures. The definition of the
universal embedding space, (Zn,k,Dn,k), and the construction of the universal
embedding, F , will be provided later, in section 2. Since part of our work involves
generalizing all of the above, it seems more correct to recover Demailly’s and
Gaussier’s original notions from our own.

1.2. Yau’s Challenge via universal embeddings. In July of 2018, Demailly
gave a talk, where he proposed using Theorem 1 to tackle the long-standing open
problem of deciding whether the 6-dimensional sphere S6 is a complex manifold or
not [7].
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Despite the level of difficulty of the problem, S6 appears to be the most accessible
candidate solution to the YC. There seems to be more evidence in support of S6

not admitting a complex structure. Let us point out that here, we deal merely with
the preparation of steps that comprise what we call Demailly’s strategy to solve
the S6 problem. However, in order to test Demailly’s idea, one would need to carry
out a number of involved computations that are beyond the scope of this paper.
All we claim to do in this article is to enounce Demailly’s strategy to study the S6

problem, each of which steps is discussed more thoroughly in Section 3.2.1. In the
final section, we briefly discuss what would need to be done in order to complete
each step.

Observe that once we fix an orientation, we find that the space of almost-complex
structures on S6 is connected. Put another way, the standard, octonion, non-integra-
ble almost-complex structure on (the oriented) S6, JO, is homotopically unique [4].
Let us briefly describe this almost-complex structure, and the octonion embedding
from which it arises. If (ej)7

j=0 are the unit octonions, where the ej are purely
imaginary for all j > 0 and they span =(O) ' R7, then the octonion embedding
fO : S6 ↪→ =(O) ⊂ O is simply the inclusion fO(u1, . . . , u7) =

∑7
j=1 ujej . Any

u ∈ S6, determines a complex structure JO(u) ∈ EndR(O) that is essentially
right octonionic multiplication by u: JO(u)ζ = ζu. The octonion almost-complex
structure on S6, JO, is given by the mapping u 7→ JO(u). The non-integrability of
this structure is due to the non-associativity of the octonions. Indeed, the Nijenhuis
tensor can be found to be

NJO(u)(ζ, η) = −
(
ζ(ηu)− (ζu)η

)
−
(
η(ζu)− (ηζ)u

)
[10].

Demailly wanted to somehow use the inclusion fO together with Theorem 1 to
obtain a universal embedding (S6, JO) ↪→ Z3,4 that would produce a contradiction
from the assumption that S6 supports a complex structure. He believed that the
topology, and geometry of I3,4 would play an important role. However, when it
comes to implementing Demailly’s idea to prove the non-existence of a complex
structure on S6, Theorem 1 has some deficiencies. Firstly, (the proof of) Theorem 1
does not allow us to input an initial embedding of choice, such as fO. And also, the
optimal dimension of the universal embedding space (Z3,k,D3,k) cannot be reached
(i.e. k > 4). To be precise, in real dimension 6, Theorem 1 makes use of a Whitney
embedding S6 ↪→ R12 to build a universal embedding (S6, JO) ↪→ (Z3,12,D3,12).

1.3. Objectives and main results. Our first task is to state, and prove a univer-
sal embedding result with which we can properly formulate Demailly’s proposal for
tackling the S6 problem. This will, in turn, lead to a generalization of Theorem 1
to a functorially defined, and much larger category of embedding spaces. These
spaces will be denoted by (Zn(Y ),Dn,k), where Zn(Y ) is an Nn,k dimensional
complex manifold depending on a 2k-dimensional complex manifold Y, equipped
with a complex corank n distribution Dn,k ⊂ TZn(Y ) to be defined in Section 2.

For instance, as we will explain in Section 2, (Zn(C2k),Dn,k) coincides with the
Demailly-Gaussier embedding space (Zn,k,Dn,k). Later on, we introduce bundles,
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arising from these generalized embedding spaces (Zn(Y ),Dn,k), for the extrinsic
study of the (non-)integrability of almost-complex structures.

Let W be a smooth real affine algebraic variety, and let I(W ) be its ideal. The
complexification WC of W is the complex affine algebraic manifold that is defined
by the complex solutions to the ideal I(W ); i.e.

WC = {p ∈ CN | f(p) = 0 ∀f ∈ I(W )} .

If σ denotes the standard conjugation on CN , σ(p) = p, then the restriction σ|WC is
a real structure on WC (cf. Section 1.1). The real part of WC w.r.t. σ|WC coincides
with W .

The adjustment of Theorem 1 that is needed to state Demailly’s strategy is
contained in the following observation.

Proposition 1. Let (X,JX) be a compact almost-complex manifold of real dimen-
sion 2n. Assume that there is a C∞ embedding of X into a real affine algebraic
2k-dimensional manifold Y R. Assume further that the normal bundle NX/Y R admits
a complex structure JN . Let Y be the complexification of Y R. Then, there is a
totally real embedding F : X ↪→ Zn(Y ) that is transverse to Dn,k and that induces
the almost-complex structure JX .

We will often use the notation WR to denote a given real affine algebraic manifold
with complexification W .

Indeed, we will show that such an embedding always exists, so we are able to
reach the (generalized) analogue of Theorem 1

Theorem 2. Let n ≥ 1, and k ≥ 4n. Then, any compact almost-complex 2n-dimen-
sional manifold (X, JX) admits a totally real, JX-inducing, transverse to Dn,k

embedding F : (X, JX) ↪→ Zn(Y ), where Y = (M ×M)C, and M is any real affine
algebraic manifold of dimension k.

Theorem 2 (and Proposition 1) follow the way paved by Demailly and Gaussier in
[9]. However, we branch off into a new direction that is concerned with the geometry
of universal bundle constructions for the study of almost-complex structures.

Let GrC(Dn,k, n) be the Grassmannian bundle of n-planes in the distribution
Dn,k, and In,k be the generalized integrability locus In,k from Theorem 1. In the
results that follow, we consider Zariski open subsets Gro

n,k ⊂ GrC(Dn,k, n) and
Io
n,k := In,k ∩Gro

n,k that are bundles of trains (so termed in the spirit of [1]), whose
definitions are given on p. 48.

Our main contribution starts with the following result.

Theorem 3. The spaces Gro
n,k and Io

n,k have the structure of holomorphic affine
linear bundles over the total space of a Grassmannian bundle, πn,k : GrC(∆n,k, n)→
Zn(Y ).

Among our main motivations for considering these bundles is a strategy to tackle
the
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Homotopy YC (HYC). Classify all compact manifolds of real dimension at least
6, that do not support a complex structure that is homotopic to a non-integrable
almost-complex structure.

The strategy will be discussed in Section 4.3. Notice how the S6 problem fits
the scheme of the HYC (cf. section 1.2).

Now, let γn,k → GrC(∆n,k, n) be the tautological bundle.

Proposition 2. The quotient Gro
n,k/Io

n,k can be viewed as a holomorphic vector
bundle on GrC(∆n,k, n), and we have a vector bundle isomorphism

Gro
n,k/Io

n,k ' Λ2γ∗n,k ⊗ π∗n,k(TZn(Y )/Dn,k) .

Let F : (X,JX) ↪→ Zn(Y ) be a universal embedding as in Theorem 2. Then,
F has a lift F̃ : (X,JX) → Gro

n,k. As a consequence of the above results and [9,
Proposition 5.1], we obtain the following linearization formula for the Nijenhuis
tensor. The map Θ̃ below may be thought of as the quotient mapping Gro

n,k →
Gro

n,k/Io
n,k.

Proposition 3. NJX = 4Θ̃ ◦ F̃ .

1.4. Organization. In Section 2, we define our generalized embedding spaces
(Zn(Y ),Dn,k), and point out some basic categorical aspects. We then prove Pro-
position 1, and Theorem 2. In section 3, we describe the (local) geometry of our
generalized embedding spaces, and the (global) homogeneous nature of their sim-
plest instance. Subsection 3.2.1 is dedicated to Demailly’s proposal to tackle the
S6 problem. In Section 4, we prove Theorem 3, Proposition 2, and Proposition
3. Section 4.3 is about a strategy to study the HYC with our various bundle
constructions. In the final Section 5, we mention possible future research directions,
related to the content of this article.
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2. Universal embedding spaces associated to
even-dimensional complex manifolds

A complex directed manifold is a pair (X,D) of complex manifold X and
holomorphic distribution D ⊂ TX . Complex directed manifolds form a category
whose morphisms are holomorphic maps Ψ: X → X ′ with Ψ∗(D) ⊂ D′ [8]. A
morphism is étale if it is a local isomorphism. For example, an étale morphism
of real analytic manifolds is a real analytic map that is locally a diffeomorphism,
and an étale morphism of complex manifolds is a holomorphic map that is locally
a biholomorphism. If (X, J) and (X ′, J ′) are almost-complex manifolds, a map
f : X → X ′ is pseudo-holomorphic provided that it satisfies the corresponding
Cauchy-Riemann equation with ∂̄J,J ′f := 1

2 (df + J ′ ◦ df ◦ J).
Let k ≥ n ≥ 1, and Y be a complex manifold of complex dimension 2k. For every

y ∈ Y , consider the complex projective manifold of flags of signature (k − n, k) in
TY,y

F(k−n,k)(TY,y) ={(S′,Σ′)
∣∣S′ ⊂ Σ′ ⊂ TY,y is a sequence of linear subspaces,

dimC(S′) = k − n and dimC(Σ′) = k} ,

and the product manifold

F 2
(k−n,k)(TY,y) = {(S′, S′′,Σ′,Σ′′)

∣∣(S′,Σ′), (S′′,Σ′′) ∈ F(k−n,k)(TY,y)} .

Let
Qy = {(S′, S′′,Σ′,Σ′′) ∈ F 2

(k−n,k)(TY,y)
∣∣Σ′ ⊕ Σ′′ = TY,y} .

Define
Zn(Y ) :=

∐
y∈Y

Qy .

The space Zn(Y ) is a complex manifold of complex dimension

Nn,k := 2k + 2(k2 + n(k − n)) .

It bears a resemblance to twistor bundles and Grassmannians [9]: twistor bundles
parametrize almost-complex structures whereas Zn(Y ) includes all almost-complex
structures J on Y via the pair of eigenspaces in the decomposition TY = T 1,0

Y ⊕T
0,1
Y

that each J determines.
Let πY : Zn(Y )→ Y be the projection map defined for any y ∈ Y and qy ∈ Qy

by πY (y, qy) = y. Define ∆n,k to be the sub-bundle of π∗Y (TY ) such that for
any w = (y, S′, S′′,Σ′,Σ′′) ∈ Zn(Y ), we have ∆n,k,w = S′ ⊕ Σ′′. Now, define a
distribution Dn,k ⊂ TZn(Y ) by Dn,k := dπ−1

Y (∆n,k).
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In the case Y = C2k, if we let

Q := {(S′, S′′,Σ′,Σ′′) ∈ F 2
(k−n,k)(C2k) | Σ′ ⊕ Σ′′ = C2k} ,

then we simply get that Zn(C2k) = C2k ×Q. Therefore, the above construction
recovers Demailly’s and Gaussier’s original embedding spaces, (Zn,k,Dn,k), which
are complex directed manifolds with Zn,k being the complex, quasi-projective
manifold of all 5-tuples

{(z, S′, S′′,Σ′,Σ′′) | z ∈ C2k, (S′, S′′,Σ′,Σ′′) ∈ Q}

and Dn,k, the corank n sub-bundle of TZn,k whose fiber at any w ∈ Zn,k is

Dn,k,w = {(ζ, u′, u′′, v′, v′′) ∈ TZn,k,w | ζ ∈ S′ ⊕ Σ′′}[9].

For n fixed, the above defined complex directed manifold (Zn(Y ),Dn,k) will be
called here the universal embedding space associated with Y . We will soon see that
it has a universal property.

Remark 1. Zn(Y ) πY−−→ Y is a (holomorphic) fiber bundle with typical fiber Q,
and if Y = C2k, the bundle is trivial. The universal embedding space Zn(Y ) is
locally diffeomorphic to Zn(C2k).

Proof. Given a holomorphic atlas (Uα, ψα) for Y and p ∈ Uα, the isomorphism
TY,p ' C2k induces a biholomorphism Qp 'qα Q, and so (Uα, IdUα × qα) is a local
trivialization.

Now observe that Zn(Uα) = π−1
Y (Uα) ' Uα × Q ' C2k × Q = Zn(C2k),

where Zn(Uα) =
∐
p∈Uα Qp, where the first identification comes from the local

trivialization and the second one, from the map ψα : Uα → C2k. �

Depending on the context, we will say that the dimension of an almost-complex
manifold is 2n (over R) or n (over C).

2.1. Universal embedding property. Next, we construct embeddings of com-
pact almost-complex manifolds. Our approach follows closely the proof of Theorem
1.2 [9]. In a way, we also fill in some of the details of Demailly’s and Gaussier’s
original embedding construction. Throughout this section, (X, JX) is a compact
almost-complex manifold. So let us begin with the proof of our first result.
Proof of Proposition 1. Define J̃ := JX ⊕ JN , which is a complex structure
on TX ⊕ NX/Y R . A choice of isomorphism TY R |X ' TX ⊕ NX/Y R allows us to
view J̃ as a complex structure on TY R |X . Consider the JY -complexification of J̃ ,
J̃C = JC

X ⊕ JC
N : TY |X → TY |X , and put S := {0} ⊕NC

X/Y R . The complexification
of the above chosen isomorphism provides an identification TY |X ' TC

X ⊕NC
X/Y R .

So we may regard S as a sub-bundle of TY |X . For any x ∈ X and (0, ηx) ∈ Sx =
{0} ⊕NC

X/Y R,x, J̃C(x)(0, ηx) = (0, JC
N (ηx)) ∈ Sx, implying that Sx is J̃C(x)-stable

so that J̃C(x)|Sx ∈ End(Sx). Let Σ′x be the +i eigenspace for J̃C(x) and Σ′′x be the
−i eigenspace for J̃C(x). Then, the +i, respectively −i, eigenspaces for J̃C(x)|Sx
are S′x := Sx ∩ Σ′x and S′′x := Sx ∩ Σ′′x. More explicitly, these eigenspaces are
Σ′x = T 1,0

X,x ⊕Eig(JC
N (x), i), Σ′′x = T 0,1

X,x ⊕Eig(JC
N (x),−i), S′x = {0} ⊕Eig(JC

N (x), i),
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and S′′x = {0} ⊕ Eig(JC
N (x),−i). Note that S′x ⊂ Σ′x, S′′x ⊂ Σ′′x, Σ′x ⊕ Σ′′x = TY |X,x,

and Sx = S′x ⊕ S′′x , where dimC(Σ′x) = dimC(Σ′′x) = 1
2 dimC(TY |X,x) = k and

dimC(S′x) = dimC(S′′x) = 1
2 dimC(NC

X/Y R,x) = 1
2 (2k − 2n) = k − n. Therefore, if

f : X ↪→ Y R is the given C∞ embedding, for any x ∈ X – which we simultaneously
regard as a point in f(X), adopting this slight abuse of notation for convenience
– we have that (S′x, S′′x ,Σ′x,Σ′′x) ∈ Qx = {(S′, S′′,Σ′,Σ′′) ∈ F 2

(k−n,k)(TY,x) | Σ′ ⊕
Σ′′ = TY,x}, and in this way, get an embedding F : X ↪→ Zn(Y ), where F (x) =
(f(x), S′x, S′′x ,Σ′x,Σ′′x).

Let σ be the conjugation on Y (cf. Section 1.3). For (S′, S′′,Σ′,Σ′′) ∈ Qy,
put S′ := dσ|y(S′) ⊂ TY,y, Σ′ := dσ|y(Σ′) ⊂ TY,y, and define S′′ and Σ′′ simi-
larly. Then, σ gives rise to the anti-holomorphic involution σ̃ : Zn(Y ) → Zn(Y ),
(y, S′, S′′,Σ′,Σ′′) 7→ (y, S′′, S′,Σ′′,Σ′). The real points Zn(Y )R of Zn(Y ) are the
fixed points of σ̃, so Zn(Y )R = {(y, S′, S′′,Σ′,Σ′′) ∈ Zn(Y ) | y ∈ Y R, S′′ =
S′,Σ′′ = Σ′}. The anti-holomorphic character of σ implies that dσ is type-reversing
and point-wise conjugate linear, so Σ′x = T 0,1

X,x⊕Eig(JC
N (x),−i) = Σ′′x and similarly,

S′x = S′′x . Therefore, F (X) ⊂ Zn(Y )R.
Since dimR(dF |x(TX,x)) + dimR(Dn,k,F (x)) = 2Nn,k = dimR(TZn(Y ),F (x)), the

embedding F is transverse to Dn,k if dF |x(TX,x) and Dn,k,F (x) intersect trivially.
But the latter follows from dπY |F (x)(dF |x(TX,x) ∩Dn,k,F (x)) = df |x(TX,x) ∩ S′x ⊕
Σ′′x = {0}. Hence TZn(Y ),F (x) = dF |x(TX,x)⊕Dn,k,F (x).

Let JZn(Y ) be the given complex structure on Zn(Y ). The quotient TZn(Y )/Dn,k

is a holomorphic vector bundle on Zn(Y ). Since Dn,k ⊂ TZn(Y ) is a holomorphic
distribution, JZn(Y )(Dn,k) = Dn,k. So JZn(Y ) descends to a complex structure
on TZn(Y )/Dn,k. The transversality of F implies that at any x ∈ X, there is a
real isomorphism ρ : TF (X),F (x) → TZn(Y ),F (x)/Dn,k,F (x). Then, JZn(Y ),Dn,k

F (X) (x) :=
ρ−1 ◦ JZn(Y )(x) ◦ ρ defines an almost-complex structure JZn(Y ),Dn,k

F (X) on F (X), and
then since F is an embedding, the pullback section JF := F ∗(JZn(Y ),Dn,k

F (X) ) is an
almost-complex structure on X. Note that TZn(Y ),F (x)/Dn,k,F (x) ' Σ′x/S′x, and so
TZn(Y ),F (x)/Dn,k,F (x) is isomorphic to the holomorphic tangent space T 1,0

X,x, which
is TX,x endowed with the linear complex structure JX(x). Run the above procedure
now with T 1,0

X,x playing the role of TZn(Y ),F (x)/Dn,k,F (x), to find that JF = JX . �

Lemma 1. Let M be a real manifold, g : X ↪→ M be a C∞ embedding, and
i∆ : M ↪→M ×M be the diagonal embedding i∆(x) = (x, x). Embed X into M ×M
via i∆ ◦ g. Then, the normal bundle NX/M×M has a complex structure JN .
Proof. Choose isomorphisms TM |X ' NM/M×M |X , TM |X ' TX⊕NX/M , TM×M |M
' TM ⊕ TM , and TM×M |X ' TX ⊕NX/M×M . Then,

TX ⊕NX/M ⊕ TM |X ' f∗(TM×M |M ) = TM×M |X ' TX ⊕NX/M×M .
This implies that

NX/M×M ' NX/M ⊕NX/M ⊕ TX .
Let JNX/M⊕NX/M be the tautological complex structure that is given by

JNX/M⊕NX/M (ζ, η) = (−η, ζ). Put JN := JNX/M⊕NX/M ⊕ (−JX), which defines a
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complex structure on NX/M ⊕NX/M ⊕ TX . Thanks to the above identifications,
we may regard JN as a complex structure on NX/M×M . Note that this complex
structure is not canonically defined as it depends on the chosen isomorphisms.
Indeed, different choices of isomorphisms will lead to different complex structures,
but this will not matter for how the lemma is applied later on. �

If we take Y R = M ×M as in the lemma, we then have that

Σ′x = T 1,0
X,x ⊕ {(u,−iu) | u ∈ NC

X/M,x} ⊕ T
0,1
X,x ,

Σ′′x = T 0,1
X,x ⊕ {(u, iu) | u ∈ NC

X/M,x} ⊕ T
1,0
X,x ,

S′x = {0} ⊕ {(u,−iu) | u ∈ NC
X/M,x} ⊕ T

0,1
X,x, and

S′′x = {0} ⊕ {(u, iu) | u ∈ NC
X/M,x} ⊕ T

1,0
X,x .

This is why it is nicer to take −JX in the definition of JN , as otherwise, Σ′x and
Σ′′x would have repeated direct sum factors of T 1,0

X,x and T 0,1
X,x.

Proof of Theorem 2. First, note that there will always be an embedding ψ : X2n

↪→ Rk for some k > 2n. The strong Whitney embedding gives the optimal lower
bound k = 4n, hence the assumption k ≥ 4n. Let M be a real manifold with
dimR M = k, and put Y R = M ×M . Let φ : Rk → B be a diffeomorphism of
Rk with some open ball B ⊂ M . A C∞ embedding of X into Y R satisfying the
hypothesis of Proposition 1 (f) is given by taking g = φ ◦ ψ in Lemma 1 so
that f = i∆ ◦ g, with JN being the associated complex structure on the normal
bundle. Apply Proposition 1 to f in order to obtain the universal embedding
F : (X, JX) ↪→ (Zn(Y ),Dn,k). �

Example 1. Let S6 ⊂ R7 be the unit 6-dimensional sphere. Recall the standard
octonion embedding of S6 (fO), and the induced almost-complex structure (JO)
that were defined in Subsection 1.2 of the introduction. Indeed, the complexification
of O ' R8 can be viewed as C8 = O⊕ iO. So fO(S6) ⊂ =(O) may be assumed to
lie in the first factor, O. We illustrate how to manufacture a universal embedding
out of this initial embedding data, using Proposition 1.

Observe that for any u ∈ S6,

O ' TO|S6,u ' TS6,u ⊕NS6/O,u ' u⊥ ⊕
(
R(1)⊕ R(u)

)
,

where TS6,u = u⊥ = {v ∈ =(O) | 〈v, u〉 := <(vū) = −
∑7
i=1 viui = 0}.

Since NS6/O,u ' R(1) ⊕ R(u), JO(u)
(
NS6/O,u

)
= NS6/O,u, and so JO|NS6/O

is
a complex structure on NS6/O.

The complexification JC
O is such that for any u∈ S6, JC

O(u)(ζ⊗z) = ζu⊗ z. The
method in the proof of Proposition 1 outputs the universal embedding

FJO : (S6, JO) ↪→ (Z3(C8),D3,4) = (Z3,4,D3,4) ,

where
FJO(u) =

(
fO(u), N1,0

S6/O,u, N
0,1
S6/O,u, T

1,0
O |S6,u, T

0,1
O |S6,u

)
.
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2.2. Functorial property with respect to étale morphisms. For each n ∈ N,
let C-MannEt be the category of complex manifolds of dimension n whose morphisms
are étale morphisms. For each k ≥ n ≥ 1, we have functors Zn : C-Man2k

Et →
C-ManNn,kEt , given by Zn(Y ) = Zn(Y ), and for any étale morphism f : Y → Y ′,
Zn(f) : Zn(Y )→ Zn(Y ′) is the map that is defined at each w = (y, S′, S′′,Σ′,Σ′′) ∈
Zn(Y ) by

Zn(f)(w) =
(
f(y), df |y(S′), df |y(S′′), df |y(Σ′), df |y(Σ′′)

)
.

Throughout, we will write Zn(f) instead of Zn(f).
For a fixed n, the universal embedding space associated with Y is a complex direc-

ted manifold (Zn(Y ),Dn,k) such that every compact almost-complex n-dimensional
manifold (X, JX) admits a totally real, transverse to Dn,k, JX -inducing em-
bedding F : X ↪→ Zn(Y ), and it satisfies the following universal property. For
any n-dimensional compact almost-complex manifold (X ′, JX′), any C∞ em-
beddings g : X ↪→ Y R and g′ : X ′ ↪→ Y ′

R, any pseudo-holomorphic étale map
ψX : (X, JX)→ (X ′, JX′), and any étale morphism ψY : Y R → Y ′R that fit into a
commutative diagram

(X, JX) Y R

(X ′, JX′) Y ′R,

g

ψX ψY

g′

there is a corresponding functorially defined morphism Zn(ψY ) : (Zn(Y ),Dn,k)→
(Zn(Y ′),D′n,k) of complex directed manifolds making the diagram

(X, JX) Zn(Y )

(X ′, JX′) Zn(Y ′),

F

ψX ∃Zn(ψY )

F ′

commute. By the Nash-Tognoli Theorem, we may assume that X and X ′ are
smooth real algebraic varieties and that g : X ↪→ Y R and g′ : X ′ ↪→ Y ′R are
algebraic. Then, our construction gives that F and F ′ are real algebraic as well.

3. The geometry of Zn(Y ) and related bundles

3.1. Coordinates on Zn(Y ). Let Uy 'ψ C2k be any holomorphic coordinate chart
that is centered at a given point y ∈ Y . Let p ∈ Uy. We write ψ(p) = (x1, . . . , x2k)
for the holomorphic coordinates of the point p. Let S′p = SpanC( ∂

∂xj

∣∣
p
)kj=n+1,

S′′p = SpanC( ∂
∂xj

∣∣
p
)2k
j=n+k+1, Σ′p = SpanC( ∂

∂xj

∣∣
p
)kj=1, Σ′′p = SpanC( ∂

∂xj

∣∣
p
)2k
j=k+1,

and put fp := (S′p, S′′p ,Σ′p,Σ′′p). From this point on, we will omit reference to the
point p in the vector ∂

∂xj

∣∣
p
, and denote it simply by ∂

∂xj
. We develop a coordinate

chart Uy × A(fy) ' C2k × CNn,k−2k = CNn,k that is centered at wy := (y, fy).
To that end, let ES′p = SpanC( ∂

∂xj
)nj=1 and ES′′p = SpanC( ∂

∂xj
)n+k
j=k+1. In addition
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to Σ′p ⊕ Σ′′p = TY,p, there are direct sum decompositions S′p ⊕ ES′p = Σ′p and
S′′p ⊕ ES′′p = Σ′′p . Define

A(fy) :=
{

(S′, S′′,Σ′,Σ′′) ∈ Qp | p ∈ Uy, S′ ∩ ES′p = {0}, S′′ ∩ ES′′p = {0},

Σ′ ∩ Σ′′p = {0},Σ′′ ∩ Σ′p = {0}
}
.

For any (S′, S′′,Σ′,Σ′′) ∈ A(fy), S′, S′′, Σ′ and Σ′′ correspond uniquely to
maps fS′ ∈ Hom(S′p, ES′p), fS′′ ∈ Hom(S′′p , ES′′p ), fΣ′ ∈ Hom(Σ′p,Σ′′p) and fΣ′′ ∈
Hom(Σ′′p ,Σ′p), respectively, in the sense that S′ = Γ(fS′), S′′ = Γ(fS′′), Σ′ = Γ(fΣ′),
and Σ′′ = Γ(fΣ′′), where Γ(g) denotes the graph of the function g; e.g. Γ(fS′) =
{x+ fS′(x)|x ∈ S′p}. Suppose that

fS′(
∂

∂xj
) =

n∑
i=1

zij
∂

∂xi
, for n+ 1 ≤ j ≤ k ,

fS′′(
∂

∂xj
) =

n+k∑
i=k+1

zij
∂

∂xi
, for n+ k + 1 ≤ j ≤ 2k ,

fΣ′(
∂

∂xj
) =

2k∑
i=k+1

zij
∂

∂xi
for 1 ≤ j ≤ k , and

fΣ′′(
∂

∂xj
) =

k∑
i=1

zij
∂

∂xi
, for k + 1 ≤ j ≤ 2k .

Then,

S′ = SpanC

( ∂

∂xj
+

n∑
i=1

zij
∂

∂xi

)k
j=n+1

, S′′= SpanC

( ∂

∂xj
+

n+k∑
i=k+1

zij
∂

∂xi

)2k

j=n+k+1
,

Σ′ = SpanC

( ∂

∂xj
+

2k∑
i=k+1

zij
∂

∂xi

)k
j=1

and Σ′′= SpanC

( ∂

∂xj
+

k∑
i=1

zij
∂

∂xi

)2k

j=k+1
.

This defines a coordinate map q : A(fy)→ C2(k2+n(k−n)) = CNn,k−2k,

q(S′, S′′,Σ′,Σ′′) = Z :=
(
ZS′ ZΣ′′

ZΣ′ ZS′′

)
,

where

ZS′ =
(

0n×n zij
0(k−n)×k

)
1≤i≤n,n+1≤j≤k

,

ZS′′ =
(

0n×n zij
0(k−n)×k

)
k+1≤i≤n+k,n+k+1≤j≤2k

,

ZΣ′ = (zij)k+1≤i≤2k,1≤j≤k ,
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and

ZΣ′′ = (zij)1≤i≤k,k+1≤j≤2k ,

and note that q(fy) = 0.
Coordinates centered at wy are then given by the map φ := ψ×q : Uy×A(fy)→

CNn,k , φ(y, S′, S′′,Σ′,Σ′′) = (ψ(y), q(S′, S′′,Σ′,Σ′′)) = (ψ(y), Z), and note that
φ(wy) = 0.

3.2. Sub-bundles of the Grassmannian bundle. The torsion operator is the
section

θ ∈ H0(Zn(Y ),O(Λ2(D∗n,k)⊗ TZn(Y )/Dn,k)
)
,

where
θ(w) : Dn,k,w ×Dn,k,w → TZn(Y ),w/Dn,k,w ,

θ(w)(ζ, η) = [ζ, η] mod Dn,k,w. At the central point, we have the coordinate form

Lemma 2.

θ(wy) = −2
2k∑

j=n+1

n∑
i=1

dxj ∧ dzij ⊗
∂

∂xi
.

Proof. Let I := {1, . . . , n}×{n+1, . . . , k}∪{k+1, . . . , n+k}×{n+k+1, . . . , 2k}∪
{k + 1, . . . , 2k} × {1, . . . , k} ∪ {1, . . . , k} × {k + 1, . . . , 2k} and define

(I) :=
(
(1, n+ 1), . . . , (1, k), . . . , (n, n+ 1), . . . , (n, k), (k + 1, n+ k + 1),
. . . , (k + 1, 2k), . . . , (n+ k, n+ k + 1), . . . , (n+ k, 2k), (k + 1, 1),
. . . , (k + 1, k), . . . , (2k, 1), . . . , (2k, k), (1, k + 1), . . . , (1, 2k),
. . . , (k, k + 1), . . . , (k, 2k)

)
.

Here we work with the less compact, but equivalent coordinates φ(p, S′, S′′,Σ′,Σ′′)
= (x, (zij)(i,j)∈(I)). Let w = (p, S′, S′′,Σ′,Σ′′) ∈ Uy ×A(fy) so that(( ∂

∂xl

)2k

l=1
,
( ∂

∂zij

)
(i,j)∈(I)

)
is a basis of the tangent space TZn(Y ),w. Then,

Dn,k,wy =
{

(ζ, u′, u′′, v′, v′′) ∈ TZn(Y ),wy | ζ ∈ S
′
y ⊕ Σ′′y = SpanC

( ∂

∂xl

)
l=n+1,...,2k

}
and

Dn,k,w = {(ζ, u′, u′′, v′, v′′) ∈ TZn(Y ),w | ζ ∈ S′ ⊕ Σ′′} .

Let a : Uy ×A(fy)→ Mn×(Nn,k−n)(C) be the function a(w) = (χIzij), where

χI =
{

1 if (i, j) ∈ I
0 otherwise.
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Then, since χI = 0 on {n+ 1, . . . , k} × {n+ 1, . . . , k},

S′ ⊕ Σ′′ = SpanC

( ∂

∂xj
+

k∑
i=1

aij(w) ∂

∂xi

)
j=n+1,...,2k

.

Therefore,

Dn,k,wy = SpanC

( ∂

∂xl

)
l=n+1,...,2k

⊕ SpanC

( ∂

∂zij

)
(i,j)∈(I)

,

Dn,k,w = SpanC

( ∂

∂xj
+

k∑
i=1

aij(w) ∂

∂xi

)
j=n+1,...,2k

⊕ SpanC

( ∂

∂zij

)
(i,j)∈(I)

,

and so TZn(Y ),wy/Dn,k,wy ' SpanC

(
∂
∂xl

)
l=1,...,n

.

Note that a(wy) = 0. At wy,[ ∂

∂xj
+

k∑
i=1

aij
∂

∂xi
,
∂

∂xl
+

k∑
i=1

ail
∂

∂xi

]
=

k∑
i=1

(∂ail
∂xj
− ∂aij
∂xl

) ∂

∂xi

= 0

because the function a is independent of xi for all i, and

θ(wy)
( ∂

∂xj
+

k∑
i=1

aij
∂

∂xi
,

∂

∂zml

)
=

k∑
i=1

θ(wy)
(
aij

∂

∂xi
,

∂

∂zml

)
=

k∑
i=1

(
− ∂aij
∂zml

∂

∂xi
mod Dn,k,wy

)
=

n∑
i=1
− ∂aij
∂zml

∂

∂xi
.

Then since, 1 ≤ i ≤ n, n+ 1 ≤ j ≤ 2k, and (m, l) ∈ I, the index domains (i.e. the
domains of i, j, l and m) overlap exactly at {1, . . . , n} × {n + 1, . . . , 2k} ∩ I =
{1, . . . , n} × {n+ 1, . . . , 2k}. Therefore,

θ(wy) =
2k∑

j,l=n+1

n∑
m=1

θ(wy)
( ∂

∂xj
+

k∑
i=1

aij
∂

∂xi
,

∂

∂zml

)
dxj ∧ dzml

+
2k∑

j,l=n+1

n∑
m=1

θ(wy)
( ∂

∂zml
,
∂

∂xj
+

k∑
i=1

aij
∂

∂xi

)
dzml ∧ dxj

=
2k∑

j,l=n+1

n∑
m=1

( n∑
i=1
− ∂aij
∂zml

∂

∂xi

)
dxj ∧ dzml
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+
2k∑

j,l=n+1

n∑
m=1

( n∑
i=1

∂aij
∂zml

∂

∂xi

)
dzml ∧ dxj

= −2
2k∑

j,l=n+1

n∑
i,m=1

∂aij
∂zml

dxj ∧ dzml ⊗
∂

∂xi

= −2
2k∑

j=n+1

n∑
i=1

dxj ∧ dzij ⊗
∂

∂xi
. �

Remark 2. For any X =
∑2k
l=n+1Xl

∂
∂xl

+
∑

(i,j)∈(I)Xij
∂
∂zij

, Y =
∑2k
l=n+1 Yl

∂
∂xl

+∑
(i,j)∈(I) Yij

∂
∂zij
∈ Dn,k,wy ,

θ(wy)(X,Y ) = −2
n∑
i=1

2k∑
j=n+1

(XjYij − YjXij)
∂

∂xi
.

Recall the projection mapping πY : Zn(Y ) → Y, πY (y, qy) = y. Consider the
Grassmannian bundle GrC(Dn,k, n) on Zn(Y ), whose fiber at w ∈ Zn(Y ) is the
Grassmannian GrC(Dn,k,w, n). For any w ∈ Zn(Y ), define

Gro
n,k,w := {S ∈ GrC(Dn,k,w, n) | dπY (w)|S is injective}

and

In,k,w := {S ∈ GrC(Dn,k,w, n) | θ(w)|S×S = 0} .

Let Gro
n,k be the sub-bundle of the Grassmannian bundle with fiber Gro

n,k,w at
w, and define In,k similarly. Now let Io

n,k be the sub-bundle whose fiber over w is
Io
n,k,w := Gro

n,k,w ∩ In,k,w. When Y = C2k, we denote these bundles by Gro
n,k, In,k,

and Io
n,k.

Remark 3. Let F be a universal embedding as in Theorem 2. Then, dπY (F (x)) ◦
∂̄JXF (x) is injective for all x ∈ X. So, Im(∂̄JXF ) ⊂ Gro

n,k, and if JX is integrable,
then Im(∂̄JXF ) ⊂ Io

n,k.

3.2.1. Demailly’s strategy. Let J be a hypothetical complex structure on (the
oriented) S6. It must be homotopic to JO. The proof of Proposition 1 outputs
isotopic universal embeddings FJO : (S6, JO) ↪→ Z3(C8) and FJ : (S6, J) ↪→ Z3(C8),
where the latter embedding is built up from J̃ = J ⊕ JO (cf. Example 1). The lifts
Im(∂JOFJO) : (S6, JO)→ Gro

3,4 and Im(∂JFJ ) : (S6, J)→ Io
3,4 are again homotopic

(see Remark 3 above), so [Im(∂JOFJO)] = [Im(∂JFJ )] ∈ π6(Io
3,4). Say that we could

show that [Im(∂JOFJO)] is a non-trivial homotopy class, and π6(Io
3,4) = 0. This

would be a contradiction, implying that J cannot exist.
From the definition of homotopy groups, it should be evident that this method

does not carry through to other almost-complex manifolds beyond S6.
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3.3. A functorial group action. This is an overview of basic facts that may be
useful for understanding the geometry of Zn(Y ), and related bundles via group
actions.

Let (ej)2k
j=1 be the standard basis of C2k, S′0 = SpanC(ej)kj=n+1,

S′′0 = SpanC(ej)2k
j=n+k+1, Σ′0 = SpanC(ej)kj=1, and Σ′′0 = SpanC(ej)2k

j=k+1. Put
f0 := (S′0, S′′0 ,Σ′0,Σ′′0) ∈ F 2

(k−n,k)(C2k) and w0 := (0, f0).

Lemma 3. The group GL2k(C) acts transitively on Q and the stabilizer Λ of f0
is the subgroup of GL2k(C) of all matrices of the form(

Bk×k 0k×k
0k×k B′k×k

)
,

where

Bk×k =
(

Bn×n 0n×(k−n)
B(k−n)×k

)
∈ GLk(C)

and

B′k×k =
(

B′n×n 0n×(k−n)
B′(k−n)×k

)
∈ GLk(C) .

As a result, Q ' GL2k(C)/Λ.

Proof. For any subspace S = SpanC(sj)rj=1 of C2k, define GS := SpanC(Gsj)rj=1,
for any G ∈ GL2k(C). The action of GL2k(C) on Q, given by (G, (S′, S′′,Σ′,Σ′′)) 7→
G(S, S′′,Σ′,Σ′′), where G(S, S′′,Σ′,Σ′′) = (GS′, GS′′, GΣ′, GΣ′′), is transitive. To
compute the stabilizer of f0, let B =

(
Bij
)

1≤i,j≤2k ∈ GL2k(C) and note that
Bf0 = f0 iff

for each n+ 1 ≤ j ≤ k, Bij = 0 for all 1 ≤ i ≤ n and k + 1 ≤ i ≤ 2k ,
for each n+ k + 1 ≤ j ≤ 2k, Bij = 0 for all k + 1 ≤ i ≤ n+ k ,

for each 1 ≤ j ≤ k, Bij = 0 for all k + 1 ≤ i ≤ 2k ,

and

for each k + 1 ≤ j ≤ 2k, Bij = 0 for all 1 ≤ i ≤ k .

Therefore,
(
Bij
)

1≤i≤n,n+1≤j≤k=0n×(k−n),
(
Bij
)
k+1≤i≤n+k,n+k+1≤j≤2k=0n×(k−n),(

Bij
)
k+1≤i≤2k,1≤j≤k = 0k×k, and

(
Bij
)

1≤i≤k,k+1≤j≤2k = 0k×k so that B is as
claimed. �

The group Authol(Y ) of biholomorphisms of Y acts functorially on Zn(Y ):

Authol(Y )×Zn(Y )→ Zn(Y ) ,
(f, (y, S′, S′′,Σ′,Σ′′)) 7→ Zn(f)(y, S′, S′′,Σ′,Σ′′) ,

where recall Zn(f)(y, S′, S′′,Σ′,Σ′′) = (f(y), df |y(S′, S′′,Σ′,Σ′′)). Of course it can
happen that Authol(Y ) = {IdY }. Although this action is generally non-transitive,
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there are exceptions, for example when Y = C2k. Consider the subgroup Aff(C2k)
of Authol(C2k). For any f = Bz + c ∈ Aff(C2k), note that

Zn(f)(y, S′, S′′,Σ′,Σ′′) =
(
By + c, df |y(S′, S′′,Σ′,Σ′′)

)
=
(
By + c,B(S′, S′′,Σ′,Σ′′)

)
.

Lemma 4. The functorial action of Aff(C2k) on Zn(C2k) is transitive, the stabilizer
of w0 is L := {f = Bz | B ∈ Λ}, and Zn(C2k) ' Aff(C2k)/L.

Proof. Let (y, S′, S′′,Σ′,Σ′′) ∈ Zn(C2k) = C2k × Q. We saw that GL2k(C) acts
transitively on Q. So there is a B0 ∈ GL2k(C) such that (S′, S′′,Σ′,Σ′′) = B0f0.
Put c0 = y so that Zn(B0z + c0)(w0) = (y, S′, S′′,Σ′,Σ′′). �

4. Affine bundle structure

Let πn,k : GrC(∆n,k, n) → Zn(Y ) be the Grassmannian bundle. Let γn,k →
GrC(∆n,k, n) be the tautological bundle with fiber γn,k,L = L over any point
L ∈ GrC(∆n,k, n), viewed as a vector subspace of the corresponding fiber of ∆n,k →
Zn(Y ). Since both γn,k and π∗n,k(TZn(Y )/Y ) are vector bundles on GrC(∆n,k, n),
we can form the vector bundle

h : Hom
(
γn,k, π

∗
n,k(TZn(Y )/Y )

)
→ GrC(∆n,k, n) .

The typical fiber of this bundle is Hom(Cn,CNn,k−2k), coming from the fact that
for any (w, Sw) ∈ GrC(∆n,k, n),

h−1(w, Sw) = Hom
(
γn,k,Sw , π

∗
n,k(TZn(Y )/Y )

)
,

dimC(Sw) = n, and dimC(TZn(Y )/Y,w) = Nn,k − 2k.
Given any vector bundle homomorphism F ∈ Hom(γn,k, π∗n,k(TZn(Y )/Y )), if

Idγn,k is the identity morphism, we can produce another vector bundle morphism
Idγn,k ⊕ F : γn,k → γn,k ⊕ π∗n,k(TZn(Y )/Y ) ⊂ π∗n,k(Dn,k), and the graph of F is
then Γ(F ) := Im(Idγn,k ⊕F ). This can be regarded as a sub-bundle Γ(F ) ⊂ γn,k ⊕
π∗n,k(TZn(Y )/Y )→ GrC(∆n,k, n) and the fiber over (w, V ) is the usual graph of the
linear map F (w, V ) in Hom(V, TZn(Y )/Y,w), i.e. Γ(F )(w,V ) = Im(IdV +F (w, V )) =
Γ(F (w, V )). Let

Θ: Hom
(
γn,k, π

∗
n,k(TZn(Y )/Y )

)
→ Λ2γ∗n,k ⊗ π∗n,k(TZn(Y )/Dn,k)

be the bundle morphism Θ(F ) = θ|Γ(F )×Γ(F ). On fibers, this becomes a map

Θ(w, V ) : Hom
(
γn,k,V , TZn(Y )/Y,w

)
→ Λ2γ∗n,k,V ⊗ TZn(Y ),w/Dn,k,w ,

where Θ(w, V )(f) = θ(w)|Γ(f)×Γ(f).
Let ρ : Gro

n,k→ GrC(∆n,k, n) be the map with definition ρ(w, Vw)=(w, dπ(w)
(Vw)) for any w ∈ Zn(Y ) and Vw ∈ Gro

n,k,w.

Lemma 5. If w ∈ Zn(Y ) and V ∈ GrC(∆n,k,w, n), then
(1) Θ(w, V ) is linear, and
(2) Io

n,k,w ∩ ρ−1(w, V ) ' ker
(
Θ(w, V )

)
.
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Proof. To prove (1), let ζ, η ∈ V . Remark 2 implies that θ(w)(ζ, η) = θ(w)
(
f(ζ),

f(η)
)

= 0. From the bilinearity and anti-symmetry of θ(w), it then follows that
θ(w)

(
ζ + f(ζ), η + f(η)

)
= θ(w)

(
ζ, f(η)

)
− θ(w)

(
η, f(ζ)

)
. Apply this identity to

f + g to find that
θ(w)(ζ+(f+g)

(
ζ), η+(f+g)(η)

)
= θ(w)

(
ζ+f(ζ), η+f(η)

)
+θ(w)

(
ζ+g(ζ), η+g(η)

)
.

Clearly, for any λ ∈ C, θ(w)
(
ζ + λf(ζ), η + λf(η)

)
= λθ(w)

(
ζ + f(ζ), η + f(η)

)
.

The above also shows that Θ is a true vector bundle homomorphism.
The second claim will follow at once from the description of the fiber ρ−1(w, V )

that we provide in the proof of the theorem below. �

4.1. The proof of Theorem 3. Let (Uα) be a local trivialization of the holomor-
phic fiber bundle Zn(Y ) πY−−→ Y so that Zn(Uα) = π−1

Y (Uα) ' Uα ×Q (cf. Remark
1). The relative tangent bundle sequence need not be globally split. However, it is
locally split with respect to a trivialization, meaning that, in particular, the short
exact sequence

0→ TZn(Y )/Y |Zn(Uα) → TZn(Y )|Zn(Uα) → π∗Y (TY )|Zn(Uα) → 0
is split and induces the split sequence

(∗) 0→ TZn(Y )/Y |Zn(Uα) → Dn,k|Zn(Uα) →∆n,k|Zn(Uα) → 0 .

Not all splittings of (∗) necessarily come from a trivialization of Zn(Y ) πY−−→ Y .
Define Gα := GrC(∆n,k, n)|Zn(Uα). Let wα∈ Zn(Uα) and Swα ∈ GrC(∆n,k,wα , n).

The direct sum of vector spaces γn,k|Gα,Swα ⊕ π
∗
n,k(TZn(Y )/Y |Zn(Uα),wα) is defined

thanks to the splitting of (∗), and here γn,k|Gα is the restriction of the tautological
bundle to Gα. Notice that

ρ−1(wα, Swα) = {Vwα ∈ Gro
n,k,wα | dπY (wα)(Vwα) = Swα}

= {Vwα ∈ GrC(γn,k|Gα,Swα ⊕ π
∗
n,k(TZn(Y )/Y |Zn(Uα),wα), n) |

Vwα ∩ π∗n,k(TZn(Y )/Y |Zn(Uα),wα) = {0}}
= {Γ(f) | f ∈ Hom(γn,k|Gα,Swα , π

∗
n,k(TZn(Y )/Y |Zn(Uα),wα))} .

Consider the map
t : Hom

(
γn,k, π

∗
n,k(TZn(Y )/Y )

)
×GrC(∆n,k,n) Gro

n,k → Gro
n,k ,

where the domain is the fiber product, and where the map t is defined on the fiber
over (wα, Swα) by

Hom
(
γn,k|Gα,Swα , π

∗
n,k(TZn(Y )/Y |Zn(Uα),wα)

)
× ρ−1(wα, Swα)→ ρ−1(wα, Swα) ,(

f,Γ(g)
)
7→ Γ(f + g) .

Now, if Γ(f ′),Γ(f ′′) ∈ ρ−1(wα, Swα), Γ(f ′′) = Γ(f + f ′) iff f = f ′′− f ′, which is to
say that the action of Hom

(
γn,k|Gα,Swα , π

∗
n,k(TZn(Y )/Y |Zn(Uα),wα)

)
on ρ−1(wα, Swα)

is free and transitive. The map t thus realizes the fiber ρ−1(wα, Swα) as an affine
linear space modelled on the vector space

Hom
(
γn,k|Gα,Swα , π

∗
n,k(TZn(Y )/Y |Zn(Uα),wα)

)
.
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There are a few subtleties. Since ρ−1(wα, Swα) is not genuinely a vector space, an
isomorphism with Hom

(
γn,k|Gα,Swα , π

∗
n,k(TZn(Y )/Y |Zn(Uα),wα)

)
cannot be defined.

The biholomorphisms between fibers of the bundles ρ : Gro
n,k → GrC(∆n,k, n) and

h : Hom
(
γn,k, π

∗
n,k(TZn(Y )/Y )

)
→ GrC(∆n,k, n) are not canonical. They depend on

the local holomorphic splitting of the relative tangent bundle sequence. That Y is
a generic complex even dimensional manifold is the underlying reason for there
being no natural splitting of the sequence, which in turn implies the non-naturality
of the biholomorphisms.

Note that the sets Gα, which are preimages of the open subsets Zn(Uα) ⊂ Zn(Y )
under the continuous bundle projection πn,k, form an open cover of the total space
GrC(∆n,k, n). Let Γ := {Γ(f) | f ∈ Hom(Cn,CNn,k−2k)}, which is an affine
linear space modelled after Hom(Cn,CNn,k−2k). For all (w, Sw) ∈ Gα, we have a
biholomorphism ρ−1(w, Sw) ' Γ, inducing a biholomorphism ρ−1(Gα) ' Gα × Γ.
So the Gα are a trivialization of ρ : Gro

n,k → GrC(∆n,k, n) as a holomorphic fiber
bundle with typical fiber Γ, and so ρ : Gro

n,k → GrC(∆n,k, n) is a holomorphic
affine linear bundle modelled on

h : Hom
(
γn,k, π

∗
n,k(TZn(Y )/Y )

)
→ GrC(∆n,k, n) .

Part 2 of Lemma 5 follows from the biholomorphism

ρ−1(wα, Swα) ' Hom(γn,k|Gα,Swα , π
∗
n,k(TZn(Y )/Y |Zn(Uα),wα)) .

So the fiber over (wα, Swα) of the sub-bundle ρ|Io
n,k

: Io
n,k → GrC(∆n,k, n) is an

affine linear space modelled on the vector subspace ker
(
Θ(wα, Swα)

)
of

Hom
(
γn,k,Swα , π

∗
n,k(TZn(Y )/Y,wα)

)
.

The bundle Io
n,k is thus an affine bundle modelled on the (sub-)vector bundle

h|ker Θ : ker Θ→ GrC(∆n,k, n), where ker Θ := {F ∈ Hom
(
γn,k, π

∗
n,k(TZn(Y )/Y )

)
|

Θ(F ) = 0}. �

An immediate consequence of the theorem is that the total spaces Gro
n,k and

Io
n,k are of the same homotopy type. In particular, πi(Gro

n,k, Io
n,k) = 0, for all i ≥ 0.

However, one could instead look at, perhaps, fibered homotopy groups [6]. This
could be a topic worthwhile studying.

4.2. The proof of Proposition 2 and Proposition 3. Theorem 3 and its proof
imply that the quotient Gro

n,k/Io
n,k is the vector bundle Hom

(
γn,k, π

∗
n,k(TZn(Y )/Y )

)
/

ker Θ. Proposition 2 then follows from the argument presented below.

Proof of Proposition 2. We exhibit an isomorphism of vector bundles on
GrC(∆n,k, n),

Hom
(
γn,k, π

∗
n,k(TZn(Y )/Y )

)
/ ker Θ ' Hom

(
Λ2γn,k, π

∗
n,k(TZn(Y )/Dn,k)

)
.



GEOMETRY OF UNIVERSAL EMBEDDING SPACES 53

Observe that there is an isomorphism

TZn(Y )/Y,wy ' Hom(S′y,Σ′y/S′y)⊕Hom(S′′y ,Σ′′y/S′′y )
⊕Hom(Σ′y,Σ′′y)⊕Hom(Σ′′y ,Σ′y) ,

which depends on choices of direct sum decompositions Σ′y = Q′y ⊕ S′y and Σ′′y =
Q′′y ⊕ S′′y . Set

Awy := Hom(S′′y ,Σ′′y/S′′y )⊕Hom(Σ′y,Σ′′y)⊕Hom(Σ′′y , S′y)

so that TZn(Y )/Y,wy ' Awy ⊕Hom(∆n,k,wy ,Σ′y/S′y), and

Hom(V, TZn(Y )/Y,wy ) ' Hom(V,Hom
(
∆n,k,wy ,Σ′y/S′y)

)
⊕Hom(V,Awy ) ,

for any V ∈ GrC(∆n,k,wy , n). We show that the linear in Hom(V, TZn(Y )/Y,wy)
function Θ(wy, V ) vanishes on Hom(V,Awy ). This implies that

ker (Θ(wy, V )) = ker
(
Θ(wy, V )|Hom(V,Hom(∆n,k,wy ,Σ′y/S′y))

)
⊕Hom(V,Awy ) ,

and so

Hom(V, TZn(Y )/Y,wy )/ ker
(
Θ(wy, V )

)
'

Hom
(
V,Hom(∆n,k,wy ,Σ′y/S′y)

)
/ ker

(
Θ(wy, V )|Hom(V,Hom(∆n,k,wy ,Σ′y/S′y))

)
.

Observe that for any f ∈ Hom(V,Awy ), there exist unique g∈ Hom
(
V,Hom(S′′y ,Σ′′y/

S′′y )
)
, g′ ∈ Hom

(
V,Hom(Σ′y,Σ′′y)

)
and g′′ ∈ Hom

(
V,Hom(Σ′′y , S′y)

)
such that

f = g+g′+g′′. If (Xm)nm=1 is a basis of V , then in terms of the basis
(

∂
∂zij

)
(i,j)∈(I)

of TZn(Y )/Y,wy ,

f(Xm) = g(Xm) + g′(Xm) + g′′(Xm)

=
∑

k+1≤i≤k+n,n+k+1≤j≤2k
g(Xm)ij

∂

∂zij
+

∑
k+1≤i≤2k,1≤j≤k

g′(Xm)ij
∂

∂zij

+
∑

n+1≤i≤k,k+1≤j≤2k
g′′(Xm)ij

∂

∂zij
,

for any 1 ≤ m ≤ n. In particular, we see that f(Xm)ij = 0 for all 1 ≤ i ≤ n and
n+ 1 ≤ j ≤ 2k, from which it follows (cf. Remark 2) that

θ(wy)(Xa + f(Xa), Xb + f(Xb)) =

− 2
n∑
i=1

2k∑
j=n+1

(Xa
j f(Xb)ij −Xb

j f(Xa)ij)
∂

∂xi
= 0 .

Next we make use of the isomorphism Ψ: Hom(V,Hom
(
∆n,k,wy ,Σ′y/S′y)

)
→

Hom(V ⊗ ∆n,k,wy ,Σ′y/S′y), f 7→ Ψ(f), where for any a ∈ V and b ∈ ∆n,k,wy ,
Ψ(f(a)(b)) = f(a ⊗ b), to re-express the quotient vector space of interest. If
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ζ, η ∈ V , then

θ(wy)
(
ζ + f(ζ), η + f(η)

)
= −2

n∑
i=1

2k∑
j=n+1

(ζjf(η)ij − ηjf(ζ)ij)
∂

∂xi

= −2
(
f(η)ζ − f(ζ)η

)
= −2f(η ⊗ ζ − ζ ⊗ η) .

Let J = 〈a⊗b−b⊗a | a, b ∈ V 〉 ⊂ V ⊗V be the ideal such that S2(V ) = V ⊗V/J .
Then, Θ(wy, V )(f) = 0 iff θ(wy)

(
ζ + f(ζ), η+ f(η)

)
= 0 for all ζ, η ∈ V iff f |J = 0.

The isomorphism
{f ∈ Hom(V ⊗ V,Σ′y/S′y) | f |J = 0} ' Hom(S2(V ),Σ′y/S′y)

along with a choice of decomposition V ⊕R '∆n,k,wy lead to
Hom(V ⊗∆n,k,wy ,Σ′y/S′y) ' Hom(V ⊗ V,Σ′y/S′y)⊕Hom(V ⊗R,Σ′y/S′y) .

Since Θ(wy, V ) is independent of Hom(V ⊗R,Σ′y/S′y),

ker
(
Θ(wy, V )|Hom(V,Hom(∆n,k,wy ,Σ′y/S′y))

)
' Hom(S2(V ),Σ′y/S′y)⊕Hom(V ⊗R,Σ′y/S′y) .

Finally, note that since V ⊗ V = S2(V )⊕Λ2(V ), Hom(V ⊗ V,Σ′y/S′y)⊕Hom(V ⊗
R,Σ′y/S′y)/Hom(S2(V ),Σ′y/S′y)⊕Hom(V⊗R,Σ′y/S′y) ' Hom(Λ2(V ),Σ′y/S′y), where
TZn(Y ),wy/Dn,k,wy ' Σ′y/S′y. �

The isomorphism also follows after noticing that Θ(w, V ) is surjective. However,
inasmuch as we can only see a less elegant proof of this fact, we do not include it
here.

Let (X, JX) be an n-dimensional compact almost-complex manifold and F :
(X, JX) ↪→ Zn(Y ) be a universal embedding. Consider the map F̃ : (X, JX) →
Gro

n,k, F̃ (x) = Im(∂̄JXF (x)), and the following diagram

(ρ◦F̃ )∗(Λ2γ∗n,k⊗π∗n,k(TZn(Y )/Dn,k))

��

// Λ2γ∗n,k⊗ π∗n,k(TZn(Y )/Dn,k)

''NNNNNNNNNNNNNNNN

(X, JX) F̃ // Gro
n,k

Θ̃

OO

ρ // GrC(∆n,k, n) ,

where Θ̃ is defined as Θ̃(Γ(F )) = θ|Γ(F )×Γ(F ), and note that based on the discussion
preceding Lemma 5, we have that Gro

n,k = {Γ(F ) | F ∈ Hom
(
γn,k, π

∗
n,k(TZn(Y )/Y )

)
}.

Indeed, by Proposition 2, (ρ◦F̃ )∗
(
Λ2γ∗n,k⊗π∗n,k(TZn(Y )/Dn,k)

)
'(ρ◦F̃ )∗(Gro

n,k/Io
n,k).

Now we can see that the Nijenhuis tensor NJX of JX is essentially the pullback of
the bundle morphism Θ̃ by the lift F̃ of F to Gro

n,k.
Proof of Proposition 3. This is a direct application of Proposition 5.1 [9], since
for any x ∈ X,
(4Θ̃ ◦ F̃ )(x) = 4Θ̃(Im(∂̄JXF (x))) = 4θ(F (x))|Im(∂̄JXF (x))×Im(∂̄JXF (x)) = NJX (x) .

�
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4.3. The homotopy YC through universal bundles. Our next goal will be to
understand the relationship between the geometry of the vector bundle Gro

n,k/Io
n,k,

and the (non-)integrability of almost-complex structures on a manifold X. This
will give rise to a strategy to study the HYC, which is covered below.

Suppose that JX is a non-integrable almost-complex structure on X, and let
J be a hypothetical, smoothly homotopical to JX integrable structure. Thereom
2 produces transverse to Dn,k isotopic embeddings FJX : (X, JX) ↪→ Zn(Y ) and
FJ : (X, J) ↪→ Zn(Y ) such that Im(∂̄JXFJX ) ⊂ GrC(Dn,k, n), Im(∂̄JFJ) ⊂ In,k.
The idea was to study the topology of In,k relative to GrC(Dn,k, n), or in other
words of the quotient GrC(Dn,k, n)/In,k, independently in hopes of detecting an
obstruction to the existence of J . It is unclear if such an obstruction can exist
at all, but we will partially address that below. A point of concern was that
GrC(Dn,k, n)/In,k is not an easily recognizable geometric object, and so it would
not be so simple to speak of its invariants. We remedied this by replacing the latter
quotient with the vector bundle Gro

n,k/Io
n,k: the injectivity of dπY (Ft(x))◦ ∂̄JtFt(x)

ensures that the replacement by Zariski open subsets Gro
n,k ⊂ GrC(Dn,k, n),

Io
n,k ⊂ In,k has no effect on the strategy (cf. Remark 3).

Put F̃JX := Im(∂̄JXFJX (x)), F̃J := Im
(
∂̄JFJ(x)

)
. These lifts are homotopic.

By Theorem 3, Gro
n,k is a holomorphic affine bundle over GrC(∆n,k, n). Let the

bundle projection be denoted by ρ. One then has homotopic maps GJX := ρ ◦
F̃JX : (X, JX)→ GrC(∆n,k, n), GJ := ρ ◦ F̃J : (X, J)→ GrC(∆n,k, n). Say that we
had a (refined enough) invariant, given as a mapping m : VectC

(
GrC(∆n,k, n)

)
→ R,

where VectC
(
GrC(∆n,k, n)

)
is the collection of all complex vector bundles with

base GrC(∆n,k, n), and R is some category. Assume that m satisfied the following
conditions: (i) if J is integrable, then m

(
G∗J(Gro

n,k/Io
n,k

))
= 0; and (ii) if J, J′

are homotopic, then m
(
G∗J(Gro

n,k/Io
n,k)

)
= m

(
G∗J′(Gro

n,k/Io
n,k)

)
. Suppose that we

could show that m
(
G∗JX (Gro

n,k/Io
n,k)

)
6= 0. This would lead to the contradiction

0 = m
(
G∗J(Gro

n,k/Io
n,k)

)
= m

(
G∗JX (Gro

n,k/Io
n,k)

)
6= 0 .

The conclusion would be that in such cases there can be no complex structure
that is homotpical to JX , in this way sheding light upon the HYC. The wider
applicability of invariants such as m could be a topic worth exploring.

Ordinary Chern classes satisfy condition (ii), and they do so rather strongly,
via vector bundle isomorphism, but they need not satisfy (i).They are most likely
too coarse for the strategy. For example, with the universal embedding FJO built
from the standard octonion embedding of S6 (cf. Example 1), the strategy appears
to be inconclusive as it can be shown that for any almost-complex structure J on
S6, cj

(
G∗J(Gro

3,4/Io
3,4)
)

= 0 for all j. For a detailed computation of these Chern
classes, see the subsection 4.3.1 below. On that note, although the isomorphism of
Proposition 2 might be useful, the isomorphism between the pulled back by GJ , for
any J , vector bundles overlooks key information. The moral to be extracted from
this discussion should be that an invariant that perceives at the homotopy level
could be more efficient. Typically, vector bundles and their isomorphism classes
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are understood to be one and the same; here, if there was an identification, it
would have to be homotopical in nature. The success of the strategy thus depends
mostly on whether one can find a good invariant that works well with a given set
of embedding data. More fundamentally, perhaps what is missing in the first place
is an adequate notion of equivalence relation on VectC

(
GrC(∆n,k, n)

)
.

We are now able to state an advantage of Proposition 2 over Theorem 1: it
provides great flexibility when it comes to the choice of vector bundle Gro

n,k/Io
n,k

to be employed in the strategy. In a way, the more complicated the choice of Y is
the more likely the strategy will be successful. This is because one is looking for
obstructions, and so the less trivial Gro

n,k/Io
n,k is, the better.

4.3.1. The Chern classes of Gro
3,4/Io

3,4. Recall the complex, quasi-projective mani-
fold Z3(C8) = C8 ×Q of complex dimension N3,4 = 46, where

Q = {(S′, S′′,Σ′,Σ′′) ∈ F(1,4)(C8)× F(1,4)(C8) | Σ′ ⊕ Σ′′ = C8} ,

and where F(1,4)(C8) is the complex projective manifold of flags of signature (1, 4).
For convenience, we denote the relative tangent bundle TZ3(C8)/C8 by TQ so that

TZ3(C8) = π∗(TC8)⊕ TQ,

and the affine bundle projection ρ : Gro
3,4 → GrC(∆3,4, 3) by dπ.

Now, let J be a hypothetical integrable almost-complex structure on S6, and
Jt : [0, 1] × S6 → EndR(TS6) be a homotopy of almost-complex structures from
J0 = JO to J1 = J . For each t ∈ [0, 1], we get a universal embedding Ft : (S6, Jt) ↪→
Z3(C8) in the following way: if JC

t ∈ EndC(TO|CS6) is the complexification of Jt,
Σ′t(u) = Eig(JC

t (u), i), Σ′′t (u) = Eig(JC
t (u),−i), S′u(t) = Eig(JC

t (u)|Su , i), and
S′′u(t) = Eig(JC

t (u)|Su ,−i), where Su = {0} ⊕NC
S6/O,u, then

Ft(u) =
(
u, S′u(t), S′′u(t),Σ′t(u),Σ′′t (u)

)
.

See Proposition 1. So, Jt defines the isotopy Ft of universal embeddings, which in
turn gives rise to a homotopy of uniquely defined for Jt lifts F̃t : [0, 1]× (S6, Jt)→
Gro

3,4, where F̃t(u) = Im(∂̄JtFt(u)). Let Gt = dπ ◦ F̃t. It turns out that

Proposition 4. All of the Chern classes of G∗t (Gro
3,4/Io

3,4) vanish.

Let us first observe that there is a vector bundle isomorphism

Lemma 6. G∗t (Gro
3,4/Io

3,4) ' Λ2T ∗S6 ⊗ TS6 .

Proof. From Proposition 2, Gro
3,4/Io

3,4 ' Λ2γ∗3,4 ⊗ π∗3,4(TZ3(C8)/D3,4). By the
transversality of the universal embedding Ft : (S6, Jt) ↪→ Z3(C8), Ft∗(TS6) '
TZ3(C8)/D3,4. Then, since Ft = π3,4 ◦Gt, G∗t

(
π∗3,4(TZ3(C8)/D3,4)

)
' TS6 .

Let u ∈ S6, ζ ∈ TS6,u, and note that

∂̄JtFt(u)(ζ) = 1
2
(
dFt(u)(ζ) + JZ3(C8)(Ft(u)) ◦ dFt(u) ◦ Jt(u)(ζ)

)
= 1

2
(
dFt(u)(ζ) + idFt(u)(Jt(u)(ζ))

)
,
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where JZ3(C8) is the given complex structure on Z3(C8), which we may assume acts
by multiplication by i on fibers. The push-forward of Ft at u ∈ S6 is an R-linear
map

dFt(u) = IdTS6,u
⊕ φtu : TS6,u → TC8,u ⊕ TQ,(S′u(t),S′′u (t),Σ′t(u),Σ′′t (u)) ,

where IdTS6,u
is the C8-component, and φtu is the Q-component of the push-forward

of Ft at u. Now, since the push-forward of π : Z3(C8)→ C8 is essentially the identity
map, meaning that at any w ∈ Z3(C8), dπ(w) = I8 ⊕ 08×38, we obtain that

dπ
(
Ft(u)

)(
∂̄JtFt(u)(ζ)

)
= 1

2
(
dπ(Ft(u)

)(
ζ + φtu(ζ)

)
+ dπ(Ft(u)

)(
Jt(u)(ζ) + iφtu(Jt(u)(ζ)))

)
= 1

2
(
ζ + iJt(u)(ζ)

)
.

Therefore, Gt(u) = { 1
2 (ζ + iJt(u)(ζ)) | ζ ∈ TS6,u} = T 0,1

S6,u, G∗t γ3,4 = T 0,1
S6 ' TS6 ,

and so G∗t γ∗3,4 ' T ∗S6 , where TS6 is the conjugate bundle to TS6 , i.e. TS6 endowed
with the complex structure −JO. And then,

G∗t (Gro
3,4/Io

3,4) ' Λ2G∗t γ
∗
3,4 ⊗G∗t

(
π∗3,4(TZ3(C8)/D3,4)

)
' Λ2T ∗S6 ⊗ TS6 . �

The proof of Proposition 4 is straightforward once we review some basic facts
about Chern classes of complex vector bundles. Let E → X be a rank m complex
vector bundle with Chern roots αi := c1(Li), for 1 ≤ i ≤ m, and V → X be a rank
n complex vector bundle with Chern roots βj := c1(L′j), for 1 ≤ j ≤ n. For any set
of indeterminates x1, . . . , xr, let σk(x1, . . . , xr) be the k-th elementary symmetric
polynomial in the xi. The Chern roots of E ⊗ V are αi + βj , where 1 ≤ i ≤ m
and 1 ≤ j ≤ n. By definition, the k-th Chern class of E ⊗ V is

ck(E ⊗ V ) = σk(α1 + β1, . . . , αm + αn)

=
∑

1≤i1<···<ik≤m

∑
1≤j1<···<jk≤n

(αi1 + βj1) . . . (αik + βjk) ,

and we can write

(αi1 + βj1) . . . (αik + βjk) = αi1 . . . αik + βj1 . . . βjk + pi1,...,ikj1,...,jk
,



58 G. CLEMENTE

for some pi1,...,ikj1,...,jk
∈ Z[αi1 , . . . , αik , βj1 , . . . , βjk ]. Then, since

σk(α1 + β1, . . . , αm + αn) =
∑

1≤j1<···<jk≤n

∑
1≤i1<···<ik≤m

αi1 . . . αik

+
∑

1≤i1<···<ik≤m

∑
1≤j1<···<jk≤n

βj1 . . . βjk

+
∑

1≤i1<···<ik≤m

∑
1≤j1<···<jk≤n

pi1,...,ikj1,...,jk

=
∑

1≤j≤n

∑
1≤i1<···<ik≤m

αi1 . . . αik +
∑

1≤i≤m

∑
1≤j1<···<jk≤n

βj1 . . . βjk

+
∑

1≤i1<···<ik≤m

∑
1≤j1<···<jk≤n

pi1,...,ikj1,...,jk

= nσk(α1, . . . , αm) +mσk(β1, . . . , βn) + P ,

where P =
∑

1≤i1<···<ik≤m
∑

1≤j1<···<jk≤n p
i1,...,ik
j1,...,jk

∈ Z[c1(E), . . . , ck−1(E), c1(V ),
. . . , ck−1(V )], it follows that

ck(E ⊗ V ) = nck(E) +mck(V ) + P .(1)

Moreover, if m = 3,
(2) c3(Λ2E) = −c3(E) + c1(E)c2(E) .

This is because c1(E) = α1 + α2 + α3, c2(E) = α1α2 + α1α3 + α2α3, c3(E) =
α1α2α3, and the Chern roots of Λ2E are α1 + α2, α1 + α3, α2 + α3, implying that

c3(Λ2E) = σ3(α1 + α2, α1 + α3, α2 + α3)
= (α1 + α2)(α1 + α3)(α2 + α3)
= (α1α3α2 + α2α1α3) + (α2

1α2 + α2
1α3)

+ (α2α1α2 + α2α3α2) + (α1α
2
3 + α2α

2
3)

= 2c3(E) + (α2
1α2 + α2

1α3 + α2α1α2 + α2α3α2 + α1α
2
3 + α2α

2
3)

= 2c3(E) + (c1(E)c2(E)− 3c3(E))
= −c3(E) + c1(E)c2(E) .

Proof of Proposition 4. Since H2k(S6; Z) = 0 for all k 6= 3, the only not auto-
matically trivial Chern classes of G∗t (Gro

3,4/Io
3,4) are the 3rd Chern classes. Ho-

wever, from Lemma 6 alongside with equations (1) and (2), we conclude that
c3(G∗t (Gro

3,4/Io
3,4)) = −3c3(T ∗S6) + 3c3(TS6) = 0. �

5. Conclusion

Let us recapitulate the main contributions made by this article. We began
with a generalization of Theorem 1 to universal embedding spaces associated to
complex manifolds (Theorem 2). This was achieved through an intermediate result
(Proposition 1) that was key in the correct formulation of Demailly’s proposed
idea to tackle the S6 problem (see section 3.2.1). In order to check if the idea
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works, one would need to understand if there is anything stopping Im(∂JOFJO)
from being null-homotopic. In addition, one would need to check if π6(Io

3,4) is
trivial. Then, we described the geometry of bundle constructions on our generalized
universal embedding spaces that are related to the integrability of almost-complex
structures (Gro

n,k, and Io
n,k). We proved that these fiber bundles are actually

holomorphic affine bundles over a Grassmannian (Theorem 3), implying that the
quotient Gro

n,k/Io
n,k is a holomorphic vector bundle. And then, we showed that

this quotient bundle is isomorphic to the vector bundle Λ2γ∗n,k⊗π∗n,k(TZn(Y )/Dn,k)
(Proposition 2). Additionally, we provided a linearization formula for the Nijenhuis
tensor of an almost-complex structure (Proposition 3). The motivation for studying
the geometry of the vector bundles Gro

n,k/Io
n,k was their potential use to investigate

the non-existence of a complex structure up to homotopy. This potential could be
realized if one could find a vector bundle invariant fitting the description of m (see
Section 4.3).

Looking ahead to the possibility of continuing this line of work, we believe
that the main techniques presented here may apply to other kinds of geometric
structures, besides almost-complex structures. For instance, one could try to explore
extensions of our universal embedding theory to other G-structures viewed as vector
bundle sections on the underlying manifold. Perhaps, the best suited structures for
such an extension are almost-CR-structures, and almost-contact structures. In the
future, it could be interesting to see if such embedding results are attainable, and
if they give rise to extrinsic tools for the study of (non-)integrability as they do in
the almost-complex case.
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