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1. Introduction

The notions of endomorphism kernel property was introduced and first studied

by Blyth, Fang and Silva in [1]. A slight improvement of one of proofs of [1] was

given in [11]. Blyth and Silva in paper [3] defined a strong endomorphism kernel

property (SEKP) for a universal algebra (see Definition 2.2). They considered the

case of Ockham algebras and in particular of MS-algebras. They proved e.g. that a

finite Boolean algebra has SEKP if and only if it is 2 element BA, a finite bounded

distributive lattice possesses SEKP if and only if it is a chain and they proved

full characterization of MS-algebras having SEKP. Blyth, Fang and Wang proved

a full characterization of finite distributive double p-algebras and finite double Stone

algebras having SEKP in [2]. SEKP for distributive p-algebras and Stone algebras

has been studied and fully characterized by Fang and Fang, see [5]. Fang and Sun

fully characterized semilattices with SEKP in [7]. Guričan and Ploščica fully char-
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acterized unbounded distributive lattices which possess SEKP in [13]. The main

approach in papers [3], [2] and [5] was done by regarding algebras in question as

Ockham algebras and using the duality theory of Priestley. Priestley duality is also

used in [13]. Guričan used another approach to prove e.g. that all finite relative

Stone algebras have SEKP in [12]. Halušková described monounary algebras with

SEKP in [14] and some monounary algebras with a weaker property called endo-

morphism kernel property (EKP) in [15]. Double MS-algebras with SEKP were

described by Fang in [6]. Finite abelian groups with SEKP were described by Fang

and Sun in [8], Ghumashyan and Guričan proved that all finite Abelian groups have

EKP in [9].

There is one important universal assumption in the original paper [3] of Blyth

and Silva, namely, all algebras considered in this paper must contain two nullary

operations (denoted by 0 and 1, 0 6= 1). This assumption is necessary to prove

all important statements in their paper and therefore it seems to be impossible

to directly adapt their methods to algebras which do not satisfy this assumption

(e.g. lattices with the top element or unbounded lattices). Let us mention three of

these results:

Theorem 1.1 ([3], Theorem 1). If an algebra A has SEKP, then it has at most

one maximal congruence.

Corollary 1.2 ([3], Corollary 1). A finite algebra that has SEKP is directly in-

decomposable.

Theorem 1.3 ([3], Theorem 3). A semisimple algebra has SEKP if and only if it

is simple.

As it is easy to check, {0, 1}2 considered as 4 element distributive lattice with a

top element ({1}-lattice) has SEKP and none of these statements is true for this

algebra. Also, these statements are not true e.g. for Brouwerian semilattices and for

Brouwerian algebras.

In this paper we show that all finite Brouwerian semilattices have strong en-

domorphism kernel property (SEKP) (see Theorem 3.10), give a new proof that

all finite relative Stone algebras have SEKP (see Corollary 3.11), describe an in-

finite family of infinite Brouwerian semilattices and relative Stone algebras which

enjoy SEKP and also fully characterize dual generalized Boolean algebras (one of

subvarieties of the variety of relative Stone algebras) which possess SEKP (see

Theorem 4.5).
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2. Preliminaries

Let A be a universal algebra. We denote ωA = {(a, a) : a ∈ A} and ιA = A × A,

trivial and universal congruences onA, respectively, Con(A) the set of all congruences

of A, End(A) the set of all endomorphisms of A. For an endomorphism f ∈ End(A),

ker(f) = {(a, b) ∈ A2 : f(a) = f(b)} denotes the kernel of f and Im(f) = {f(a) :

a ∈ A} denotes the image of f . We denote [a]θ = {b ∈ A : (a, b) ∈ θ} for a ∈ A,

θ ∈ Con(A).

Next definition defines the notion of EKP (see [1]).

Definition 2.1. An algebra A has the endomorphism kernel property (EKP for

short) if every congruence relation on A different from the universal congruence ιA
is the kernel of an endomorphism on A. In addition, we say that f ∈ End(A) is

associated to θ ∈ Con(A) if θ = ker(f).

Next important notion is strong endomorphism property defined in [3]. Let A

be a universal algebra, f : A → A be an endomorphism, θ ∈ Con(A) be a con-

gruence on A. Endomorphism f is compatible with θ if and only if (a, b) ∈ θ ⇒

(f(a), f(b)) ∈ θ and is strong (on A) if it is compatible with every congruence

θ ∈ Con(A).

Definition 2.2. An algebra A has the strong endomorphism kernel property

(SEKP for short) if and only if every congruence relation on A different from the

universal congruence ιA is the kernel of a strong endomorphism on A.

3. Finite Brouwerian semilattices and finite relative Stone algebras

We are going to show that all finite Brouwerian semilattices and all finite relative

Stone algebras have SEKP.

Definition 3.1. Brouwerian semilattice is an algebra (L,∧, ∗, 1) of type (2, 2, 0)

such that the reduct (L,∧, 1) is a meet-semilattice with greatest element 1, and a ∗ b

is the relative pseudocomplement of a with respect to b; it means that a ∗ b is the

greatest element of the set {x ∈ L ; a ∧ x 6 b}.

The list of most important properties which hold in a Brouwerian semilattice L is

as follows (see e.g. [23], [22], we assume that ∗ binds stronger than ∧).

For all a, b, c ∈ L:

1 ∗ a = a,(3.1)

a ∗ a = 1,(3.2)

a ∗ b > b,(3.3)
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a ∧ a ∗ b = a ∧ b,(3.4)

a ∗ (b ∗ c) = (a ∧ b) ∗ c,(3.5)

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c),(3.6)

a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c,(3.7)

a 6 b ⇔ a ∗ b = 1,(3.8)

a 6 b ⇒ c ∗ a 6 c ∗ b.(3.9)

Definition 3.2. Meet-semilattice L is called distributive if for t, x, y ∈ L, t >

x ∧ y, there are x1, y1 ∈ L such that x1 > x, y1 > y and t = x1 ∧ y1.

It is known that Brouwerian semilattices are distributive in this sense (see [18],

Section 2.7). Let L be a Brouwerian semilattice, F be a filter of L. Denote θF to be

the relation on L given by

(x, y) ∈ θF if and only if x ∧ d = y ∧ d for some d ∈ F.

Also denote [a) = {x ∈ L ; a 6 x} for a ∈ L.

The characterization of congruences of a Brouwerian semilattice was given

in [23] as:

Lemma 3.3. Let L be a Brouwerian semilattice. If θ is a congruence of L,

then [1]θ is a filter of L and

(x, y) ∈ θ if and only if x ∧ d = y ∧ d for some d ∈ [1]θ

and conversely, if F is a filter of L, then the relation θF is a congruence of L with

[1]θF = F .

Definition 3.4. Brouwerian algebra is an algebra (L,∨,∧, ∗, 1) of type (2, 2, 2, 0)

such that the reduct (L,∨,∧) is (necessarily distributive) lattice with greatest ele-

ment 1, and a∗b is a relative pseudocomplement of a with respect to b (in the reduct

(L,∧, ∗, 1)).

Brouwerian algebra is called a relative Stone algebra if each of its (closed) intervals

is a Stone algebra, or equivalently, if it satisfies the identity

(x ∗ y) ∨ (y ∗ x) = 1

(see [18]).

As Brouwerian algebras are distributive lattices, the characterization and relation-

ship described in Lemma 3.3 hold also between filters and congruences in a Brouw-

erian algebra (the operation ∨ do not change congruences in the case of Brouwerian

algebras, but it changes subalgebras and endomorphisms).
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We shall start with the characterization of strong endomorphisms in Brouwerian

semilattices (algebras).

Theorem 3.5. Let L be either a Brouwerian semilattice or a Brouwerian alge-

bra, ϕ : L → L be an endomorphism of the corresponding algebra. The following

conditions are equivalent:

(i) ϕ is a strong endomorphism,

(ii) ϕ(F ) ⊆ F for every filter F of L,

(iii) a 6 ϕ(a) for all a ∈ L.

P r o o f. (i) ⇒ (ii): Let F be a filter of L, θ be a congruence of L with F =

[1]θ, which means θ = θF . As ϕ is a strong endomorphism, for f ∈ F we have

(f, 1) ∈ θ and therefore (ϕ(f), ϕ(1)) = (ϕ(f), 1) ∈ θ. It means that ϕ(f) ∈ F , so

that ϕ(F ) ⊆ F .

(ii) ⇒ (i): Let θ be a congruence on L, F = [1]θ. Let (a, b) ∈ θ. Then there is

f ∈ F with a ∧ f = b ∧ f . As ϕ is an endomorphism,

ϕ(a) ∧ ϕ(f) = ϕ(a ∧ f) = ϕ(b ∧ f) = ϕ(b) ∧ ϕ(f).

By (ii), ϕ(f) ∈ F and therefore (ϕ(a), ϕ(b)) ∈ θ.

(ii) ⇒ (iii): Let a ∈ L. Then [a) is a filter in L and by (ii), ϕ([a)) ⊆ [a), so that

a 6 ϕ(a).

(iii) ⇒ (ii): Let F be a filter of L and f ∈ F . By (iii), f 6 ϕ(f). As F is a filter,

this means that ϕ(f) ∈ F , so that ϕ(F ) ⊆ F . �

We remind a result from [21]. Even if it is not used in our proofs, it provides

us a suggestion where to search for relevant strong endomorphisms for Brouwerian

semilattices and Brouwerian algebras. First we utilize one new notion and new

operation between filters.

Definition 3.6. Let L be a distributive meet-semilattice with 1. A filter F of L

is called comonomial if every congruence class of the congruence θF has a greatest

element. Let F1, F2 be filters of L. Denote

F1 ⊻ F2 = {t ∈ L ; (∃x ∈ F1)(∃ y ∈ F2) t = x ∧ y}.

The set F1 ⊻ F2 is a filter of L and using the distributivity of L it is the smallest

filter containing both F1 and F2. Both these notions are relevant for Brouwerian

semilattices and Brouwerian algebras, as they have a distributive meet-semilattice

as a reduct.
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Theorem 3.7 ([21], 2.1). Let L be a Brouwerian semilattice or a Brouwerian

algebra, F1, F2 be filters of L such that there exists d ∈ L with F1 ∩ F2 = [d)

(it means that this intersection is a principal filter generated by d) and F1 ⊻F2 = L.

Then both F1 and F2 are comonomial and d ∗ t for t ∈ F2 is the greatest element in

the block [t]θF1
.

Corollary 3.8. Let L be a Brouwerian semilattice or a Brouwerian algebra, F be

a filter of L such that F = [d) for some d ∈ F . Then F is comonomial and for every

t ∈ L, d ∗ t is the greatest element in the block [t]θF .

P r o o f. It is enough to take F1 = F and F2 = L. The assumptions of The-

orem 3.7 are satisfied, therefore F is comonomial and d ∗ t for t ∈ F2 = L is the

greatest element in the block [t]θF1
. �

As a consequence, the function ϕd : L → L which assigns t 7→ d ∗ t is a function,

which is constant on blocks of the congruence [t]θ[d) (the kernel of ϕd is θ[d)) and

to each element of [t]θ[d) it assignes the greatest element of this block. Thus, for all

a ∈ L we have a 6 ϕd(a).

Lemma 3.9. Let L be a Brouwerian semilattice, d ∈ L. Then ϕd is an endomor-

phism and consequently, Im(ϕd) is a subalgebra of L.

P r o o f. Let us remind that ϕd : L → L is defined by ϕd(a) = d∗a. Let a, b ∈ L.

Then

ϕd(a ∗ b) = d ∗ (a ∗ b) = (d ∗ a) ∗ (d ∗ b) = ϕd(a) ∗ ϕd(b)

by (3.6). Also

ϕd(a ∧ b) = d ∗ (a ∧ b) = (d ∗ a) ∧ (d ∗ b) = ϕd(a) ∧ ϕd(b)

by (3.7). Thus, ϕd is an endomorphism of L. �

We are ready to prove the main result of this section

Theorem 3.10. Let L be a finite Brouwerian semilattice. Then L has SEKP.

P r o o f. Let θ be a congruence of L, F = [1]θ. As L is finite, there is d ∈ L such

that F = [d). We know that ϕd ∈ End(L) by Lemma 3.9. Also, a 6 d ∗ a = ϕd(a)

holds for every a ∈ L by (3.3), thus ϕd satisfies condition (iii) of Theorem 3.5 and it

is a strong endomorphism of L.

We know that d ∗ f = 1 is equivalent to d 6 f , which means that F = [d) =

ϕ−1
d

(1) and ker(ϕd) = θ. Therefore ϕd is a strong endomorphism of the Brouwerian

semilattice L such that ker(ϕd) = θ. �
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The signature of the universal algebra changes the notion of strong endomor-

phisms. Let us give a simple example. Let L = {0, a, b, 1} be such that 0 < a, b < 1

and a, b are incomparable. We can consider it as the meet-semilattice Lms = (L,∧)

and as the Brouwerian semilattice Lbs = (L,∧, ∗, 1).

The meet-semilattice Lms has 7 congruences—trivial, universal and congru-

ences (written as partitions) c1 = {{0, a}, {b, 1}}, c2 = {{0, b}, {a, 1}}, c3 =

{{0, a}, {b}, {1}}, c4 = {{0, b}, {a}, {1}}, c5 = {{0, a, b}, {1}}. Let ϕ : L → L

be a map which maps 0, a 7→ 0; b, 1 7→ b. The map ϕ is an endomorphism of Lms

and by a routine check, it is a strong endomorphism of Lms. That means that as

a map, ϕ preserves also all congruences of the Brouwerian semilattice Lbs (trivial,

universal, c1, c2), but it is not an endomorphism of Lbs.

Let (L,∨,∧, ∗, 1) be a Brouwerian algebra. Then the join operation ∨ is fully

determined by ∧, but in general there is no term in the language of ∧, ∗ defining ∨.

But Katriňák in [20] proved that if (L,∨,∧, ∗, 1) is a relative Stone algebra, than the

join operation ∨ is defined by the formula

x ∨ y = (x ∗ y) ∗ y ∧ (y ∗ x) ∗ x.(3.10)

This fact allows us to formulate:

Corollary 3.11. Let L be a nontrivial finite relative Stone algebra. Then it has

SEKP.

P r o o f. Using results and denotation from Lemma 3.9 we know that ϕd is an

endomorphism preserving operations ∗ and ∧ and from formula (3.10) we see that

(∀ a, b ∈ L) ϕd(a ∨ b) = ϕd(a) ∨ ϕd(b),

so that ϕd is the endomorphism of the relative Stone algebra L which is strong and

has [d) as its kernel. �

Corollary 3.11 was proved also in [12], but using a complicated induction via the

chain of equational classes of relative Stone algebras, and the proof did not give the

description of needed strong endomorphisms.

The ternary term µ(x, y, z) = (x ∗ y) ∗ z ∧ (z ∗ y) ∗ x ∧ (z ∗ x) ∗ x satisfies

µ(x, z, z) = µ(x, y, x) = µ(z, z, x) = x (see [22]) and therefore the variety of Brouwe-

rian semilattices is arithmetical, and therefore for a Brouwerian semilattice, Con(L)

is a distributive lattice. Also every Brouwerian algebra L (having a lattice as a

reduct) has Con(L) distributive. This means that Brouwerian semilattices and also

Brouwerian algebras have factorable congruences. By [12], Corollary 3.2 the direct

sum of a family of finite Brouwerian semilattices (or of a family of finite relative
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Stone algebras) has SEKP, so that we have nontrivial infinite examples of Brouwe-

rian semilattices and Brouwerian algebras which have SEKP (see [12] for details).

It is known that a subdirectly irreducible Brouwerian algebra L which is not a

relative Stone is a Brouwerian algebra, which is not a chain and it has one coatom

(which is the largest element of L \ {1}). It means that finite subdirectly irreducible

Brouwerian not relative Stone algebra L has a coatom and the largest join reducible

element; we shall call this element critical element of L. It is proved in [12] that

a finite subdirectly irreducible Brouwerian algebra which is not relative Stone does

not have EKP (which means it does not have SEKP).

Lemma 3.12. Let L be a finite Brouwerian algebra which is not relative Stone.

Then

(1) there exist d ∈ L such that

(a) ϕ
d
/∈ End(L),

(b) Im(ϕ
d
) is not a subalgebra of L,

(2) the operation ∨ of L is not a term function in functional symbols ∧, ∗, 1.

P r o o f. (1a): Let L be a subdirect product of subdirectly irreducible algebras

L1, . . . , Ln. At least one of L1, . . . , Ln is not relative Stone; we shall assume that L1

is not relative Stone and that L is a subalgebra of L1 × . . .× Ln. Let d be a critical

element of L1. There are elements a, b ∈ L1, a 6= b such that d covers a and b. We

have a ∨ b = d and using formula (3.3) we see that d ∗ a = a and d ∗ b = b. L is a

subdirect product and therefore there are elements a2, b2 ∈ L2, . . . , an, bn ∈ Ln such

that a = (a, a2, . . . , an) and b = (b, b2, . . . , bn) are elements of L.

Denote d = a∨ b. Then d ∈ L. We have ϕ
d
(d) = 1 = (1, . . . , 1) (1 denotes the top

element of L here). Let π1 : L → L1 be the projection homomorphism onto the first

coordinate. We have

π1(ϕd
(a ∨ b)) = π1(ϕd

(d)) = 1.

But clearly,

(3.11) π1(ϕd
(a) ∨ ϕ

d
(b)) = π1(ϕd

(a)) ∨ π1(ϕd
(b)) = d ∗ a ∨ d ∗ b = a ∨ b = d,

which means that ϕ
d
does not preserve joins and it is not an endomorphism of L.

(1b): Let d be a critical element of L1, and d be as defined within the proof of (1a).

Let x ∈ L1, x > d. Then d ∗ x = 1 6= d. Let x ∈ L1, x < d. Then there is an element

a ∈ L1 which is covered by d and x 6 a. We have d∗a = a, thus d∗x 6 d∗a = a 6= d

by (3.9). It means d /∈ Im(ϕd) and for any c2, . . . , cn, (d, c2, . . . , cn) /∈ Im(ϕ
d
).

Together with (3.11) this means that Im(ϕ
d
) is not a subalgebra of L.
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(2): The map ϕ
d
preserves operations ∧, ∗ and also 1 due to Lemma 3.9. As ϕ

d

does not preserve the operation ∨, there does not exist a term function t(x, y) in

functional symbols ∧, ∗, 1 such that x ∨ y = t(x, y) for all x, y ∈ L. �

So, the set of greatest elements of blocks of the congruence θ[d) is not the subalgebra

of L. We shall finish this section with two examples.

Let L be a Brouwerian (not relative Stone) algebra as given in Figure 1.

a

d

b

e

c

1

0

L L1

d

Figure 1.

Algebra L is a subdirect product of L2
1 with c = (d, d), d = (1, d), e = (d, 1).

Maps ϕx are (strong) endomorphisms of a Brouwerian algebra L for x ∈ L\{c,d, e}.

As we know by Lemma 3.12 (or by an easy check), ϕc is not an endomorphism, but ϕd

and ϕe are not endomorphisms of L as well, for example, ϕe maps a 7→ a; b 7→ b

and c 7→ d, hence ϕe does not preserve joins. It is easy to check that the map ϕ

which maps 0 7→ c; a 7→ d; b 7→ e; c,d, e,1 7→ 1 is a strong endomorphism of L

with ker(ϕ) = θ[c). But for example L/θ[e) is in fact isomorphic to a subalgebra

{0, a,b, c,1} (and that is the only subalgebra of L to which it is isomorphic) and

there is only one endomorphism ϕ (which maps 0 7→ 0; a 7→ a; b 7→ b; c,d 7→ c;

e,1 7→ 1) whith θ[e) = ker(ϕ), but this endomorphism is not strong, as ϕ(d) = c,

therefore ϕ does not satisfy condition (iii) of Theorem 3.5. It means that L does not

have SEKP, but it has EKP.

Let L be a Brouwerian (not relative Stone) algebra as given in Figure 2.

a

e

b

c

d

f

1

0

L L1

d

Figure 2.
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Algebra L is a subdirect product of L2
1 with c = (d, d). Maps ϕx are (strong) en-

domorphisms of a Brouwerian algebra L for x ∈ L\{c}. As we know by Lemma 3.12

(or by an easy check), ϕc is not an endomorphism of L, but it is easy to check that the

map ϕ which maps 0 7→ d; a 7→ e; b 7→ f ; c,d, e, f ,1 7→ 1 is a strong endomorphism

of L with ker(ϕ) = θ[c). Thus, L has SEKP.

4. Dual generalized Boolean algebras

We know that all finite relative Stone algebras have SEKP and we also know that

there are infinite relative Stone algebras which possess this property, but that is

not the full characterization of relative Stone algebras with SEKP. The purpose of

this section is to give a full characterization of relative Stone algebras within one

subvariety of the variety of all relative Stone algebras.

From the point of view of Brouwerian algebras, DGBA’s are relative Stone algebras

which form a subvariety S2 of the variety of relative Stone algebras generated by a

Brouwerian algebra {0, 1} (DGBA’s are relative Stone algebras which satisfy the

identity x ∗ y ∨ y ∗ z = 1), for more details see [19] and [17]. For example, the full

duality for the category of DGBA’s is described in [4].

As it is shown in [19], a distributive lattice with a top element 1 in which every

principal filter [a) is a Boolean lattice (a distributive lattice in which all elements

have complements) is a Brouwerian algebra. We shall use the following definition:

Definition 4.1. A Brouwerian algebra L is a dual generalized Boolean algebra

(DGBA for short) if its reduct (L,∨,∧) is a distributive lattice in which every prin-

cipal filter [a) is a Boolean lattice.

The great importance of DGBA’s lies in the fact that for a DGBA L (more

precisely for a Brouwerian algebra (L,∨,∧, ∗, 1) which is DGBA), congruences of

(L,∨,∧, ∗, 1) and congruences of its lattice reduct (L,∨,∧) are the same, as stated

in the following theorem (this is a dual form of the original result by Hashimoto [16],

see also [10], Theorems 145, 146). This property of DGBA’s is most important also

for our purposes.

Theorem 4.2. Let (L,∨,∧, ∗, 1) be a DGBA. Then Con((L,∨,∧, ∗, 1)) =

Con((L,∨,∧)) and every congruence of Con((L,∨,∧)) is of the form θF for a

filter F of L. Let (L′,∨,∧, 1) be a lattice such that all its congruences are of the

form θF for some filter F of L
′. Then all principal filters of L′ are Boolean lattices.

We have the obvious corollary.
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Corollary 4.3. Let a Brouwerian algebra (L,∨,∧, ∗, 1) be a DGBA. If it has

SEKP, then the distributive lattice with top (L,∨,∧, 1) has SEKP.

Unbounded distributive lattices with a top element which have SEKP were char-

acterized in [13] as follows:

Theorem 4.4 ([13], Theorem 2.7). Let L be an unbounded distributive lattice

with a top element (which means that the top element must be preserved by homo-

morphisms/endomorphisms). Then L has SEKP if and only if it is isomorphic to the

lattice of all cofinite subsets of a set Z.

Let Z be a set. Denote Cof(Z) = {X ⊂ Z : Z \ X is finite}. Clearly, (Cof(Z),

∪,∩, Z) is an (unbounded) distributive lattice with top element Z. The proof of

Theorem 4.4 does not assure that strong endomorphisms which witness the SEKP

for the lattice (Cof(Z),∪,∩, Z) of a set Z are (could be choosen as) Brouwerian

algebra endomorphisms (i.e., that also the operation ∗ is preserved).

It is easy to see that the lattice of all cofinite subsets of a set Z is locally finite, i.e.,

all principal filters are finite (Boolean) lattices. Another way how to describe such

lattices is using the notion of a direct sum of algebras with distinguished elements—

we have already mentioned this construction after Corollary 3.11, but we will be more

specific in this case. Clearly, a lattice of all cofinite subsets of a set Z is isomorphic to

∑

i∈Z

(({0, 1},∨,∧, 1), 1) =

({f : Z → {0, 1}; f(i) = 1 for all but finitely many indices i},∨,∧, 1),

a sublattice of a lattice ({0, 1}Z,∨,∧, 1) with top element.
∑
i∈Z

(({0, 1},∨,∧, 1), 1) is

called a direct sum of Z copies of ({0, 1},∨,∧, 1) with distinguished elements 1.

By considering {0, 1} as a Brouwerian algebra ({0, 1},∨,∧, ∗, 1), the direct sum∑
i∈Z

(({0, 1},∨,∧, ∗, 1), 1) is a Brouwerian algebra, in fact a DGBA, as well.

As we have already mentioned, any direct sum of finite relative Stone algebras, it

means also
∑
i∈Z

(({0, 1},∨,∧, ∗, 1), 1), has SEKP by [12], Corollary 3.2.

Combining previous results we get the following theorem and corollary.

Theorem 4.5. Let a Brouwerian algebra (L,∨,∧, ∗, 1) be a DGBA. The following

statements are equivalent:

(i) L has SEKP.

(ii) L is isomorphic to the lattice (Cof(Z),∪,∩, Z) of a set Z (considered as a

Brouwerian algebra).

(iii) L is isomorphic to the direct sum
∑
i∈Z

(({0, 1},∨,∧, ∗, 1), 1) for a set Z.

(iv) The sublattice ([a),∨,∧) is a finite Boolean lattice for all a ∈ L.
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Corollary 4.6. A Boolean algebra considered as a Brouwerian algebra (a DBGA

which has bottom element) has SEKP if and only if it is finite.

We can also prove an interesting feature of congruences of lattices which fulfill one

of the conditions of Theorem 4.5.

Corollary 4.7. Let L be (Cof(Z),∪,∩, Z) for a set Z. Then all congruences

of L are comonomial, it means for any θ ∈ Con(L), every block [x]θ has the largest

element.

P r o o f. Let θ ∈ Con(L). L is also a Brouwerian algebra and it has SEKP as a

Brouwerian algebra by Theorem 4.5. Let ϕ be a strong endomorphism of a Brouwe-

rian algebra L such that ker(ϕ) = θ. By Theorem 4.2, ϕ is a strong endomorphism

of a distributive lattice L, as well, and thus by [24], Lemma 2.2, ϕ is idempotent,

ϕ◦ϕ = ϕ. As ϕ(x) = ϕ(ϕ(x)), we see that (x, ϕ(x)) ∈ ker(ϕ) = θ, or ϕ(x) ∈ [x]θ. We

shall prove that ϕ(x) is the largest element of a block [x]θ. By Theorem 3.5 (iii) we

know that x 6 ϕ(x) for all x ∈ L. Now, let y ∈ [x]θ. This means that ϕ(y) = ϕ(x)

and we also know that y 6 ϕ(y), hence y 6 ϕ(x). Therefore ϕ(x) is the largest

element of [x]θ, as required. �

This means that congruences of unbounded distributive lattices with a top element

which have SEKP (all of those are DGBA’s) behave also in a general case similarly

to a finite case for relative Stone algebras and also that strong endomorphisms are

determined uniquely, just as in a finite case for relative Stone algebras.

A c k n ow l e d g em e n t . We thank the anonymous referee for the detailed review

and suggestions which helped to improve our presentation.
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