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Abstract. We study McCoy’s theorem to the skew Hurwitz series ring (HR, ω) for some
different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise
quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right
zip ring and its skew Hurwitz series ring in case when a ring R satisfies McCoy’s theorem
of skew Hurwitz series.
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1. Introduction

In 1942, McCoy (see [26], Theorem 2) proved that if R is a commutative ring

then f(x) is a zero divisor in R[x] if and only if f(x)c = 0 for some nonzero c ∈ R,

where R[x] is the polynomial ring with the indeterminate x over R. Further, Jones

and Weiner in [19] showed that this result fails in noncommutative rings. Nowadays,

the above theorem of McCoy is popular by the particular name “McCoy’s theorem”.

Motivated by the result of Jones and Weiner (see [19]), McCoy in [27] proved the

following result.

Theorem 1.1. Let R be a ring and A a right ideal of S = R[x1, x2, . . . xn]. If

r.annS(A) 6= 0 then r.annR(A) 6= 0.

After long time, that is, in 2002, Hirano (see [16]) studied McCoy’s theorem in-

dependently. In particular, he proved that if f(x) ∈ R[x], r.annR[x](f(x)R[x]) 6= 0

then r.annR(f(x)R[x]) 6= 0. On the other hand, McCoy’s theorem fails in the formal
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power series R[[x]] over a commutative ring R by [11], Example 3 in general. How-

ever, Gilmar and Parker in [13] proved McCoy’s theorem for several ring structures.

Such ring structures include reducedness and the von Neumann regularity of the

total quotient ring, etc.

Inspired by above development, several authors are working in this direction. Re-

cently, Hong et al. (see [18]) extended McCoy’s theorem to Ore extensions, the skew

power series rings and so on. Faith in [9] called a ring R right zip provided that

if the right annihilator r.annR(X) of a subset X of R is zero, then there exists a

finite subset Y ⊆ X such that r.annR(Y ) = 0; equivalently, for a left ideal L of R

with r.annR(L) = 0, there exists a finitely generated left ideal L1 ⊆ L such that

r.annR(L1) = 0. The ring R is zip if it is both right and left zip.

The concept of zip rings was initiated by Zelmanowitz (see [39]) and appeared in

various papers, see e.g. [4], [7], [9], [10] and references therein. Zelmanowitz stated

that any ring satisfying the descending chain conditions on right annihilators is a

right zip ring, but the converse does not hold. Beachy and Blair in [4] studied rings

that satisfy the condition that every faithful right ideal I of a ring R (a right ideal I

of a ring R is faithful if r.annR(I) = 0) is cofaithful (a right ideal I of a ring R is

cofaithful if there exists a finite subset I1 ⊆ I such that r.annR(I1) = 0). Right zip

rings have this property and conversely for commutative ring R. Properties of zip

rings and their extensions were studied by several authors.

Following [31], [32], [34], [35], a ring R is called Armendariz if whenever for any

f(x) =
m
∑

i=0

aix
i, g(x) =

n
∑

j=0

bjx
j ∈ R[x], f(x)g(x) = 0 implies aibj = 0 for each

0 6 i 6 m, 0 6 j 6 n. Hirano in [16] generalized the concept of Armendariz ring and

coined the structure of quasi-Armendariz ring. A ring R is called quasi-Armendariz

if whenever for any f(x) =
m
∑

i=0

aix
i, g(x) =

n
∑

j=0

bjx
j ∈ R[x], f(x)R[x]g(x) = 0 implies

aiRbj = 0 for each 0 6 i 6 m, 0 6 j 6 n.

Further, Hashemi and Moussavi (see [14]) provided skew polynomial and power

series versions of quasi-Armendariz rings, introduced by conditions (SQA1) and

(SQA2), respectively, and defined: For any automorphism ω, a ring R satisfies the

(i) condition (SQA1) if whenever for any f(x) =
m
∑

i=0

aix
i, g(x) =

n
∑

j=0

bjx
j ∈ R[x, ω],

f(x)R[x, ω]g(x) = 0 implies aiRbj = 0 for each 0 6 i 6 m, 0 6 j 6 n; (ii) for any

f(x) =
∞
∑

i=0

aix
i, g(x) =

∞
∑

j=0

bjx
j ∈ R[[x, ω]], f(x)R[[x, ω]]g(x) = 0 implies aiRbj = 0

for each 0 6 i 6 m, 0 6 j 6 n.

Throughout this article R denotes an associative ring with identity. In this paper,

we study McCoy’s theorem to the skew Hurwitz series ring (HR, ω) for various

classes of rings such as: semiprime rings, APP rings (for the definition see page 6)
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and skew Hurwitz serieswise quasi-Armendariz rings (for the definition see page 7).

Moreover, we establish an equivalence relationship between a right zip ring and its

skew Hurwitz series ring in case when a ring satisfies McCoy’s theorem of the skew

Hurwitz series ring.

2. Skew Hurwitz series rings with the right Beachy-Blair condition

The concept of Hurwitz series ring was proposed by Keigher in [21], as a variant of

the ring of formal power series. He also studied some of its properties especially the

categorical properties. He and later with Pritchard in [20], [22] demonstrated that

Hurwitz series have many interesting applications in differential algebra and in the

discussion of weak normalization. The elements of Hurwitz series HR are sequences

of the form a = (an) = (a0, a1, a2, a3, . . .) ∈ R, for each n ∈ Z
+ or f(n) = an, where

f : Z
+ → R and Z

+ = N ∪ {0} is a set of nonnegative integers. The addition in HR

is pointwise and the product of two sequences uses binomial coefficients. This was

studied by Fliess (see [12]) and Taft (see [37]).

Number of authors have studied the properties of some abstract ring structures in

the skew Hurwitz series and the Hurwitz series ring. Now, recall the construction of

skew Hurwitz series ring (HR, ω) (see [5], [15], [28], [29]). Let ω : R → R be an endo-

morphism of R and ω(1) = 1. The ring (HR, ω) of skew Hurwitz series over a ring R

is defined as follows: the elements of (HR, ω) are functions ω : Z
+ → R, where Z+ is

the set of positive integers with zero. The operation of addition in (HR, ω) is com-

ponent wise and the multiplication is defined for every f, g ∈ (HR, ω) by

fg(p) =

p
∑

k=0

Cp
kf(k)ω

k(g(p− k))

for all p, k ∈ Z
+, where Cp

k = p! /(k! (p− k)! ). It can be easily shown that (HR, ω)

is a ring with identity h1, defined by

h1(n) =

{

1 if n = 0,

0 if n 6= 1,

where n ∈ Z
+. It is clear that R is canonically embedded as a subring of (HR, ω)

via a → ha ∈ (HR, ω), where

ha(n) =

{

a if n = 0,

0 if n > 1.
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For any function f ∈ (HR, ω), supp(f) = {n ∈ Z
+ : f(n) 6= 0} denotes the support

of f and π(f) denotes the minimal element of supp(f). For any nonempty subset X

of R, we put

(HX,ω) = {f ∈ (HR, ω) : f(n) ∈ X ∪ {0}, n ∈ Z
+}.

Due to Krempa (see [23]), a monomorphism ω of a ring R is said to be rigid if

aω(a) = 0 implies a = 0 for a ∈ R. A ring R is called ω-rigid if there exists a rigid

endomorphism ω of R. In [2], Annin stated a ring R is ω-compatible if for every

a, b ∈ R, ab = 0 if and only if aω(b) = 0. Hashemi and Moussavi in [14] gave some

examples of nonrigid ω-compatible rings and proved the following lemma.

Lemma 2.1. Let ω be an endomorphism of a ring R. Then

(1) if ω is compatible, then ω is injective;

(2) ω is compatible if and only if for all a, b ∈ R, ω(a)b = 0 ⇔ ab = 0;

(3) the following conditions are equivalent:

(a) ω is rigid;

(b) ω is compatible and R is reduced;

(c) for every a ∈ R, ω(a)a = 0 implies that a = 0.

Now, we prove the following lemma which is required to prove next theorem.

Lemma 2.2. Let R be a semiprime ring and ω be an endomorphism of R. If R

is an ω-compatible and torsion-free as a Z-module then for any f, g ∈ (HR, ω),

f(HR, ω)g = 0 if and only if f(u)Rg(v) = 0 for every u ∈ supp(f) and every

v ∈ supp(g).

P r o o f. Let for any f, g ∈ (HR, ω), f(HR, ω)g = 0 with u ∈ supp(f) and v ∈

supp(g). To prove the result, we need to show f(u)Rg(v) = 0 for every u ∈ supp(f)

and every v ∈ supp(g). Suppose that u0 = π(f) and v0 = π(g) are minimal elements

of supp(f) and supp(g), respectively. So,

(fhrg)(u0 + v0) =
∑

(u,v)∈Xu0+v0
(f,hrg)

Cu+v
u f(u)ωu((hrg)(v))

= Cu0+v0
u0

f(u0)ω
u0(g(v0)) = 0.

Since R is torsion-free as a Z-module and ω-reduced so f(u0)rg(v0) = 0 for all

r ∈ R. Suppose k ∈ Z
+ such that for every u ∈ supp(f) and every v ∈ supp(g)

with u + v < k, f(u)rg(v) = 0. By applying the induction method, we prove that
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f(u)rg(v) = 0 for every u ∈ supp(f) and every v ∈ supp(g) with u+ v = k, and for

all r ∈ R. We have

(fhrg)(u+ v) =
∑

(p,q)∈Xu+v=k(f,hrg)

Cp+q
p f(p)ωp((hrg)(q)),

where Xu+v=k(f, hrg) = {(p, q) : p+q = k, p ∈ supp(f), q ∈ supp(g)}. Without loss

of generality, we take {(pi, qi) : pi + qi = k, i = 1, 2, 3, . . . , s} = Xu+v=k(f, hrg) with

p1 < p2 < p3 < . . . < ps. We obtain

(2.1) (fhrg)(u+ v) =

s
∑

i=1

Cpi+qi
pi

f(pi)ω
pi(rg(qi)) = 0.

Since pi + q1 < pi + qi = k for every i > 2, Cpi+q1
pi

f(pi)ω
pi(hrg(q1)) = 0 for every

i > 2. It follows that f(pi)ω
pi(rg(q1)) = 0 for all i > 2 since R is torsion-free as

a Z-module. Replace r by rg(q1)t in (2.1), where r, s ∈ R. Then, we obtain

(2.2)

s
∑

i=1

Cpi+qi
pi

f(pi)ω
pi(r(g(q1)t)g(qi)) = 0.

It follows that Cp1+q1
p1

f(p1)ω
p1(r(g(q1))tg(q1)) = 0. Since R is torsion-free as a Z-

module, f(p1)ω
p1(rg(q1)tg(q1)) = 0. Thus, we have

f(p1)Rωp1(g(q1)Rωp1g(q1)) = 0.

It follows that f(p1)rg(q1) = 0 for all r ∈ R since R is a semiprime ring and an

ω-compatible ring. Therefore from (2.1), we have

(2.3)

s
∑

i=2

Cpi+qi
pi

f(pi)ω
pi(g(qi)) = 0.

Using the same logic of proof and replacing r by rg(q2)t in (2.3), where r, s ∈ R, we

get f(p2)rg(q2) = 0 for all r ∈ R. Thus from (2.3), we get

(2.4)
s

∑

i=3

Cpi+qi
pi

f(pi)ω
pi(g(qi)) = 0.

Similarly, we get f(pi)rg(qi) = 0 for every pi ∈ supp(f) and every qi ∈ supp(g) with

pi + qi = k, and for all r ∈ R. Thus f(u)rg(v) = 0 for every u ∈ supp(f) and every

v ∈ supp(g), and for all r ∈ R. �
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Now, we prove the following result.

Theorem 2.3. Let R be a semiprime ring, torsion-free as a Z-module and an

ω-compatible ring. If for any right ideal A of the skew Hurwitz series ring (HR, ω),

r.ann(HR,ω)(A) 6= 0 then r.annR(A) 6= 0.

P r o o f. Let A be a right ideal of (HR, ω) with r.ann(HR,ω)(A) 6= 0 and g ∈

r.ann(HR,ω)(A) with supp(g) 6= 0. Then Ag = 0 which implies that f(HR, ω)g = 0

for all f ∈ A. Thus f(n)Rg(m) = 0 for all n ∈ supp(f) and all m ∈ supp(g) by

Lemma 2.2. Since m ∈ supp(g), then g(m) 6= 0. It follows that f(HR, ω)c = 0,

where c = g(m) 6= 0. Hence r.annR(A) 6= 0. �

According to Tominaga (see [38]) an ideal U is called right s-unital if there exists

a ∈ U such that ua = u for any a ∈ U . A submodule L1 of a left R-module L is

said to be pure submodule if N ⊗R L1 → N ⊗R L is a monomorphism for any right

R-module N . From [36], Proposition 11.3.13 for an U , the following statements are

equivalent:

(1) U is pure as a left ideal in R;

(2) R/U is flat as a left R-module;

(3) U is right s-unital.

By [38], Definition 2.1, R is a left APP ring if for every element of R, the left

annihilator l.annR(Ra) is a right s-unital as an ideal of R. Similarly, we can define

a right APP ring. The class of APP ring includes well known classes of rings such

as: Baer rings, p.p.-rings, quasi-Baer rings, p.q.-Baer rings, and biregular rings, for

definitions, see [3], [6], [14], [30].

Lemma 2.4 ([30], Lemma 3.2). Let R be a right APP ring, torsion free as a Z-

module and an ω-compatible ring. If for any f, g ∈ (HR, ω), f(HR, ω)g = 0 then

f(n)Rg(m) = 0 for all n ∈ supp(f) and all m ∈ supp(g).

Lemma 2.5. Let R be a ring satisfying descending chain condition on left and

right annihilators, torsion-free as a Z-module and ω-compatible. If R is a left APP

ring then the skew Hurwitz series (HR, ω) is left APP.

P r o o f. Let f, g ∈ (HR, ω) such that f ∈ l.ann(HR,ω)((HR, ω)g). Then

f(HR, ω)g = 0.

Since R is left APP and ω-compatible, by Lemma 2.4, we have f(n)Rg(m) = 0 for all

n ∈ supp(f) and for all m ∈ supp(f). It follows that f(n) ∈ l.annR(Rg(m)) for

all n ∈ supp(f) and for all m ∈ supp(f). Let A = {ni ∈ supp f : supp(f) 6= 0 and

ni ∈ N}, where i = 0, 1, 2, . . ., and B = {mj ∈ supp g : supp(g) 6= 0 and mj ∈ N},

where j = 0, 1, 2, . . . �
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Theorem 2.6. Let R be a right APP ring, torsion-free as a Z-module and an

ω-compatible ring. If for any right ideal A of the skew Hurwitz series ring (HR, ω),

r.ann(HR,ω)(A) 6= 0 then r.annR(A) 6= 0.

P r o o f. Let A be a right ideal of (HR, ω) with r.ann(HR,ω)(A) 6= 0 and g ∈

r.ann(HR,ω)(A) with supp(g) 6= 0. Then Ag = 0 which implies that f(HR, ω)g = 0

for all f ∈ A. Since R is a right APP ring, torsion-free as a Z-module and an

ω-compatible ring, f(n)Rg(m) = 0 for all n ∈ supp(f) and all m ∈ supp(g), by

Lemma 2.4. Since m ∈ supp(g), g(m) 6= 0. It follows that f(HR, ω)c = 0, where

c = g(m) 6= 0. Hence r.annR(A) 6= 0. �

In the following example, we show that there is no straight relation between APP

ring and semiprime ring.

E x am p l e 2.7. Let

S =
{

(an)
∞

n=1 ∈
∏

F : an is eventually constant
}

be a commutative reduced ring and F be a field. So, R = S[[x]] is also commutative

reduced ring, see [6], Example 2.3. It follows from [25], Example 2.4 that R is

a commutative semiprime ring but not a left APP ring.

From the above example it is clear that the consideration of a left APP ring in

Theorem 2.6 is not trivial and provides a new class of ring structure which satisfies

McCoy’s theorem for the skew Hurwitz series ring (HR, ω).

The class of Armendariz rings to skew Hurwitz series rings (HR, ω), where

ω : R → R is an endomorphism of R was studied by Ahmedi et al. in [1]. A

commutative ring R is called skew Hurwitz serieswise Armendariz (or SHA) if for

every α, β ∈ (HR, ω), αβ = 0 if and only if α(n)β(m) for every n,m ∈ N. Recently,

Sharma and Singh (see [33]) extended the concept of skew Hurwitz serieswise Ar-

mendariz, in case of R is a noncommutative ring. A ring R is said to be skew Hurwitz

serieswise Armendariz if for every skew Hurwitz series f, g ∈ (HR, ω), fg = 0 implies

f(n)ωng(m) = 0 for n,m ∈ N.

Motivated by this development of different versions to Armendariz and quasi-

Armendariz rings, we introduce the concept of quasi-Armendariz ring to the skew

Hurwitz series ring by considering a noncommutative ring R.

Definition 2.8. A ring R is called skew Hurwitz serieswise quasi-Armendariz if

for every α, β ∈ (HR, ω), α(HR, ω)β = 0 if and only if α(n)Rβ(m) = 0 for every

n,m ∈ N.

It is clear that the skew Hurwitz serieswise quasi-Armendariz ring is a natural

generalization of ω-rigid ring and skew Hurwitz serieswise Armendariz (or SHA).
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Lemma 2.9. Every skew Hurwitz serieswise quasi-Armendariz ring is torsion-free

as a Z-module.

P r o o f. Proof is similar to [1], Proposition 2.2. �

Lemma 2.10. Every skew Hurwitz serieswise quasi-Armendariz ring is ω-

compatible.

P r o o f. Proof is similar to [1], Proposition 2.5. �

Hirano [16], Corollary 3.8 proved that a semiprime ring is a quasi-Armendariz

ring. In the following proposition, we generalize this result of Hirano [16].

Proposition 2.11. If R is an ω-compatible semiprime ring and torsion-free as

a Z-module. Then R is a skew Hurwitz serieswise quasi-Armendariz ring.

P r o o f. Suppose α, β ∈ (HR, ω) such that α(HR, ω)β = 0. Since R is an

ω-compatible semiprime ring and torsion-free as a Z-module, by Lemma 2.1,

α(n)Rβ(m) = 0 for every n,m ∈ N. �

In the following example, we see that the assumption of an ω-compatible ring in

the above proposition is not superfluous.

E x am p l e 2.12. Let R = Z⊕Z be a commutative semiprime ring and ω(a, b) =

(b, a). Then ω is an endomorphism of R. Thus for any (1, 0), (0, 1) ∈ R, (1, 0)(0, 1) =

(0, 0) which implies that (1, 0)ω(0, 1) = (1, 0)(1, 0) 6= (0, 0). It follows that R is

not ω-compatible. Hence, by Lemma 2.10, R is not skew Hurwitz serieswise quasi-

Armendariz.

In [16], Theorem 3.9, Hirano prove that every left APP ring is a quasi-Armendariz

ring. Here, we show this result to skew Hurwitz serieswise quasi-Armendariz.

Proposition 2.13. If R is an ω-compatible left APP ring and torsion-free as

a Z-module. Then R is a skew Hurwitz serieswise quasi-Armendariz ring.

P r o o f. Suppose α, β ∈ (HR, ω) such that α(HR, ω)β = 0. Since R is an ω-

compatible left APP ring and torsion-free as a Z-module, by Lemma 2.4,

α(n)Rβ(m) = 0

for every n,m ∈ N. �

We get the following result.

Theorem 2.14. Let R be a skew Hurwitz serieswise quasi-Armendariz ring. If

for any right ideal A of (HR, ω), r.ann(HR,ω)(A) 6= 0 then r.annR(A) 6= 0.
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P r o o f. Let A be a right ideal of R and β ∈ r.ann(HR,ω)(A). It follows that

Aβ = 0 which implies that α(HR, ω)β = 0 for any α ∈ A. Since R is a skew Hurwitz

serieswise quasi-Armendariz ring so α(n)Rβ(m) = 0 for all m,n ∈ N. Therefore

Aa = 0, where β(m) = a 6= 0. Thus r.annR(A) 6= 0. �

Extensions of zip rings were studied by several authors. Beachy and Blair in [4]

showed that if R is a commutative zip ring, then polynomial ring R[x] over R is a

zip ring. Afterward, Cedo (see [7]) studied that if R is a commutative zip ring, then

the n × n full matrix ring Matn(R) over R is zip; moreover, he settled negatively

the question which were posed by Faith (see [9]): Does R being a right zip ring

implies R[x] being a right zip? Based on the preceding results, Faith in [10] again

raised the following question: When does R being a right zip ring implies R[x] being a

right zip? In [17], Hong et al. answered this question positively for Armendariz ring.

They proved that R is a right zip ring if and only if R[x] is a right zip ring when R

is an Armendariz ring. Further, Cortes (see [8]) studied the relationship between the

right (left) zip property of R and its skew polynomial and power series extensions

over R by using the skew versions of Armendariz rings. Ahmadi et al. (see [1],

Theorem 2.19) studied the same property of a zip ring to the skew Hurwitz series

ring (HR, ω) for a commutative ring R. They proved that if R is a SHA-ring and ω

an endomorphism of R, then R is a right zip ring if and only if (HR, ω) is a right zip

ring. In [24], Leroy and Matczuk investigated the behavior of the right zip property

under some ring constructions. After that, Sharma and Singh in [33] showed that

if a ring R (not necessary commutative) is skew Hurwitz serieswise Armendariz and

ω-compatible then R is a right zip ring if and only if (HR, ω) is a right zip ring.

Here, we establish an equivalence relationship between right zip ring and its skew

Hurwitz series ring if it in case of a ring R satisfies McCoy’s theorem of skew Hurwitz

serieswise.

Theorem 2.15. Let R be a ring and ω be an endomorphism of R. If R satisfies

McCoy’s theorem of skew Hurwitz serieswise and R is ω-compatible. Then the

following statements are equivalent:

(1) R is right zip;

(2) (HR, ω) is right zip.

P r o o f. Suppose that (HR, ω) is a right zip ring. We show that R is a right zip

ring. For this, consider Y ⊆ R with r.annR(Y ) = 0. Since Y ⊆ R, so it is also

subset of (HR, ω). Now, we prove r.ann(HR,ω)(Y ) = 0. Let f ∈ r.ann(HR,ω)(Y )

with supp(f) = {n ∈ N : f(n) 6= 0}. It follows that yf = 0 for any y ∈ Y ,

0 = (hyf)(n) =
n
∑

k=0

Cn
k hy(k)ω

k(f(n − k)) = yf(n). Thus f(n) ∈ r.annR(Y ) = 0
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which implies f = 0. It follows that r.ann(HR,ω)(Y ) = 0. Since (HR, ω) is a right

zip ring, there exists a finite subset Y0 of Y such that r.ann(HR,ω)(Y0) = 0. Thus

r.annR(Y0) = r.ann(HR,ω)(Y0) ∩R = 0. Hence R is right zip.

Conversely, suppose that R is a right zip ring and a subset U ⊆ (HR, ω) with

r.ann(HR,ω)(U) = 0. We put CU =
⋃

f∈U

{f(n) : f ∈ U and n ∈ supp(f)} which is

a nonempty subset of R. Now, we show r.annR(CU ) = 0. Let a ∈ r.annR(CU ),

f(n)a = 0 for any n ∈ supp(f). Which gives 0 = f(n)a = f(n)ha(0) =

f(n)ωn(ha(0)) since R is ω-compatible. It follows that ha ∈ r.ann(HR,ω)(U). Thus

ha = 0 which implies that a = 0. Therefore r.annR(CU ) = 0. Since R is right zip,

there exists a nonempty finite subset X of CU such that r.annR(X) = 0. Consider

X = {a1, a2, a3, . . . , ak}, a subset of CU . Now, for each ai there exists fi for each

i = 1, 2, 3 . . . , k such that fi(n) = ai for some n ∈ N. Let U0 be a minimal subset

of U such that fi ∈ U0 for each ai ∈ X , which implies that X ⊆ CU0
. Thus

r.annR(CU0
) ⊆ r.annR(X) = 0. Now, we prove that r.ann(HR,ω)(U0) = 0. Suppose

that r.ann(HR,ω)(U0) 6= 0. Then there exists 0 6= g ∈ r.ann(HR,ω)(U0) and fi ∈ U0.

Thus fig = 0. Since R satisfies McCoy’s theorem of skew Hurwitz serieswise, then

there exists a nonzero r ∈ R such that fi(n)r = 0. Therefore r ∈ r.annR(CU0
) = 0.

It follows that r = 0, which is a contradiction. Thus g = 0. Hence (HR, ω) is

right zip. �

As a direct consequence of above theorem, we obtain the following corollaries.

Corollary 2.16 ([33], Theorem 3.6). Let R be a ring and ω be an endomorphism

of R. If R is skew Hurwitz serieswise Armendariz and ω-compatible. Then the

following statements are equivalent:

(1) R is right zip;

(2) (HR, ω) is right zip.

Corollary 2.17 ([28], Corollary 2.15). Let R be a ring that is torsion-free as a

Z-module and ω an endomorphism of R. If R is ω-rigid, then R is zip if and only if

(HR, ω) is zip.

The following result was proved by Ahmadi et al. (see [1], Theorem 2.19) for

commutative ring.

Corollary 2.18 ([1], Theorem 2.19). Let R be an SHA-ring and ω is an endo-

morphism of R. Then R is right zip if and only if (HR, ω) is right zip.

A c k n ow l e d gm e n t. The authors are thankful to the referee for his/her valu-

able comments and suggestions which improved the presentation of the paper.
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