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HIt

III. Generalized linear differential equations

1. The generalized linear differential equation
and its basic properties

We assume that A: [0,1] » L(R,) is an n x n-matrix valued function such that
vary A < oo and ge BV,[0,1] = BV,
The generalized linear differential equation will be denoted by the symbol

(1,1) dx = d[A] x + dg

which is interpreted by the following definition of a solution.

1.1. Definition. Let [a,b] = [0,1], a < b; a function x: [a,b] — R, is said to be
a solution of the generalized linear differential equation (1,1) on the interval [a, b]
if for any t,t,€[a, b] the equality

(12) i) = x(to) + j "A[AS] ) + g0 — ()
is satisfied. ’

In the original papers of J. Kurzweil (cf. [1], [2]) on generalized differential
equations and in other papers in this field the notation

dx
4 — DlLAW) x + (0]
was used for the generalized linear differential equation.

It is evident that the generalized linear differential equation can be given on an
arbitrary interval [a,b] < R instead of [0, 1].

If xoeR, and toe[a,b] = [0,1] are fixed and x: [a,b] > R, is a solution
of (1,1) on [a,b] such that x(t,) = x,, then x is called the solution of the initial
value (Cauchy) problem

(1,3) dx =d[A]x +dg,  x(t)) = x,
on [a,b].
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1.1

1.2. Remark. If B: [0,1] - L(R,) is an n x n-matrix valued function, continuous
on [0, 1] with respect to the norm of a matrix given in L1.1 and h: [0,1] - R, is
continuous on [0, 1], then the initial value problem for the linear ordinary dif-
ferential equation

(1.4) x' = B(t)x + h(t), x(to) = X,
is equivalent to the integral equation

1

x(t) = x, + J B(s) x(s) ds + th(s) ds, tel0,1].

If we denote A(t) = {f, B(r)dr, g(t) = [, h(r)dr for te[0,1], then this equation
can be rewritten into the equ1valent Stlelt]es form

T
x(t) = xo + j d[A(s)] x(s) + g(t) — glto), te[0,1].
to

The functions A: [0,1] - L(R,), g: [0,1]— R, are absolutely continuous and
therefore also of bounded variation. In this way the initial value problem (1,4) has
become the initial value problem of the form (1,3) with A, g defined above and both
problems are equivalent. Essentially the same reasoning yields the equivalence of the
problem (1,4) to an equivalent Stieltjes integral equation when B: [0,1] — L(R,),
h: [0, 1] - R, areassumed to be Lebesgue integrable and if we look for Carathéodory
solutions of (1,4).

1.3. Theorem. Assume that A: [0,1] — L(R,) is of bounded variation on [0,1],
ge BV, Let x: [a,b] - R, be a solution of the generalized linear differential equation
(1,1) on the interval [a,b] = [0, 1]. Then x is of bounded variation on [a, b].

Proof. By the definition 1.1 of a solution of (1,1) the integral [ d[A(s)] x(s) exists
for every t,to€[a,b]. Hence by 1.4.12 the limit hm It d[A s)] x(s) ex1sts for

toe[a,b) and lim [ d[A(s)] x(s) exists for t,€(a, b] Hence by (1,2) the solution
t—=to—

x(t) of (1,1) possesses onesided limits at every point ¢, € [a,b] and for every point
to € [a, b] there exists 6 > 0 and a constant M such that |x(f)] < M for
te(to — 0, to + &) n [a, b]. By the Heine-Borel Covering Theorem there exists a finite
system of intervals of the type (t, — 9, to + 8) covering the compact interval [a, b].
Hence there exists a constant K such that |x(t)] < K for every te[a,b]. If now
a=ty,<t; <..<t =b is an arbitrary subdivision of [a, b], we have by 1.4.27

[RECOET

< Kvarli A+ |g(t) — g(ti-y)|

x(t) — x(t;-,)] <

+ |g(t:) — glti- )|
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L1

forevery i =1, k. Hence

k
.;|x(ti) — x(t;- )| < Kvart A + var’ g

and var} x < oo since the subdivision was arbitrary.
Throughout this chapter we use the notations A*f(t) = f(t+) — f(t), A f(¢)
= f(t) — f(t—) for any function possessing the onesided limits f(t+) = 11m f(r),

f(t—) = lim f(r). This applies evidently also to matrix valued functions.
[dnd

Since by definition the initial value problem (1,3) is equivalent to the Volterra-
Stieltjes integral equation

1,

(1,5) x(t) = x, + fd[A(s)] x(s) + glt) — glto), te[0.1],

the following theorem is a direct corollary of 11.3.12.

1.4. Theorem. Assume that A: [0,1] — L(R,) satisfies varj A < oo. If t,€[0, 1),
then the initial value problem (1,3) possesses for any g € BV,, x, € R, a unique solution
x(t) defined on [t,, 1] if and only if the matrix | — A~ A(t) is regular for any t € (t,, 1].
If to€(0,1], then the initial value problem (1,3) possesses for any ge BV,, x,€R,
a unique solution x(t) defined on [0, to] if and only if the matrix | + A*A(t) is regular
for any te[0,t,). If to€[0,1], then the problem (1,3) has for any ge BV,, x,€R,
a unique solution x(t) defined on [0, 1] if and only if |1 — A”A(t) is regular for any
te(to, 1] and 1+ A*A(t) is regular for any te|[0,t,).

1.5. Remark. Let us mention that by 1.3 the solutions of the problem (1,3) whose
existence and uniqueness is stated in Theorem 1.4 are of bounded variation on their
intervals of definition. Further, if in the last part of the theorem we have t, = 0,
then the regularity of 1 + A*A(0) is not required. Similarly for t, = 1 and for
the regularity of I — A7A(1).

Let us mention also that Theorem 1.4 gives the fundamental existence and unicity
result for BV,-solutions of the initial value problem (1,3).

Let us note that if A: [0,1] — L(R,) is of bounded variation in [0, 1], then there
is a finite set of points ¢ in [0, 1] such that the matrix I — A™A(t) is singular and
similarly for the matrix I + A*A(z). In fact, since vary A < oo the series Y. A~A(t)

te(a.b]

converges. Hence there is a finite set of points t € [0, 1] such that |A"A(t)] > . For
all the remaining points in [0, 1] we have |A”A(f)] < 3, and consequently

[1— A A(r)]"' = Y (A"A(t))* exists since the series on the right-hand side con-
k=0

verges at these points. For the matrix I + A*A(¢) this fact can be shown analogously.
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1.6. Proposition. Assume that A: [0,1] - L(R,), varjA < oo, ge BV, Let x be
a solution of the equation (1,1) on some interval [a,b] = [0,1], a < b. Then all the
onesided limits x(a+), x(t+), x(t—), x(b—), te(a,b) exist and

(1,6) x(t+) = [1+ ATA(t)] x(t) + A*g(t) forall te[a,b),

=[1—AA(t)] x(t) — A"g(t)  forall te(a,b]
holds.

Proof. Let te[a,b). By the definition of the solution x: [a,b] - R, we have
t+4
x(t + 8) = x(t) + J d[A(s)] x(s) + g(t + o) — g(1)
t

for any 6 > 0. For é - 0+ we obtain by 1.4.13 the equality
x(t+) = x(t) + (A(t+) — At) x(1) + gle+) — g(t)
= x(t) + AT A(t) x(t) + A*g()
where the limit on the right-hand side evidently exists. The second equality in (1,6)
can be proved similarly.

1.7. Theorem. Assume that A: [0,1] > L(R,), varqA < oo, to€[0,1] and that
I + A*A(t) is a regular matrix for all t€[0,t,) and | — A"A(t) is a regular matrix
for all te(ty, 1]. Then there exists a constant C such that for any solution x(t) of the
initial value problem (1,3) with ge BV, we have

(L,7) |x(r)] < )exp (Cvari A)  for te[to,1]
and
(1,8) |x(t)] < Cl|xo| + varf g) exp (C var° A)  for te[0,1o].

Proof. We consider only the case ¢ < ¢, and prove (1,8). The proof of (1,7) can be
given in an analogous way. Let us set B(t) = A(t+) for t€[0,t,) and B(z,) = A(t,).
Hence B(t) — A(t) = A*A(t) for te[0,1,), B(to) — A(to) =0, ie. B(t) — A() =0
for all t€ [0, t,] except for an at most countable set of points in [0, t,) and evidently
varg (B — A) < oo. Hence for every xe BV, and te[0,t,) we have by 1.4.23

to
f d[B(s) — A(s)] x(s) = —A*A(z) x(t)
t
and by the definition we obtain

x(t) = xo + fod[B(s)] x(s) — ATA(t) x(¢) + g(t) — glto),  te€[0,2,)

19) x(0)=[1+a"A01* (xo + 60 - g0 + [ 9[BO ). reloe).
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Let us mention that for all re [0, t,) we have
(1.10) 1+ A*A(1)] Y| < C,  C=const
This inequality can be proved using the equality [I + A*A(t)]™" = Y (— 1) (A*A(t))

R

which holds whenever |A*A(t)| < 1. Hence
1
I —[ATAQ)

provided |A*A(t)] < 4, i.e. for all € [0, 1,) except for a finite set of points in [0, t,).
The estimate (1,10) is in this manner obvious. Using (1,10) we obtain by (1,9) the
inequality >

[0+ A% AW < 3 AT A = <2

0] = (bl + I — tel + | B9

to

te[0, to]. This inequality together with 1.4.27 yields
to
(1,11) |x(r)] < C<[x0| + vary g + J |x(s)| d var} B>

= C(|xo| + vary g) + Cj |x(s)| dh(s)

where h(s) = vary B is defined on [0,¢,] and is evidently continuous from the
right-hand side on [0, ¢,) since B has this property by definition. Using 1.4.30 for
the inequality (1,11) we obtain
|x(t)] < Cl|xo| + varg g) exp (C(h(to) — h(t)))
< C(|xo| + vary g) exp (C(var§ B — var, B))
= C(|xo| + var§ g) exp (C var}° B)
and this implies (1,8) since vari° B < var® A.

Remark. A slight modification in the proof leads to a refinement of the estimates
(1,7), (1,8). It can be proved that

|x(t)] < C(jxo| + var, g)exp (C varj, A)  for te([t,,1]
and
|x(1)] < C(jxo| + vari® g)exp(CvaricA)  for te[0,1,]

holds.
1.8. Corollary. Let A: [0,1] — L(R,) fulfil the assumptions given in 1.7 for some

to€[0,1], g, g€ BY,, xq,X,€R,. Then if xe BV, is a solution of (1,3) and X € BV,
is a solution of

dx = d[A] x + dE, x(to) = i() >
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we have
(1,12) |x(r) — g)exp(CvaritA)  for te[0,1,]
|x(t) — %(1)] < C(|xo — %o| + var. (g — 8))exp(C vari A)  for e[ty 1],

to

i(’)l < C("‘o - iol + varg (g —

where C > 1 is a constant. Hence
(1,13) |x(r) — %(t)] < K(|xo — %o| + var} (g — )

for all te[0,1] where K = Cexp(C var} A).

1.9. Remark. The inequality (1,13) yields evidently x(t) = %(¢) for all te[0,1]
whenever x, = X, and varj (g — g) = 0. In this way the unicity of solutions of the
initial value problem (1,3) is confirmed.

1.10. Theorem. Assume that to€[0,1] is fixed. Let A: [0,1] - L(R,) be such that
varg A < oo, I — ATA(t) is a regular matrix for t€(to, 1] and 1 + A*A(t) is a re-
gular matrix for te[0,t,). Then the set of all solutions x: [0,1] > R, of the homo-
geneous generalized differential equation

(1,14) dx = d[A] x
with the initial value given at the point t, e [0, 1] is an n-dimensional subspace in BV,

Proof. The linearity of the set of solutions is evident from the linearity of the integral.
Let us set e® =(0,...,0,1,0,...,0*eR,, k=1,...,n (the value 1 is in the k-th
coordinate of e¥ e R,) and let ¢*: [0,1] » R, be the unique solution of (1,14)
such that ¢®(t,) =e®, k=1,...,n (they exist by 1.4). The unicity result from 1.4

yieldsthat ) ¢, ¢*(t) =0, c,eR ifandonlyif ¢, =0, k = 1,...,n.Ifx: [0,1] > R,
k=1

is an arbitrary solution of (1,14), then clearly

o) = 3. xlto) o)

for all te[0, 1], ie. x is a linear combination of the linearly independent solutions
0¥, k=1,...,n and this is our result.

1.11. Example. We give an example of a generalized linear differential equation
which demonstrates the role of the assumptions concerning the regularity of the
matrices | + A*A(t), I — AA(t) in 1.4. Let us set

-8 -2
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for 0<t<3 I<t<1 respectively; for this 2 x 2-matrix A: [0,1] — L(R,)
we have evidently A*A(t) = 0 for all te[0,1), A"A(t) =0 for all te(0,1], ¢t +4

and
0,0
AAg)=(.").
n (0, 1)

ow=(i)

is not regular. We consider the initial value problem

Hence

(1,15) dx = d[A] x, x(0) = x,

where x, = (¢, ¢,)* € R,. For a solution x(t) of this problem we have

x(t) = xo + J:d[A(s)] x(s) = xo = (¢, c;)* if te[0,3).

Further, by 1.6 we obtain x(3—)=[1— A" AQ)] x(3), i.e. (¢, ¢,)* = [1 — A~ A(3)] x(3)
= (x,(3), 0)*. This equality is contradictory for ¢, % 0. Hence the above problem
(1,15) cannot have a solution on [0,3] when x, = (¢, ¢,)*€ R, with ¢, * 0.

Let us now assume that x, = (c;, 0)* € R,. Then we have for t > 3

() = xo + |/ A8 ) = xt) + || aTAG o) = ).
By 1.6 necessarily
(- 8 g = (¢ o)) = 6= (5 ).

Hence x(3) = (c,,d)*, where deR is arbitrary, satisfies this relation. It is easy to
show that any vector valued function x: [0,1] — R, defined by x(t) = (c,, 0)*
for 0 <t <3 x(t) = (cy,d)* for § <t < 1, satisfies our equation.

Summarizing these facts we have the following. If x(0) = (c,,¢,)* and ¢, %0,
then a solution of (1,15) does not exist on the whole interval [0, 1]. If x(0) = (c,, 0)*,
then the equation (1,15) has solutions on the whole interval [0, 1] but the uniqueness
is violated.

If we consider the initial value problem dx = d[A]x, x(3) = (c;,c,)* for the
given matrix A(z), then it is easy to show that this problem possesses the unique
solution x(t) = (c,, 0)* if t€[0,3), x(t) = (c,, c;)* if t€[3, 1]. Hence the singularity
of the matrix I — A™A(¢) for ¢ = is irrelevant for the existence and uniqueness
of solutions to the initial value problem mentioned above.
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2. Variation of constants formula. The fundamental matrix

In this section we continue the consideration of the initial value problem
(2,1) dx =d[A]x +dg,  x(t,) = x,
with A: [0,1] - L(R,), varj A < o0, geBV,[0,1] = BV,, 1,€[0,1], x,€R,.

2.1. Proposition. Assume that A: [0,1] - L(R,), varj A < oo, t,e[0,1] is fixed,
the matrix | — A™A(t) is regular for all te(to, 1] and the matrix |+ A*A(t) is
regular for all te [0, t,).

Then the matrix equation
(2.2) X(t) = X + f d[A(r)] X(r)

1

has for every X e L(R,) a unique solution X(t)e L(R,) on [t,,1] provided t, <'t,
and on [0,t,] provided t, < t,.

Proof. Let us denote by B, the k-th column of a matrix Be L(R,). For the k-th
column of the matrix equation (2,2) we have

(2,3) X (t) = X, + fd[A(r)] X(r), k=1,..,n.

If t, < t,, then for every te(t,,1] the matrix I — A”A(t) is regular. Hence by 1.4
the equation (2,3) for X,(r) has a unique solution on [z, 1] for every k = 1,...,n
and this implies the existence and unicity of an n x n-matrix X(¢): [t,,1] - L(R,)
satisfying (2,2). The case when ¢, < t, can be treated similarly.

2.2. Theorem. If the assumptions of 2.1 are satisfied, then there exists a unique
n X n-matrix valued function U(t, s) defined for t, < s<t<1land 0 <t <s<t,
such that

(2:4) ut,s)=1+ j td[A(r)] U(r,s).

S

Proof. Ife.g. t, < s < 1 and s is fixed, then the matrix equation

25) X)) =1+ J:d[A(r)] ()

has by 2.1 a uniquely determined solution X: [s, 1] — L(R,). If we denote this
solution by U(t,s), then U(t,s) is uniquely determined for t; <s<t <1 and
satisfies (2,4).

Similarly if 0 < s < t,, s being fixed, the matrix equation (2,5) has by 2.1 a unique
solution X: [0,s] — L(R,) which will be denoted by U(t,s), and U(t,s) evidently
satisfies (2,4) for 0 <t < s < t,.
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2.3. Lemma. Suppose that the assumptions of 2.1 are fulfilled. Then there exists
a constant M > 0 such that |U(t, s| <M forall t,s such that 0 <t <s <ty or
to < s <t < 1. Moreover we have

(2,6) |U(t,, s) — U(ty, s)| < M varz A

forall 0<t, <t,<sif s<tyand all s<t, <t, <1 if ty <s. Consequently
vary U(.,s) < Mvarj A, var! U(.,s) < Mvarf A if 0<s<t, t,<s<I
respectively.

Proof. Since U(t, s) satisfies (2,4) in its domain of definition, the k-th column
(k = 1,...,n) of U(t, s) denoted by U,(t, s) satisfies the equation

Uyt s) = e® + fd[A(r)] Udr, s)

s

for every te[0,s] when s < t, (% means the k-th column of the identity matrix
le L(R,), i.e. Uy(t,s) is a solution of the problem dx = d[A]x + dg, x(s) = e%).
Hence by 1.7 we have

|U,(t, s)| < Cle®|exp(C var; A) < Cexp(Cvarg A), k=1,..,n
for every 0 <t < s <t, where C > 1 is a constant and evidently also
|U(t,s)) < ¥ |Ut, 5)] < nCexp(Cvarg A)= M.
k=1
If t, <s, then 1.7 yields the same result for s <t <1 and the boundedness of

u(t, s) is proved.
Assume that 0 < t, <t, < s <t, Then we have by 1.4.16

U29) - Ut 5] = | [“arae vt - [ arae) vt

< Mvar2A.

fd[A(r)] Ur.s)

1

A similar inequality holds if t, < s < ¢; <t, <1 and (2,6) is proved.

2.4. Theorem. Suppose that the assumptions of 2.1 are fullfilled and t, € [0, 1]. Then
the unique solution of the homogeneous initial value problem

(2,7 dx =d[A]x, x(t,)=%

defined on [t,,1] if t, < t, and on [0,t,] if t; < t, is given by the relation
(2.8) x(t) = U(t, t,) %

on the intervals of definition, where U is the n x n-matrix from 2.2 satisfying (2,4).

112



1.2

Proof. Under the given assumptions the existence and uniqueness of a solution
of (2,7) is quaranteed by 1.4. Let us assume that 1, < t,. Since by 2.2 U(t,1,) is
uniquely defined for ¢, <t < 1, by (2,8) a function x: [r,,1] — R, is given. By 2.3
we have var/ U(.,t;) < o and consequently var, x = var, U(..1,)% < ». For
x: [t;,1] = R, given by (2,8) the integral (i d[A(s)] x(s) evidently exists (see 1.4.19)
for every t€[t,, 1] and by (2,4) we have

[ LA x() = fdws)] Ul 1) % = (Ul 1) — % = x() - %,

1

ie. x(t) = U(t,t;) X is a solution of (2,7) on [¢,, 1]. The proof of this result for the
case t; < t, is similar.

2.5. Corollary. If the assumptions of 2.1 are satisfied and U(t, s) is the n x n-matrix
determined by (2,4) for to <s<t<1and 0 <t <s<t,, then

(2,9) u(t, s) = Ul r) U(r, s)
fto<s<r<t<lor0<t<r<s<t,and
(2,10) Uit =1

for every te[0,1].
Proof. Leteg. 0 <t <r < s < t,, then by (2,4) we obtain

ue,s) =1+ Jtd[A(g)] Ulg,s) =1+ jrd[A(g)] Ulo,s) + J;td[A(g)] U(e, s)

= U(r,s) + fd[A(g)] Ulo, s)

for every 0 < t < 7. Hence U(t, s) satisfies the matrix equation

X() = Ulr.) + j 4[AQ)] X(0)

for 0 <t <r and by 2.4 this solution can be expressed in the form U(t,r) U(r, s),
ie. (2,9) is satisfied. If 1, <s <r <t <1, then (2,9) can be proved analogously.
The relation (2,10) obviously follows from (2,4).

2.6. Lemma. If the assumptions of 2.1 are satisfied, then for U(t,s) given by 2.2
we have
(2,11) |U(t, s,) — U(t,s,)] < M?var2 A

for any sy, s, such that ty <s; <s, <t<1lor0<t<s, <s,<t, where M is
the bound of U(t, s) (see 2.3). Hence var,, U(t, .) < M? var} A ift, <t and vari° U(t, .)
< M?var A if t < t,.
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Proof. Let us consider the case when ¢, < s; <'s, < t. By (2,4) we have
t
Ut s) = Ules) = [ a0A0) Utns) — [ o[ Ut s)
t
 [[atae vt - [ apaei vtnsy) - [“atae) utes).
i.e. the difference U(t,s,) — U(t,s,) satisfies the matrix equation
52 t
x0 = - [ st utr.s) + [ et xe
for s, <t < 1. Hence by 2.4 we obtain

s = U = U (- [ o040 tesy)

and by 2.3 and 1.4.16 it is

|U(t,s,) — U(t,s,)] < M < M?varf?A.

£ " d[AR)] U )

The proof for the case 0 <t <s, <s, <t, can be given similarly and (2,11) is valid.

2.7. Lemma. Suppose that the assumptions of 2.1 are satisfied. Let us define

(2,12) O, s) = U(t, ) for ty<s<t<l,
O@ts)=Utt)=1 for ty<t<s<l,
and
(2,13) O(,s) = U(t, s) for 0
O@s)=Urt)=1  for 0
where U(t, s)e L(R,) is given by 2.2.
Then for the twodimensional variations of U on the squares [t,, 1] x [t,,1] and

[0, 2,] x [0, t,] on which @ is defined we have Vi, 1) 10.1(0) < 0 and Vg, «10.a(U
< 0.

<t

I/\
©
IA
s

I/\
I/\
IA
s

Proof. Assume that t, =0 < ®; <... <o =1isan arbitrary subdivision of the

interval [t,,1] and J;; = [ 1 0] X [a, ], ij=1,..,k the corresponding
net-type subdivision of [, 1] x [to, 1]. We consider the sum (see 1.6.2, 1.6.3)

5 natral = 5, (Tl + Incts + 3 o)
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0 k
where we use the convention that Z Img(Ji)l =0 and Y |my(J,)| = 0. By (2,12)

Jj= j=k+1
we have mg(J;;) = my(Jyy) if j<i—1,

my(J:) = O, o) — O, 1) — Oy, ) + 00— 1, - )
= U(ozi, o) — U(ai, ;) = Ul o) — Uy, ;)

and mgy(J;;) =0 if i + 1 <j. Hence

k
(2.14) 2__: Img(J)| = Z Imy(J3;)| + Z |U(es, o) — Uty ;- )] -
If j<i—1,then o;_; <a;<o;_; <o; and by 2.5

my(J;;) = Ul ) — Ulo, - 1) — Uleg—y, ) + Uy, a5 4)

= U(o, o) Ulot— g, o)) — Ule—y, ) — Ul o) Uiy, - ) + Ule—y, - 4)

= [Ule, 1) = 1] Ul g, o) = [Ulors ) — ’] % p, 1)
= [0 o-) = 1] [Ueie1,%) — Yoo 1251 )]
= [Ulo, ;- 1) = Uiy, 04-)] [Ulei s ) — Uiy, 05-4)] -

Hence by 2.3 and 2.6 we obtain

lmu(-’ij)l = |U°‘i’ %-q) — U(“i—n“-‘—x)| |U(oci_1,ct,-) - U(“-'—v“j—l)‘

< M(vary_ A)M?vary A= M>vary_ Avary_ A
and

i—-1
Z Z Imy(J;)| < M3 Zvar:; A Y vary A< M3(var A).
i=1

i=1 j=1

Further, by (2,11) from 2.6 we have
k k
‘,§1|U(<li, fli) - U((li, ai—x)' siglMZ var_ A= M?2 var,oA
Hence by (2,14) we have

k
Y Img(J;)| < M3(varl A + M? var} A

ij=1

and since the net-type subdivision was chosen arbitrarily, we have by the definition

also
3 0 2 2 1
v[,o,”x[,o'u(ﬁ) < M3(var) A + M?var} A < o0

The finiteness of Vg, ;.0.,,(U) can be proved similarly.
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2.8. Theorem (variation-of-constants formula). Let A: [0,1] — L(R,) satisfy the as-
sumptions given in 2.1 where t,€[0,1] is fixed. Then for every x,€R,, geBYV,
the unique solution of the initial value problem (2,1) can be expressed in the form

(2,15) x(t) = U(t, to) xo + g(t) — glto) — fds[u(f’ s)] (g(s) — g(to))

where U is the uniquely determined matrix satisfying (2,4) from 2.2.

Proof. We verify by computation that x: [0, 1] - R, from (2,15) is really a solution
of (2.1). Let us assume that ¢ < t,. Then

(2.16) fdwr)] () = f A[AR)] Ulr 1) xo + j'dw)] (&) — £(0)

0 0 o

- [[atan [ st g - )

o to

(Ut to) — %o + f "ALA)] () — () - fd[A(r)] j "4 LU 5] (g5 — )

fo

since U satisfies 2.4. Let us now consider the last term from the right-hand side
in (2,16). We have

[/ atae [ ot o1 a9 - st = [ et |0t gt - et

0 o t

where U is defined in 2.7 and satisfies by 2.7, 2.3 and 2.6 the assumptions of 1.6.20
on the square [t,1,] x [¢,t,]. Hence we interchange by 1.6.20 the order of integration
and obtain by the definition of U

[ atae) [ aute s e~ oo = || ["aran 06:9 et - et
- f"ds [ f d[AM] O, 5) + J tod[A(r)] o, s)] (&s) — g(to)
- [[a[ [latarn .9 + ['araen e - et

s

= [ty - 1+ 49 - A o) - g0

to

= [[arute.91(e) ~ st + | a0 56) - gt

to to
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Using this expression we obtain by (2,16)

fﬁ%ﬂWbumMM—m+f%MWWFAM)

0 to

—fMWmmw%ﬂw—fqmmwwaw

1

= (1, to) xo + g(t) — &lto) — J AUl 5] (g5 — () — (€00 — (to) — xo

o

= x(t) — xo — (g(t) — g(to))-

Hence x(t) is a solution of (2,1) for t < t,. For the case t, <t the proof can be
given analogously. Using 1.4 the solutions of (2,1) are uniquely determined and this
completes the proof.

2.9. Remark. Let us mention that the operator x € BV, — (i d[A(s)] x(s) appearing
in the definition of the generalized linear differential equation (2,1) can be written
in the Fredholm-Stieltjes form [§ d, [K(t, s)] x(s) where K: [0,1] x [0,1] - L(R,)
is defined as follows: if t, <t < 1, then
K(t,s) = At,) for 0 <s<t,,
K(z, s) = Als) for t,<s<t,
K(t, s) = A(r) for t <s<1,
and if 0 <t < ¢, then
K(,s) = —A(r) for 0 <s<t,
K(z,
K(t,s) = —A(t,) for to<s<1.

]
~—

= —A(s) for t <s<t,,

If this fact is used and II.2.5 is taken into account, then the solution of the equation
(2,1) can be given by the resolvent formula (I1.2.16) in the form

@17)  x(t) = xo + g(t) — glto) + les[l' (2, 5)] (xo + g(t) — g(to)),

for t€[0,1] since (2,1) has a solution uniquely defined for every x,€R,, ge BV,
The resolvent kernel I': [0,1] x [0,1] —» L(R,) satisfies

I(t,s) = K(t,s) + J:d,[K(t, 1] I(r,¢).

If we set U(t,s) = I + I'(t,s) — I'(t,t), then the variation-of-constants formula (2,15)
can be derived from (2,17).
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In the following we consider the initial value problem (2,1) with the assumptions
on A: [0,1] - L(R,) strengthened.

2.10. Theorem. Assume that the matrix A: [0,1] — I(R,), vary A < oo is such that
I — A™A(¢) is regular for all te(0,1] and 1 + A*A() is regular for all te[0,1).

Then there exists a unique n x n-matrix valued function U: [0,1] x [0,1] - L(R,)
such that

(2,18) ut,s) =1+ jd[A (r)] U(r, s)
for all t,s€[0,1].
The matrix U(t, s) determined by (2,18) has the following properties.
(i) Ut t)=1 forall te[0,1].
(i) There exists a constant M >0 such that |U(t,s)| < M for all t,5€[0,1],
varg U(t, .) < M, varg U(.,s) < M for all t,s€[0,1].
(ii) For any r,s,t€[0,1] the relation
(2,19) u(t, s) = U(t, r) U(r, s)
holds.
(iv) U(t+,s)=[1+ A+ At)] U(t, 5) for te[0,1), se[0,1],
Uit—,s)=[1 — A"AR)] U(t,s)  for te(0,1], se[0,1],
U, s+) = t,s)[l + A*A(s)]" for te[0,1], se[0,1),
U(t,s—) = U(t,s)[I — A"A(s)]™" for te[0,1], se(0,1].
(V) The matrix U(t, s) is regular for any t,se [0, 1].

(vi) The matrices U(t, s) and U(s, t) are mutually reciprocal, i.e. [U(t,s)] ™' = U(s, t)
for every t,se[0,1].

(vii)  The twodimensional variation of U is finite on [0,1] x [0, 1], i.e. Vi, 17x0.1)(U)
< o0.

Proof. By 2.1 for every fixed se[0, 1] the matrix equation
t
X(t) =X + jd[A(r)] X(r), XeL(R,)
has a unique solution X: [0, 1] — L(R,), which is defined on the whole interval [0, 1].

Hence the existence of U(t, s) satisfying (2,18) is quaranteed.

(i) is obvious from (2,18). (ii) follows immediately from 2.3 and 2.6. For (iii) we
have

Ults) =1 + £d[A(Q)] Ue,s) = 1 + J '4[A(0)] Ule, 5) + j d[A(Q)] Ule, )

= U(r,s) + J:d[A(Q)] Ulo,s),
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ie. U(t, s) satisfies the matrix equation

t
X(t) = U(r,s) + jd[A(r)] X(r).
Hence by 2.4 we obtain U(t,s) = U(t,r) U(r, s) for every r,s,te[0,1], and (2,19)
is satisfied.
The first two relations in (iv) are simple consequences of 1.6. To prove the third
relation in (iv) let us mention that for any te[0, 1], se[0, 1) and sufficiently small
0 > 0 we have by definition

U(t, s+6) — U(t,s) = J

s+o

t

d[A(r)] U(r, s+ ) — jld[A(r)] U(r, s)

_ j " d[AM] (Ul 5+ ) — Ulr, 5)) — J " AAr)] U ),

s+ s

ie. the difference U(t, s + ) — U(t, s) satisfies the matrix equation

xt) = - | atm vt + | el xi)
and consequently by 2.4 it is

U(t, s +6) — U(t, s) = U(r, s+5)(—J

s

s+

d[A(r)] U(r, s)) )
For 6 —» 0+ this equality yields
Ut, s+) — U(t,s) = —U(t, s+) AT As) Us,s) = —U(t, s+) A*A(s).

Hence U(t,s) = U(t,s+) [I + A*A(s)] for any te[0,1], se[0,1) and the as-
sumption of the regularity of the matrix I + A* A(s) gives the existence of the inverse
[/ + A*A(s)]~* and also the third equality from (iv). The fourth equality in (iv)
can be proved analogously.

By (iii) we have U(t,s)U(s,t) =1 and U(s,t) U(t,s) = I for every t,5€[0,1].
Hence U(t,s) = U(s,t)”" and U(s,t) = U(t,s)"" and (vi) is proved. From (vi) the
statement (v) follows immediately. (In this connection we note that a direct proof
of (v) can be given without using (iii), see Schwabik [1].)

Finally by (iii) we have U(t,s) = U(t,0) U(0,s) for every (t,s)e[0,1] x [0, 1].
By (ii) it is var) U(.,0) < oo and var) U(0,.) < oo. Hence by 1.6.4 we have
Vio,11x10,1(U) < oo and (vii) is also proved.

2.11. Corollary. If A: [0,1] - L(R,), varj A < oo, satisfies the assumptions given
in 2.10, then

(2,20 U(t,s) = X(t) X" (s)  for every s,te[0,1]
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where X: [0,1] > L(R,) satisfies the matrix equation

(2,21) X =1+ £d[A(r)] X(r), te[0,1].

Proof. Since the matrix equation (2,21) has a unique solution, it is easy to compare
it with (2,18) and state that X(t) = U(t,0). By (iii) from 2.10 we have U(t,s)
= U(t,0) U(0, s) and by (vi) from 2.10 it follows U(0,s) = [U(s,0)] ' = X (s).
Hence (2,20) hold.

2.12. Remark. If the matrix A: [0,1] - L(R,) satisfies the assumptions of 2.10,
then evidently the assumptions of 1.4, 2.1—2.8 are satisfied for every t,€ [0, 1].
Hence by 1.4 the initial value problem (2,1) has for every t,€[0,1], x,€R,,
g € BV, a unique solution x: [0,1] - R, defined on the whole interval [0, 1].

The variation-of-constants formula 2.8 leads to the following.

2.13. Theorem (variation-of constants formula). Let us assume that A: [O, 1] - L(R,,)
satisfies the conditions given in 2.10. Then for any t,€[0,1], x,€R,, ge BV, the
solution of the nonhomogeneous initial value problem (2,1) is given by the expression

(1) = Ult 1) xo + £(0) — lto) ~ f 4[] (@) - glto). ref0.1]

where U(t,s): [0,1] x [0,1] - L(R,) is the matrix whose existence was stated
in 2.10.

The proof follows immediately from 2.8.

2.14. Corollary. [f A: [0,1] — L(R,) satisfies the assumptions from 2.10, then the
above variation-of-constants formula can be written in the form

(2.22) x(z) = g(t) — g(to) + X(2) {X “to) X0 — J: 'ds[X “1(s)] (g(s) — g(to))}

0

for te[0,1] where X: [0,1] - L(R,) is the uniquely determined solution of the matrix
equation (2,21).

The proof follows immediately from 2.13 and from the product decomposition (2,20)
given in 2.11.

2.15. Proposition. [f A: [0,1] - L(R,) satisfies the assumptions given in 2.10 and
X: [0,1] > L(R,) is the unique solution of the matrix equation (2,21), then

(2,23) X_l(s) =1+ A(O) - X~ 1(5) A(s) + J:d[x_ 1(r)] A(r)
for every se[0,1].
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Proof. For X: [0,1] — L(R,) we have by (2,21)

X(s) =1 = Lsd[A(r)] X(r) = Ed[A(r)] (X(r) = 1) + A(s) — A(0)

for every se[0,1]. Using the variation-of-constants formula (2,22) in the matrix
form we get

X() = 1= ) = 40) - X9 [ 9[x" ) 40 - A0)
~ 49) = A0) = X() [ a[X" ) ) + X6 X9~ X (0] 0

 A6) = X(5)0) = X() [ 9[x0) A0,
0
Multiplying this relation from the left by X~ !(s) we obtain for every se€[0,1]

I — X" '(s) = —A(0) + X~ '(s) As) — J:d[x_'(r)] A(r)
and (2,23) is satisfied.

2.16. Definition. The matrix U(z, s): [0,1] x [0,1] — L(R,) given by 2.10 is called
the fundamental matrix (or transition matrix) for the homogeneous generalized linear
differential equation dx = d[A] x.

2.17. Remark. If B: [0,1] - L(R,) is an n x n-matrix, continuous on [0, 1] and
x = B(t)x is the corresponding ordinary linear differential system, then in the
theory of ordinary differential equations the transition matrix @(t,t,) is defined
as a solution of the matrix differential equation

X' = B(t) X
satisfying the condition X(t,) = I € L(R,). Hence for & we have

D(t,t0) =1+ JlB(t) D(1,t,) dr,

to
i.e. @ satisfies the generalized matrix differential equation
t
D(t, 1)) =1 + J d[A(7)] Dz, t,)
to
where A(f) = [ B(t)dr (see also 1.3). The variation-of-constant formula for the
generalized linear differential equation

dx = d[A] x +dg,  x(to) = %,
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where g(¢) = i, h(s) ds, which corresponds by 1.3 to the ordinary linear system
x = B(t)x + h(t), x(to) = x,
has the form

(1) = Bt t0) %o + 1) — lto) — j "4 (e, 9] (gls) - glta)

to

— Bt 1g) X0 + J ;h(s) ds + j ;45(:, 9d < f :h(o) da) — o) J:)h(s) ds

t

= @(t, to) Xo + J b(t, s) h(s) ds .
to
This is the usual form of the variation-of-constants formula for ordinary linear
differential equations.

2.18. Definition. The n x n-matrix U(t, s) defined for t,s€[0, 1] is called harmonic
if varg U(t, .) < oo for every te[0,1], varg U(.,s) < oo for every se[0,1].

(2,19) U(¢,s) = U(t,r) U(r,s)  for any three points r,s,t€[0,1],
(2,24) U0 =1 forany re[0,1].

For the concept of harmonic matrices see e.g. Hildebrandt [2], Mac Nerney [1],
Wall [1].

As was shown in 2.10 for A:[0,1]— L(R,), varjA < co with the matrices
I — A™A(¢), I + A*A(t) regular for te(0,1], te[0, 1) respectively, the corresponding
fundamental matrix U(t, s) is harmonic (see (i), (i) and (iii) in 2.10). In other words,
to any n x n-matrix valued function A: [0, 1] — L(R,) with the above mentioned
properties through the relation

Ult,s) = 1 + [d[A(r)] Urs),  tsef01]

a uniquely determined harmonic matrix U(t, s) corresponds. In the opposite direction
the following holds.

2.19. Theorem. If the n x n-matrix U(t,s): [0,1] x [0, 1] —» L(R,) is harmonic, then
there exists A:[0,1] > L(R,) such that vary A < oo, the matrices | — A™A(t),
I + A*A(t) are regular for all te(0,1], te[0,1), respectively and U satisfies the
relation

t
(2,25) Ut,s)=1+ ~[d[A(r)] u(r, s), t,se[0,1],

i.e. U(t, s) is the fundamental matrix for the homogeneous generalized linear differential
equation with the matrix A (see 2.16).
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Proof. Let us set
4
At 1) = Jd,[U(r, )] U(z,7)
0

for t,7e[0, 1]. This integral exists for every t,7 by 14.19. For every t, 1€ [0, 1]
we have by (2,19) and (2,24)

Alt,7) = ﬂd,[U(r, 1) U(7, 0)] U(0, 7) U(z, r) = J:d,[U(r, 0)] U(0, r) = A(t,0).

Hence the matrix A(t, 7) is independent of 7 and we denote A(t) = A(t, 1) = A(t, 0)
for te[0,1]. Evidently varj A < oo by 1.4.27. Further we have by the definition
of A, by the substitution theorem 1.4.25 and by (2,19), (2,24)

£ d[AKY] Upr, ) = Jld, [ J "4,[U(e 0)] U, Q)] U, s)

= ﬁrd,[U(r, 0)] U(0, r) U(r,s) = '[td,[U(r, 0)] U(0, 5)
= (U(t,0) — U(s,0)) U(0,s) = U(t,s) — I,

ie. U(t, s) satisfies (2,25) for every ¢, s € [0, 1]. Finally we show that A:[0,1] - L(R,)
satisfies the regularity conditions for I — A~A(t), I + A*A(z). By definition we have
for te(0,1]

A™A(t) = A(t) —,,‘ifg*f(t - 9)

- ﬁd,[u(r, 0] U(0.1) - Jlim J:—ad,[U(r, 0)] U,

t
=6l_{rgl+ ~[;éd,[U(r, 0)] U(o,7) =él_{r(§1+(U(t, 0) — U(z — 6, 0)) U(0, 1)

= U(t,0) U(0, 7) = Jim U(t—96,0)U(0,1) =1 — lim Ui-9,1),
where 1.4.13 was used. Hence

(2,26) I — A™A(r) = lim Ut—-96,1) = Ulr—,1)

for every t (0, 1]. Since U is assumed to be harmonic, we have U(t — 8, t) U(t, t — §)
= | for any sufficiently small 6 > 0. U(t, s) is of bounded variation in each variable,
the limits 6li1;)n+U(t —6,t)=U(t—, 1) and Jim U(, t — 6) = U(t, t—) exist. Hence
Uit—, ) U, t—) = Jim Uie—0, Ut t—9)=1
-0+

and the matrix U(t—,t) is evidently regular since it has an inverse [U(t—,)]"!
= U(t, t—). This yields by (2,26) the regularity of I — A~ A(t) for every te(0,1].
The regularity of I + A*A(t) for every te[0,1) can be proved analogously.
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3. Generalized linear differential equations on the whole real axis

In this section let us assume that A: R — L(R)) is an n x n-matrix defined on the
whole real axis R and is of locally bounded variation in R, i.e. var? A < oo for every
compact interval [a,b] = R. We consider the generalized linear differential equation

(3.1) dx = d[A] x + dg

where g: R > R, is of locally bounded variation in R.
The basic existence and uniqueness result follows from 1.4.

3.1. Theorem. Assume that A: R — L(R,) is of locally bounded variation in R and
I — ATA(1), I + ATA(t) are regular matrices for all teR. Then for any ty€R,
xo€R, and g: R — R, of locally bounded variation in R there is a unique solution
x: R > R, of the equation (3,1) with x(to) = x, and this solution is of locally bounded
variation in R.

Proof. This theorem follows immediately from 1.4 and 1.7 since evidently the as-
sumptions of 1.4 are satisfied on every compact interval [a, b] < R.

In this way our preceding arguments on generalized linear differential equations
are applicable to the case of equations on the whole real axis R. Especially the
fundamental matrix U(t, s) determined uniquely by the equation

ut,s) =1+ J:d[A(r)] u(r, s)

is defined for all t,se R, has the properties (i), (iii), (iv), (v), (vi) from 2.10 and is
of locally bounded variation in R in each variable separately (see (ii) in 2.10). More-
over, the twodimensional variation of U on every compact interval I = [a, b] x [c,d]
< R, is finite.

Now we prove a result which is analogous to the Floquet theory for linear systems
of ordinary differential equations.

3.2. Theorem. Assume that A: R — L(R,) is of locally bounded variation in R such
that 1 — A™A(t), 1 + A*A(t) are regular matrices for every t€ R. Moreover let

At + w)— At)=C  forevery teR

where > 0 and Ce L(R,) is a constant n x n-matrix. If X: R — L(R,) is the solution
of the matrix equation

t
X)) =1+ Jd[A(r)] X(r), teR
0
(ie. X(t) = U(t,0)) then there exists a regular n x n-matrix P: R — L(R ), which is
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periodic with the period w (P(t + w) = P(t)) and a constant n x n-matrix Q€ L(R,)
such that
X(t) = P(t)e'?
is satisfied for every te R.
Proof. By definition we have

X(t+w)=l+j

0

t+ +w

" A[AR)] X() = X(o) + j a[AK)] X()

w

= X(w) + ‘[;d[A(r + )] X(r + ) = X(w) + J:d[A(r) + C] X(r + w)

= X(w) + J:d[A(r)] X(r + w)

for every te R. Using the variation of constants formula 2.14 in the matrix form
we get
X(t + 0) = X(t) X(w)  forevery teR.

By (v) from 2.10 the matrix X(w) = U(w, 0) is regular. Using the standard argument
we conclude that there is a constant real n x n-matrix Q € L(R,) (Q is not unique)
such. that X(w) = €“? (see e.g. Coddington, Levinson [1], IIL.1), ie.

X(t + w) = X(r)e“°.
Let us define P(t) = X(t) e '@ for every teR. We have
P(t + w) = X(t + w)e™ % = X(r)e*Re e ' = X(t)e ' = P(t)
for all teR, ie. P is periodic with the period w. The regularity of P(t) is obvious
by the regularity of X(t) and e'? Hence X(t) = P(t)¢'? and the result is proved.

Remark. This theorem is a basis for more detailed considerations concerning the
linear system (3,1) with A: R — L(R,) satisfying the “periodicity” condition
A(t + w) — A(t) = const. Some special results are contained in Hnilica [1].

4. Formally adjoint equation

Let B: [0,1] —» L(R,), var} B < oo and ge BV, Let us consider the generalized
linear differential equation for a row n-vector valued function y*

(4,1) dy* = —y*d[B] + dg* on [0,1],

which is equivalent to the integral equation

s

Y*(s) = y*(so) — f y*(t)d[B(2)] + g*(s) — 8*(s0)>  s.50€[0,1].

So
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Obviously, y*: [0,1] - R, is a solution to (4,1) on [a,b] = [0,1] if and only
if y verifies the equation

“2) y(s) = ylso) — f a[BH1] () + £(5) - glso)

for every s, s €[a, b]. Thus taking into account that I — A~(—B*)s) = [I + A~ B(s)]*
on (0,1], I+ A*(—B*)s)=[I — A*B(s)]* on [0,1) we may easily obtain the
basic results for the equation (4,1) as consequences of the corresponding theorems
from the foregoing sections.

Given y} € R}, the equation (4,1) possesses a unique solution y* on [0, 1] such
that y*(1) = y§ or y*(0) = y¥ if and only if

(4,3) det[I —A*B(s)] 0 on [0,1)
(44) det[I+ A"B(s)] 0  on (0,1],

respectively (cf. 1.4).

If (4,3) holds, then by 2.2 there exists a unique n x n-matrix valued function W(t, s)
defined for t,s€[0,1] such that s > ¢ and fulfilling for all such ¢, s the relation

W(t,s) =1 — j A[B¥)] Wi, ).

Furthermore, given t,s€[0,1], vary W(., s) + var; W(t, .) < o0, W(t+,s)
=[1—-A*B(t)]* W(t,s) if t<s and W(t—,s)=[I+ A B(t)]* W(t,s) if t<s
(cf. 2.10). It follows that the function V(t,s) = W*(s,t) for ¢ > s is a unique n x n-
matrix valued function which fulfils for ¢, s e [0, 1], t > s the relation

(45) Vit o) =1 + £V(t, ") d[B()].
Moreover, given t,s€ [0, 1]

varg V(t, .) + var! ¥(.,s) < o0

and
(4.6) Vit,s+) = V(t,s)[1 — A*B(s)]  if t>s,
47 Vit,s—)=V(ts)[1 + A B(s)] if t>s.

If y§ € R} is given, the unique solution y* of (4,1) on [0, 1] with y*(1) = y} is given
on [0,1] by

9 O =rvg+ 0 - o)+ [0 - 20 oY)
(cf. 2.8). |
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If (4,4) holds, then the fundamental matrix V(t, s) for (4,1) is defined and fulfils
(4,5)for t < s,(4,6) holds for ¢t < s and (4,7) holds for ¢ < s. Furthermore, var} (., s)
+ var} V(t,.) < oo for all t,s€[0,1] and given y}e R¥, the unique solution y*
of (4,1) on [0, 1] with y*(0) = y$ is given on [0, 1] by

(49)  y*(s) = ys V(0,5) + g*(s) — g*(0) - J(z*(l) — g*(0) d,[V(, s)] -

0
If both (4,3) and (4,4) hold, then there exists M < oo such that given t,s€ [0, 1]
Ve, s)| + vard V(z, .) + varg (., s) + Viosixpo.(V) < M < 0.

Moreover, in this case, given t,s,re [0, l] s
(4,10) V(t,r) V(r,s) = V(t,s) and V(t,t)=1
(cf. 2.10).

The equation (4,1) is said to be formally adjoint to (1,1) if
(4,11) B(t+) — A(t+) = B(t—) — A(t—) = B(0) — A(0) on [0,1].
(According to the convention introduced in 1.3 we have

B(0—) — A(0—) = B(0) — A(0) = B(1+) — A(1+) = B(1) — A(1).)

The condition (4,11) ensures that
1

(4,12) J y*(t) d[B(t) — A(t)] x(t) =0  forall x,ye BV,
0

(cf. 1.4.23). (4,11) hoids e.g. if B(t) = A(t) on [0,1] or
(4,13) B(r) = A, () = A(t—) + A*A() on (0, 1),
BO) = A,0)= AQ),  B(1) = A,(1) = A().

Without any loss of generality we may assume that A(0) = B(0).

4.1. Theorem. Let the n X n-matrix valued functions A, B be of bounded variation
on [0, 1] and such that (4,11) with A(0) = B(0) holds.

@ ¥
(4,14) det(l — A™A(t)) det (I — A*B(t))det (I + A*A(t)) £0  on [0,1]
(4,15) det(l — A™A(t))det (I — A*B(¢))det (I + A"B(t)) £ 0  on [0,1],
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then the fundamental matrices U(t, s) to (1,1) and V(t, s) to (4,1) fulfil the relation
(4,16) V(t,s) = U(t s) + V(t, s) [A(s) — B(s)] — [A(r) — B(e)] U(t, )

t

4+ V(t,5) A" B(s) A* A(s) — A~ B(t) A~ A1) U1, 5)
+ Y V(t,1)[AB(t)A*A(r) — A"B(1) AA(r)] U(x,s) if t>s,

V(t, t) = U(t,t) = 1.
(i) 1f

(4,17) det(l + A*A(t))det (I + A™B(t))det (I — A*B(t)) =0  on [0,1]
(4,18) det(l + A*A(t))det (I + A™B(r))det(I — A"A(t)) + 0 on [0,1],
then
(4,19) V(t,s) = (t s) + V(. s) [A(s) — B(s)] — [A(z) — B(r)] ULz,

+ V(t,s) A™B(s) A~ A(s)—A*B(t) A*A(R) U, s)

+ Y V(t,7)[AB(r)A"A(r) — A*B(r) ATA(1)] U(tr,s) if t<s,

t<t<s
V(t,t) = U(t,t) = 1.
(In (4,14)—(4,19) A~A(0) = A™B(0) =0 and A*A(1) = A*B(1) =0.)
Proof. Let e.g. (4,14) hold. Then Uz, s) is defined for all ¢,s€[0,1] and V(z,s) is
defined for t > s. Let ¢t,s€ [0, 1], t > s be given and let us consider the expression

w=fﬂ%@ﬂhﬁ+£mﬂqun

Inserting into W from (2,4) and (4,5) and making use of the subsitution theorem
1.4.25 we easily obtain

W=£Mmmum_mmu@q

and according to (4,11) and 1.4.23
W = V(,s)[A*A(s) — A*B(s)] U(s, 1) + [A™A(r) — A™B(t)]
= — V(¢ 5) [A(s) — B(s)] Uls, 2) + [A(r) — B(t)]

because the components of A(f) — B(t) are evidently break functions on [0, 1].
On the other hand, the integration-by-parts theorem 1.4.33 yields

W=1-V(s)U(st) — ATV, s) AT U(s, t) + A V(5 ) AT U, 1)
. [AZ V(1) AT U(T, t) — AFV(t, 1) AT U(, 1)],

s<t<t
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where Af Z(t,s)= Z(t+,s) — Z(t, s), A; Z(t, s) = Z(t, s+ ) — Z(t, 5), A Z(t,s) = Z(t, s)
— Z(t—,s) and A; Z(t,s) = Z(t,s) — Z(t,s—) for Z = U and Z = V. Taking into
account the relations (4.6), (4,7), (4,10) and 2.10 we obtain immediately (4,16).

The remaining cases can be treated similarly. If (4,17) or (4,18) holds, then instead
of the expression W we should handle the expression

£dt[V(s, )] U(, s) + £ V(s, ) d [U(z, 5)] .

4.2. Theorem (Lagrange identity). Ler A: [0,1] - L(R,) and B: [0,1] > ) be
of bounded variation on [0, 1] and let (4,11) hold. Then for any x € BV, left- contmuous
on (0,1] and right-continuous at 0 and any y € BV, right-continuous on [0, 1) and
left-continuous at 1

20 [ 0 o[ x0 — [[atasn =]+ [ o[y - 'y atmon] s
= y*(1) x(1) — y*(0) x(0).
Proof. Applying the substitution theorem 1.4.25 the left-hand side of (4,20) reduces to

[ y0at1 + [ ety 0+ [ 0 a0 - A0 0

0

The integration-by-parts formula 1.4.33 yields

Lly*(t)d[X(t)] + le[)'*(t)] x(e) = y*(1) (1) — y*(0) x(0)

whence by (4,11) and (4,12) our assertion follows.

4.3. Remark. The relations (4,16) and (4,19) are considerably simplified if
(4,21) © A'B(t)A*A(r) = A"B(t)A"A(t)  on [0,1].

This together with (4,11) and A(0) = B(0) is true e.g. if
() B=A and (A*A(t))> =(AA(t))* on [0 1], or

(i) B=A, (f (413) (A*A0)=(A"A(1)?=0 and A*A(r)A-A(f)
= AA() A*A(r) on (0,1).

5. Two-point boundary value problem

Let M and N be m x n-matrices and r € R,,. The problem of determining a solution
x: [0,1] >R, to

(51) dx = d[A] x + df
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on [0, 1], which fulfils in addition the relation

(5.2) Mx(0)+ Nx(1)=r,

is called the two-point boundary value problem.

5.1. Assumptions. Throughout the section, A,B are n x n-matrix valued functions
of bounded variation on [0,1]. Moreover we suppose that (4,11) with A(0) = B(0),
(4,21) and at least one of the conditions (4,14), (4,15), (4,17), (4,18) are satisfied. (In

particular, the assumptions of 4.1 are fulfilled.) M and N are m x n-matrices, f € BV,
and reR,,, m> 1.

Making use of the variation-of-constants formula (2,15) we may reduce the
boundary value problem (5,1), (5,2) to a linear nonhomogeneous algebraic equation.

5.2. Lemma. If (4,14) or (4,15) holds, then x: [0,1] — R, is a solution of the problem
(51), (52) if and only if

(53 x0 = U60)e+ 10— 10) - [4[Ue) (1) - 10)  on [0.1]
where c€ R, is a solution to the algebraic equation
[M+NV1L0)]c=r+ N{V(I,O) f(0) — f(1) + Jlds[V(l,s)] f(s)}
I (4,17) or (4,18) holds, then x: [0,1] - R, is a solution too (5.1), (5.2) if and only if

x(t) = U, 1) c + f(t) — f(1) + J:lds[U(t, )] (f(s) — f(1))  on [0,1],

where

[MV(0,1)+ N]c=r+M {——f(O) + V(0,1) f(1) — J:dS[V(O, s) f(s)}.

Proof. Let (4,14) or (4,15) hold. Then by 2,15 x: [0,1] - R, is a solution of the

given problem if and only if it is given by (5,3), where ce R, fulfils the equation
1

M+NUQLO)]e=r+ N{U(l,O) f(0) — f(1) + I d,[U(1, s)] f(s)}.

0

By (4,16) and (4,21)

(54) V(1,5) = U(1,5) + V(1,5)(A(s) — B(s)) + V(1,s) A*B(s) AT A(s)

and thus

V(l,s+) — U1, s+) = V(1,s—) — U(1,5s-)
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for any se[0,1]. (In particular V(1,0) = U(1,0), V(1,1) = U(1,1).) This implies
by 1.4.23

leS[U(l, s)] vls) = J: d[¥(1,s)]v(s) forany veBYV,

wherefrom our assertion follows.
The cases (4,17) and (4,18) could be treated analogously. (¥(0,s) = U(0,s)
+ V(0, s) (A(s) — B(s)) + V¥(0,s) A™B(s) A”A(s) on [0,1])

5.3. Remark. Consequently, in the cases (4,14) or (4,15) the problem (5,1), (5.2)
has a solution if and only if

(5.5) #[M+NV(1,0]=0
implies
(56)  A*N V(1,1)f(1) — A*N ¥(1,0) f(0) — j d,[A*N (1, 5)] f(s) =
0
Let us denote y¥(s) = A*N ¥(1,s) for se[0,1] and AeR,,. Then (5,6) becomes
1
Y2 £0) = y20)10) - | oDy 19 = 27
By (4,8) for any 4* e R and s,s5,€[0,1]
y26) = vioo) + [ v 8]
Moreover, if A*e R} verifies (5,5), then y}(0) = A*N ¥(1,0) = —A*M and y¥(1)

= A*N. Analogously, if (4,17) or (4,18) holds, the problem (5,1), (5,2) possesses
a solution if and only if A*[M V(0,1) + N] = 0 implies

yi() £(1) - y3(0) £0) - j dly36)] £(9) = i

where y¥(s) = —4*M V(0,s) on [0, 1].

5.4. Lemma. Let g € BV, and p, q€R,. If (4,14) or (4,15) holds, then y*: [0,1] —» R}
is a solution to the generalized differential equation

(5,7) dy* = —y*d[B] + dg*  on [0,1]
and together with A* € R}, verifies the relations
(5.8) y*(0) + A*M = p*, y*(1) — A*N = q*

if and only if
(59) y*(9) = (1*N + g V(1 3) + g — g*(1) + f (&) - £*(1) V(e )]
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on [0,1] and
A*[M + N U(1,0)]
1

— p* 4" U(1,0) - 70) ) Ul1.0) + | 70 6[U10)].

(By (4,16) V(t,0) — U(t,0) = (A(t) — B(t)) U(t,0) + A~ B(t) A~ A(t) U(t,0).)
If (4,17) or (4,18) holds, then y*: [0,1] — R¥ and i* € R} verify the system (5,7),
(5.8) if and only if
(5,10) y*(s) = (p* — A*M) V(0, 5) + g*(s) — g*(0) — Ls(g*(t) — g*(0)) d,[V(1.5)]
on [0, 1]
and A*[MU(0,1) + N]

1

~ 5" U0.1) - 4"+ (1) - £°0) U0 1)~ | ) 4[],

0

(V(t, 1) — U(t, 1) = (A(t) — B(t) U(t, 1) + V(t, 1) A*B(t) A*A(t) by (4,19))

Proof. In virtue of our assumption (4,21) the fundamental matrices U(t,s) and
V(t, s) fulfil the relation (5,4). Inserting (4,8) or (4,9) into (5,8) we complete the proof.

5.5. Theorem. Under the assumptions 5.1 the given problem (5,1), (5,2) possesses
a solution if and only if ’

1) PO 10) -y 10) - [ by 10 = 2
for any solution (y*, A*) of the homogeneous system

(5,12) dy* = —y*d[B] on [0,1],

(5.13) yH0) + A*M =0, y*1)—i*N =0.

Proof follows immediately from 5.2 (cf. also 5.3).

5.6. Theorem. Let A, B, M, N fulfil 5.1. Then given g BV, and p, qe R, the system
(5,7), (5,8) possesses a solution if and only if

1

£*(1) x(1) — g*(0) x(0) - J £*(s) d[x(s)] = q* x(1) — p* x(0)

0

for any solution x of the homogeneous equation

(5,14) dx = d[A] x on [0,1]
which fulfils also
(5,15) Mx(0) + Nx(1)=0.
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Proof. If (4,14) or (4,15) holds, then by 5.4 the system (5,7), (5.8) possesses a solution
if and only if

(5,16) [M+NU1,0]c=0

implies
1

g %)~ px(0) = ') %) - £°0)%(0) [ £ aLxt]
where x(t) = U(t,0) c for te[0,1] and ceR,. By 5.2 x: [0,1] - R, is a solution
to (5,14), (5,15) if and only if x(f) = U(z,0) ¢ on [0, 1] where ce R, verifies (5,16).
Now, our assertion follows readily.

5.7. Definition. The system (5,12), (5,13) of equations for y*: [0,1] - R¥ and
A* e R} is called the adjoint boundary value problem to the problem (5,1), (5,2) (or
(5,14), (5,15)).

5.8. Definition. The homogeneous problem (5,14), (5,15) (or (5,12),(5,13)) has exactly k
linearly independent solutions if it has at least k linearly independent solutions on
[0, 1], while any set of its solutions which contains at least k + 1 elements is linearly
dependent on [0, 1].

Another interesting question is the index of the boundary value problem, ie. the
relationship between the number of linearly independent solutions to the homo-
geneous problem (5,14), (5,15) and its adjoint.

5.9. Remark. Without any loss of generality we may assume rank [M,N] = m.
In fact, if rank [M, N] = m; < m, then there exists a regular m x n-matrix @ such

that
M., N,
M,N]| = R
O[M.N] [0, 0]

where M, N, € L(R,, R,,) are such that rank [M;, N,] = m,. Let reR,,

Or = <r1 , rieR, and r,eR, _, . Then either r, + 0 and the equation for
ra
deR,,
(5.17) [M,N]d=r

possesses no solution or r, = 0 and (5,17) is equivalent to [M,,N,]d =r,.

5.10. Theorem. Let A, B, M, N fulfil 5.1 and rank [M, N]| = m. Then both the homo-
geneous problem (5,14), (5,15) and its adjoint (5,12), (5,13) possesses at most a finite
number of linearly independent solutions on [0, 1]. Let (5,14), (5,15) possess exactly k
linearly independent solutions on [0, 1] and let (5,12), (5,13) possess exactly k* linearly
independent solutions on [0, 1]. Then k* — k = m — n.
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Proof. Let us assume e.g. (4,14). By 5.2 the system (5,14), (5,15) possesses exactly
k = n — rank [M + N U(1,0)] linearly independent solutions on [0, 1]. (If ¢;e R,
are linearly independent solutions to (5,16), then since U(0,0) = I, the functions
x{t) = U(t,0) ¢; are linearly independent solutions on [0, 1] of the system (5,14),
(5,15))

On the other hand, the equation (5,5) has exactly m — rank [M + N U(1,0)] = h
linearly independent solutions. Let A denote an arbitrary h x n-matrix whose rows
AY,A%,..., AF are linearly independent solutions of (5,5). Let us assume that the
functions y¥(s) = A*N V¥(1,s) are linearly dependent on [0, 1], ie. there is ae R,
@ # 0 such that a*AN V¥(1,s) = 0 on [0, 1]. In particular, 0 = a*AN V(1, 1) = «*AN
and 0 = a*AN V(1,0) = —a*AM. Since (5,17), a*4 = 0 and by the definition
of A it is @ = 0. This being a contradiction, k* = m — rank [M + N U(1,0)] and
k* —k=m—n.

5.11. Definition. Given m x n-matriccs M, N with rank [M, N] = m, any
(2n — m) x n-matrices M, N such that

M, N
5,18 det i
(5.18) ct| | #0

are called the complementary matrices to [M, N].

5.12. Proposition. Let M, N e L(R,, R,), rank [M,N] = m and let M, N°
€L(R,,R;,_,) be arbitrary matrices complementary to [M,N]. Then there exist
uniquely determined matrices P,QeL(R,,_,,R,) and P*,Q°e L(R,, R,) such that

Pc
(5,19) det[ ; Q] *0

Q,Q
and yix, —y§x, = (y§P* + y1Q%)(Mxo + Nx,) + (y§P + yiQ)(Mx, + N°x,)
Jor all xo,x,,y,,y, €R,

Proof. Let P,Qe L(R,,,, R,) and P*, Q€ L(R,, R,) be such that

(520) M N [-P, —P

’ MmN | @ Q)
Then

(5.21) ~PM—PM =1,, —PN-PN=0,

QM+ QM =0, QN+ QN =1,
and

EEE RPN
Q. QM N | o 1]
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Thus, given Xg, Xy, Y0, Y1 €R,,

-1

w0l (x
yix — yix, = (y&, y’,")[ 0 ,J (x?)

= (y(:n): y}:)[Pc, P] I:M, N :| <X0>
QY @ I me, Ne | \x,
= (y8P° + y1Q) (Mxo + Nx,) + (y%P + y*Q) (Mx, + Nex,).

5.13. Remark. It follows from (5,20) that according to 5.12 the matrices P, Q
€ L(R,,_ R,) and P, Qe L(R,, R,) associated to M, N, M¢, N¢ fulfil besides (5,21),

(5,22) also
[—M, NP P,
_MC’ Nc QC, Q = "2n>
(5,23) —MP° + NQ* =1, —MP + NQ =0,
(5.24) ~MP + NQ =0, —-MP+NQ=1I,,,,.

The following assertion is evident.

5.14. Proposition. Let M,Ne L(R,, R,), rank [M, N] = m and let P, Qe L(R,, _,., R,)
and P, Q°€ LR, R,) be such that (5,19) and (5,23) hold. Then P,,Q, € L(R,,_ ., R,)
and P;,Q\ € L(R,, R,) fulfil also (5,19) and (5,23) if and only if there exist a regular
matrix E€ L(R,,_,) and FE (R, R,,_ ) such that

(5,:25) P, = PE, Q, = QE
and
(5,26) "~ P: =P+ PF, ¢ = Q° + QF.

5.15. Definition. Let M,NeL(R,,R,) and let P,QeL(R,,_,,R,) and P Q°
€ L(R,,, R,) be such that (5,19) and (5,23) hold. Then the matrices P, Q are called
adjoint matrices associated to [M,N] and the matrices P, Q° are called com-
plementary adjoint matrices associated to [M, N].

5.16. Remark.If M,NeL(R,,R,), rank [M,N] =m and if P,QeL(R,,_,.,R,)
are arbitrary adjoint matrices associated to M, N, then

(5,27) rank [P:I =2n—m
Q

and the rows of the m x 2n-matrix [ — M, N] form a basis in the space of all solutions
d* € R%, to the equation

(529) a* [” ] —o.
Q
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5.17. Remark. Let M,NeL(R,, R,) and rank [M,N] = m. Let P,Q and P, Q°
be respectively adjoint and complementary adjoint matrices to [M,N]. If
y*: [0,1] > R¥ and i* e R} fulfil (5,13), then

(5,29) y*O)P +y*1)Q =0
and
(5,30) y*(0) P* + y*(1) Q° = 4*.

On the other hand, if y*: [0,1] - R} fulfils (5,29), then there exists i* € R such
that (5,13) and consequently also (5,30) hold (f. 5.16).

5.18. Corollary. Let the assumptions 5,1 be fulfilled. Then the boundary value problem
(5.1), (5,2) has a solution if and only if

(5:31)  y*(1) £(1) — y*(0) f(0) — le[Y*(S)] f(s) = [y*O) P + y*(1) Q] r

for any solution y*: [0,1] > R* of the system (5,12), (5,29) where P, Q and P*, Q"
are respectively adjoint and complementary adjoint matrices associated to [M, N].

Proof follows immediately from 5.5 and 5.17.

5.19. Remark. If P,,Q, and P, QS are also adjoint and complementary adjoint
matrices associated to [M, N7, then by 5.14 there exist a regular matrix E € L(R,,_,,)
and FeL(R,,R,,_,) such that for all y¥ ytfeR} we have y}P, +y}Q,
= [ytP + y1Q]E and y§P{ + y1Qi = y$P° + y1Q° + [ysP + y1Q] F. Thus
yéP + y¥Q = 0 and y}P° + y¥Q° = A* if and only if also y¢P, + y¥Q, = 0 and
y5P + y¥Q{ = A*. This means that neither the boundary condition (5,29) nor
the condition (5,31) depend on the choice of the adjoint and complementary adjoint
matrices associated to [M, N].

5.20. Remark. The matrix valued functions A: [0, 1] - L(R,) and B: [0,1] - L(R,)
of bounded variation on [0, 1] fulfil 5.1 e.g. if
(i) A is left-continuous on (0, 1] and right-continuous at 0, det [I + A*A(f)] + 0

on [0,1] and B = A, (cf. (4,13)), or

(i) (A*A(0)> = (ATA(1)* =0, (A*A(t))*> = (A" A(t)* on (0, 1), det [I — (A* A(r)]?
#+0 on [0,1] and B = A, or

(i) A*A(t)= A"A(t) on [0,1], (A*A(t))* =0 on [0,1] and B = A.

(In the case (iii)

[P+ AYAQ) ] [1 — AA@)] =1 — (ATA@)* =1.)
We shall see later that the problems of the type (5,1), (5,2) cover also problems with
a more general side condition (cf. V.7.19).
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Notes

The theory of generalized differential equations was initiated by J. Kurzweil [1], [2], [4]. It is based
on the generalization of the concept of the Perron integral; special results needed in the linear case are
given in 14. Differential equations with discontinuous solutions are considered e.g. in Stallard [2].
Ligeza [2].

The paper by Hildebrandt [2] is devoted to linear differentio-Stieltjes integral equations. These
equations are essentially generalized linear differential equations in our setting where the Young integral
is used for the definition of a solution. Some results for the equations of this type can be found in
Atkinson [1], Hénig [1], Schwabik [1], [4], Schwabik. Tvrdy [1], Mac Nerney [1]. Wall [1].

Boundary value problems for generalized differential equations were for the first time mentioned in
Atkinson [1] (Chapter XI). They appeared also in Halanay, Moro [1] as adjoints to boundary value
problems with Stieltjes integral side conditions. A systematic study of such problems was initiated in
Vejvoda, Tvrdy [1] and Tvrdy [1], [2]. Further related references are Krall [6], [8], Ligeza [1] and
Zimmerberg [1], [2].
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