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CHANGE IN PROGRESS: NOTATION

AND ALGORITHMS

Helena Durnová

Abstract

This is a by-product of my research project. The topic was
stimulated by the 1999 Novembertagung theme. It is not exactly
philosophy of mathematics and its influence on its history, it is
more connected to language and culture. Being a “by-product”,
this article uses terminology a bit vaguely and the reader is asked
for understanding and for reading it not as a “fact file”, but rather
as “fiction”. The terms are not precisely defined, attention is
brought to the “feeling”, or perhaps “idea”.

Introduction

When studying articles and books on discrete optimization and graph
theory, I was amazed by the number of terminologies used - not really
different sets of terms, but overlapping vocabularies of the mathemati-
cians active in the field, different meaning for the same words. There
even does not have to be a great time difference between the publication
times of the pieces – one is not so much surprised to find out that what
was called “analysis situs” a hundred years ago is now called “topology”
or “graph theory”. In this case, the changes take place in a life-time.
What are the reasons for (making and deepening) these differences? A
perhaps even more important question is: what does this lead to?

A definite shift towards the formalisation of the language of discrete
optimization problems can be observed. It is not to be concluded that all
branches of mathematics undergo this particular process. However, some
changes would probably be observed also elsewhere. Further thoughts
circle around the role of language for understanding mathematics and
for the communication between mathematicians. What are the forces
that rule out some modes of expression and establish new ones?1

1One could also speculate about the role that natural language (of a mathemati-
cian) plays. Is there a connection between our natural language and the ability to
do mathematics? Is there a “national” mathematics? These interesting questions,
however, are not to be answered here.
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What is mathematics

Before trying to answer some of the above-mentioned questions, it should
be explained what we will mean by mathematics and the role of lan-
guage in mathematics and/or for mathematicians. The first thoughts
are therefore devoted to the question: What is mathematics?

Mathematics might be seen as a Model, Tool, Game, Science,
Abstraction, etc.2 It depends on the individual which definition he or
she finds the most accurate. The two notions important in this context
will be

• Mathematics as Model or Tool: Mathematics describes the reality
and in a certain way helps us in solving “real-life” problems (such
as finding the minimum spanning tree . . . ).

• Mathematics as Abstraction: To employ mathematical methods,
we need to take into account not concrete things, but rather ab-
stract notions.

Language is connected to both mathematics as a model/tool and to the
abstraction in mathematics. Language itself is a comparatively abstract
notion, and the language of mathematics is no less abstract then the
natural languages.3 Just as natural language changes with reality, the
language of mathematics changes with regard to the “mathematical re-
ality”, i.e. adapts itself to the changing needs of mathematics (and, of
course, mathematicians). In the following, I will try to present a demon-
stration of what happens. The topic chosen for demonstration is discrete
optimization.

The core of this paper is denoted by the following scheme. Again,
the readers are invited to make their own conclusions and judgement as
far as the accuracy of this scheme is concerned.

2The reader is invited to argue whether these terms express what mathematics
really is, and is also invited to add his or her own “definitions”.

3It can be argued which of the two is more abstract – I would be in favour of the
view that mathematical language is the more abstract of the two.
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Discrete Optimization and Algorithms

Discrete optimization is a relatively new area of mathematics. Its prob-
lems are relatively well-known. Some of them are:

1. Minimum spanning tree

2. Shortest route

3. Travelling salesman

4. Chinese postman

5. Matching

6. Network flows

For these problems, some kind of automated procedure would be worth-
while. This procedure is called an algorithm – one should rather say,
nowadays it is called so. As these procedures will be central to this pa-
per, a short “detour” about algorithms and their general history follows.

Algorithms: A Very Short History

Algorithm is nowadays a widely used word in mathematics. It is espe-
cially used with computers nowadays, but even Euclid (ca. 365–300
B.C.) devised a kind of algorithm for determining the greatest com-
mon divisor. The name itself is said to be derived from the name of
the Arabian mathematician al-Khwarizmi (ca. 783–850 AD). Accord-
ing to Schreiber [3], the word “algorist” was used as the opposite to
“abacist” for the new way of counting. In 1849, a German orientalist
suggested that the name comes from the name of an Arabian learned
man, al-Khwarizmi. Since the 1950s, the word algorithm has been
widely spread in mathematical papers.

With algorithms, we can speak about several aspects:
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• design

• proof of correctness

• search for machines performing algorithms

• transformation of problems for algorithms

• NP-completeness

In different times, different notions of algorithm were used. For ex-
ample, the proof of correctness would not be appropriate for ancient
Egyptians. NP-completeness lures out only because of a repeated fail-
ure to find a suitable algorithm. However, there is one thing that is
central to any algorithm: the necessity of working with abstract no-
tions. Without them, it would be impossible to design an algorithm for
more than one specific problem.4

Change in Progress: New Structures

New approach to problems, new technigues, higher level of abstraction –
all that requires new structures, in which we can think. More precisely,
these structures can be divided into Words, Grammar, and Lan-
guage. How have these developed in the 20th century mathematics?
Examples from discrete optimization should throw some light onto this.

Words

Changing the vocabulary of any language is performed very easily: there
is no need to point out “real-life” examples. In mathematics, as most
probably also elsewhere, new terms are introduced either for new objects,
or for objects already existing. The former is quite understandable: new
objects need new names. The latter is a bit more complicated: were
the old names insufficient? If not, why do mathematicians devise new
terms? Perhaps it is a matter of recognition of same things that arose in
different contexts. Perhaps people love naming things . . . . As a result,
however, parallel terminologies could be developed, which may cause
communication error. Also, language “dislikes” absolute synonyms, and
therefore the two terms adopt slightly different meanings.5

4A further step of this is the transformation of the problems, one into another,
which especially arises in the form of dual problems.

5For example, minimum spanning tree formulations appear in algebraic, geomet-
rical, or graph theoretical languages. In graph theory in general, the same notion can
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Parallel development of terminologies could eventually lead to par-
allel development of theories. In mathematics perhaps more than in any
other science, the definitions are crucial – therefore if mathematicians
do not recognise the terminology, they would not read the articles or
books. “Re-inventing the wheel” is a direct consequence of this.6

Grammar

The development of a grammatical system is not so straightforward,
which is true also for natural languages, where the grammatical changes
come up slowly (structures cease to be used and new ones come up in
order to express new facts or situations). In natural languages, inter-
ference with foreign languages can often be traced (either conscious or
subconscious). In mathematics, the structural part of grammar is of
utmost importance. What did the Egyptians do? They described their
solutions, word by word. How did the Romans multiply, using the Ro-
man numerals? This would be a hard task even today. Examples are
multiple. Perhaps using symbols for unknowns could be considred one
of the crucial changes.

When it comes to discrete optimization, the terms and methods have
already been fairly formalized – we are talking about the 20th century
here, some time after the Hilbert programme. In spite of that – more
precisely, because of that – this example can give us the feeling of how
the changes happen. The time-span is “only” a lifetime of one person,
and therefore could help us understand the speed with which things
happen in the structural field.

At the beginning of the 20th century, the language of “algorithmic”
papers was still a bit story-like, descriptive, written in the “write-it-as-
you-talk” style. This is especially demanding (and time-consuming) for
the reader. It is not systematic, in the sense that the paper starts with
if on the first page, then a long row of then’s follows, until eventually
on the tenth page, you find the else for the first if .

easily have three different names, seemingly signifying different things: branch, arc,
edge.

6As has been pointed out, theories could definitely have “intersections”, where they
work in the same way in practice. However, it is not certain whether the theories
are context-dependant; by this I mean the fact that some assumptions and corollaries
are easy in one theory, but difficult in another theory. As an example, the minimum
spanning tree will do: what Borůvka did in matrix terminology, Prim did in graph-
theoretical terminology. However, could Borůvka have formulated the theorems of
graph theory in matrix theory, if graph theory is a “subset” of matrix arithmetics?
Probably no — he would not think of such applications.
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Later on, in the 1950s, mathematicians started using step-by-step
descriptions of algorithms. It is much easier to understand the structure
of the algorithm. The small step towards some kind of “pseudo-code”
was made in roughly twenty years. The expressions in pseudo-code
are standard, which results in faster reading – if one understands the
expressions and is familiar with the structure.7

New syntax of mathematics tends to be more that of an analytic
language (as opposed to syntactic language) – i.e. to a language where
the word order is of crucial importance.

Language

The new terminology and structure needs some superstructure – this
structure can then become a new branch of theory. As an example, we
can take the algorithm and complexity theories. They also start to have
their own problems, their own results – both applicable to more theories,
perhaps also more abstract then the theories just using algorithms.

Polynomial algorithm and the search for it thus became central to
thoughts of the algorithm theorists (and practitioners). The luring crea-
tures – NP-hard or NP-complex problems – are more widely known re-
sults of the research. In a certain way, they can be seen as a kind of new
alternative of squaring the circle, doubling the cube, or trisection of an
angle.

Game, or a Science of Its Own?

These two words, game and science, reflect the crucial quality of discrete
mathematics. Many problems in discrete mathematics seem to have
their origin in puzzles or curious questions. Here are some of them:

1. Euler, 1735: The Seven Bridges of Königsberg

2. Hamilton: Round-the-World Trip

3. Euler: 36 Officers

4. Kirkman: Fifteen Schoolgirls

The starting point is fun – however, the results interpreted well need
not be so unimportant. In the following, I will try to show how simple
the formulation was for some discrete optimization problems, and what
the results were.

7By saying this, I would like to suggest that there are two sides to each coin.
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Abstraction in Discrete Mathematics

In the following, more precise examples of abstraction are given.

Minimum Spanning Tree

In his solution to MST, Borůvka uses more abstract way than those
who attempted to solve it after him. He uses a matrix of real numbers
- and in his mathematical paper, he does not even explain why! He just
states the problem: In each row, a number must be chosen. The sum of
such numbers should be minimum.8

What is the meaning of numbers in Borůvka’s table? It is exactly
the same as the distance between points in a plane for Jarník, or the
edge weights for Kruskal, Prim, or Dijkstra. The missing word(s) –
weight, edge – were substituted for by greater abstraction in Borůvka’s
solution. What is worth noticing, however, is the fact that Prim also uses
some form of matrix. In his paper, however, this seems to be motivated
by the use of computers (and not by a missing term).

By the same token, it can also be claimed that the maximum span-
ning tree can be constructed using the same, only a little adapted, pro-
cedure.

Shortest Paths

Finding the shortest route is a task solved by people – consciously or
subcosciously – almost every day. What we want to spare are our feet,
time, fuel, . . . . This simple task can be used in some more complex
procedures. This is another typical feature of mathematics, by the way:
always trying to solve subproblems of the given problem, or by using
analogies.

Travelling Salesman Problem

The travelling salesman problem is interesting from the point of view of
abstraction, developing new fields, but also mysterious: it is one of those
problems that cannot be solved in polynomial time. Problems related to
the TSP were solved also without direct relation to hamiltonian circles
– whence there exist two distinct definitions of the problem, one for
hamiltonian circuits and one without.

8The reason I am using his paper is that it is the oldest one I have on the subject.
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Mathematics: Changing Picture

Theorem-Proof

A mathematical theorem, when correctly proved, is true forever. 9 The-
orems about Eulerian and Hamiltonian graphs are true: they need not
always give us the solution, they, however, always decide – somehow.

Algorithm-Analysis

If we have an algorithm, we have to say: first, whether it solves our
problem correctly, and second, in what time we can expect the solu-
tion. The second task gave rise to a whole new field of complexity and
computability theory. It seems that this direction of mathematics can
be separated from the Theorem-Proof one. The only thing I am not
sure of is whether it will separate or whether there already exist two
kinds of mathematics, in some way. In the following, some features of
the two parts, demonstrated on “pure” and “applied” graph theory, are
suggested.

Roots of Graph Theory

It apears that graph theory has grown up from two distinct roots. We
can divide it basically into two parts: pure, solving problems related to
topology, and applied, solving problems with economical background.

As for the first, “pure” part, it can be said that problems are usually
formulated on non-weighted graphs. When we consider problems such
as eulerian and hamiltonian graphs or the four-colour problem, it might
surprise us that the origins of the problem are in curious questions.

This, however, is not true for the other graph theory, the “applied”
one. The motivation to the problems here is often very practical: let us
name just the shortest electrification network for the minimum spanning
tree and the school-bus routing for the travelling salesman problem. The
travelling salesman problem as well as the shortest-paths problems show
the motivation even in their names.

Sometimes, a naive approach could work when designing an algo-
rithm. This kind of approach tells us to choose the “locally best” solu-
tion at every step. This works for example for the MST algorithms, and
also for matching algorithms.

Later on, especially with the discoveries of NP-completeness of prob-
lems and after having “reasonable” algorithms for the easier problems,

9However, proofs have not always be as valid as this. [1]
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heuristics were devised. A heuristics is a procedure that gives a result
which may or may not be optimal. After each step, we ask whether we
got a better solution, and after a certain criterion is fulfilled, the proce-
dure is ended. What is important when judging a heuristics is how near
to the optimum solution we get and how fast we get there.

Differences between the “pure” and “applied” graph theory

Graph theory, perhaps as any other branch of mathematics, has its more
theoretical and more practical parts. It would probably be more precise
to talk about the aspects of “purity” and “application” in graph theory,
because for some problems, it is not easy to state which category they
belong to. The following scheme tries to show the differences between
the two.

speed precision
possibility of solution finding the best solution

somehow this way
computability elegance

reasonably good optimal
greedy approach paradoxes

applied pure
approximate precise

obscure clear
. . . and a question: can we decide which is good and which is bad?

The Beauty of Discrete Mathematics

The focus on more specific problems gives rise to new areas of research.
Thus, in connection with discrete optimization, we can see the emer-
gence of complexity theory. These new theories offer space for parallels
with popular interpretation of the problems. Thus, in confusion of “not
solvable in polynomial time” with “not solvable at all” we can see a
parallel with people still trying to square the circle, trisect an anlge, or
double the cube.

The problems in discrete optimization – and in the discrete mathe-
matics in general – are usually nicely put. The task seems to be so easy;
yet the solution can be extremely difficult. Such a minor change that we
have to pass through each vertex, not edge exactly once – and from an
easy game, here is a problem without a simple solution. Similar change
in the MST problem leads to TSP, which is not solvable in polynomial
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time – which might be, by some “over-educated” people, interpreted as
insolvable, as the following extract shows: [2]

The traveling salesman problem recently achieved national
prominence when a soap company used it as the basis of
a promotional contest. Prizes up to $ 10,000 were offered
for identifying the most correct links in a particular 33-city
problem. Quite a few people found the best tour. [ . . . ]
A number of people, perhaps a little over-educated, wrote
the company that the problem was impossible–an interesting
interpretation of the state of the art.

Conclusion

I feel there is no real conclusion to this article. Instead of a conclusion, I
will try to pose three questions: Do we need to put the isolated solutions
together, or is there something good in keeping things separate? Discrete
and continuous in mathematics: are they different notions, or just two
aspects of the same thing? Does a new language enable us to do more?
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