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4.4. Exereises 

1. Two finite coupled decompositions have the same number of elements. 

2. On taking account of the last theorem of 4.3, show that there holds: 

((x n y) c A) n s((x n y) c JB) -= ((x n y) c B) n s((x n y) c A) 

= (xny) n [I, B], 

5. Complementary (commuting) decompositions 

Fur ther particular situations generated by decompositions on the set G arise from 
the so-called complementary or commuting decompositions. As the lat ter play an 
important par t in the following deliberations, we shall discuss them in a special 
chapter. 

5.1. The notion of complementary (commuting) decompositions 

Let A, B, C s tand for arbitrary decompositions on G. 
By the definition of the least common covering [A, B], every element u £ [A, B] 

is the sum of certain elements a £ A and, at the same time, the sum of certain 
elements b £ B. The decomposition A is called complementary to or commuting with 
the decomposition B if every element a £ A is incident with each element b £ B 
t ha t lies in the same element u £ [A, B] as a. 

If. for example, A is a covering of B, then A is complementary to B. The new 
notion generalizes the'concept of a covering. 

There holds: 

a) A is complementary to A. 
b) If A is complementary to B, then B is complementary to A. 

Indeed, a) is obviously t rue. To prove b), let us accept the assumption but reject 
the assertion. Then there exists an element b 6 B, lying in a certain element u € 
[B, A], which is not incident with every element of A t ha t lies in u. Consequently, 
6 is not incident with an element a € A lying in u. Hence, a is not incident with all 
the elements of B lying in u, which contradicts our assumption tha t A is comple­
mentary to B and the proof is accomplished. 
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With regard to b), we generally speak about complementary (commuting) 
decompositions without stressing which is complementary to (commuting with) 
which. 

The following example proves the fact that if A, B and, at the same time,B, C 
are complementary, then A9 C need not be complementary. 

Suppose G = {%. a2, aB, a4, ab, a%} is a set consisting of six elements. Denote, 
furthermore, 

at = {at, a2}, a2 = {aB, a4}, az = {%, a6}; 

bt = {at, aB, %}, b2 = {a2, «4, % } ; 

Ci = {ax, a2, a3j, c2 = {a4, a5, a6), 

so that we have following decompositions on G: 

A = {au a2, a3}, B == [bl9 b2}, C = {cu c2}. 

Every element aa is incident with every element b$ and every element b$ is inci­
dent with every element cy (<% = 1, 2, 3; [}, y = 1, 2). So we have [A, B] = (?max> 
[B, C] = 6rmax and it is clear that A, B and, at the same time, B, C are complemen­
tary. Moreover, both elements cx, c2 are incident with a2so that [A, C] = 6rmaYbut 
the elements at, c2, for example, are not incident. Hence A, C are not comple­
mentary. 

•2. Characteristic properties 

Suppose, again, that A, B, G are decompositions on G. 

If every two elements a 6 A, b 6 B lying in the same element of a common covering 
C of the decompositions A, B are incident, then C = [A, B] and therefore the decom­
positions A, B are complementary. 

Indeed, let C stand for a common covering of A, B and let c € C. Then c is the sum 
of certain elements of the decomposition [A, B], Let u, v be elements of [A, B]9 

lying in c. Every element ax € A lying in u is incident with some element b 6 B 
which must, therefore, lie in u and, consequently, in c. If A, B have the above pro­
perty, then b is incident with every element a2£A lying in v so that the two-
membered sequence %, «2 forms a binding {A, B} from ax to a2. Hence v = u as 
well as c = u and, furthermore, C a [A, B]. Since every element of [A, B] lies in 
an element of G, there also holds the relation ZD, hence even the equality and the 
proof is complete. 
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The decompositions A, B are complementary if and only if for every two elements 
ax,a2£. A lying in the same element u £ [A, B] there holds ax c B = a2 c J3. 

Proof, a) Suppose the decompositions A, B are complementary. If an element 
b £ B is incident with %, then it lies in u and is, therefore, incident with a2. Hence 
ax c B cz a2 c B and, analogously, a2 c B cz ax c B. 

b) Suppose d% c B = a2 c B. Let the elements a £ A, b £ B lie in the same 
element u £ [A, B]. The element b is incident with an element x £ A and the latter 
lies in u. So we have b £ ir c B = a c B and. consequently, a and b are incident. 

5.3. Further properties 

Suppose A, B are complementary decompositions on G. 

For every two elements a £ A, H £ [A, B] where a czu there holds u = s(a c B). 

In fact, let a £ A, u £ [.4, B] be arbitrary elements such that a czu. Every 
point u £ u lies in a certain element b £ B which is, of course, a part of u. Since the 
decompositions A, B are complementary, the elements a, bare incident and, there­
fore, b is an element of the closure a c B, namely b £ a c B. There follows u £ b 
cz s(a c B) and u cz s(a c B). Furthermore, every point a £ s(d c B) lies in a 
certain element b £ B incident with a and b is a part of u. Consequently, a £ u as 
well as s(d c B) cz u and the above statement is correct. 

Every decomposition G onG that satisfies [A, B] ^ C 7> A is complementary to B. 

In fact, suppose G is a decomposition on G, satisfying the above relations. Then 
(3.7.2a; 3.4): [A, B] ^ J O , B ^ [A, B], so that(3.2): [C,B] = [A,B].Consider 
arbitrary elements c £ G, b £ B lying in the same elements £ [G, B]. Since [G,B] 
= [A, B], the elements c, b are subsets of the same element u £ [A, B]. From 
G ^ A there follows that c is the sum of some elements a £ A. As A, B are com­
plementary, c, b are incident. Therefore G, B are complementary. 

Furthermore, there holds: 

If the decomposition X on G is a covering of A, i.e., X ^ A, then A is complemen­
tary to (X, B). 

If the decomposition Z onG is a refinement of A, i.e., Z ^ A, then A is comple­
mentary to [Z, B]. 

Proof. Suppose X ^ A. Consider an element u £ [A,(X,B)]. We are to show 
that every two elements a £ A, br £ (X, B) contained in u are incident, so that 
a n V #= 0. Indeed, by 3.7.2 a and for convenient elements x £ X, w £ [A, B] we 
have u czx nw;t moreover, with regard tod' and for convenient x' £ X, b £ B, there 
holds bf = x' n b. From x'nbczuczxnw there follows x' = x and b czw. 
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Furthermore: a czuczx nw. Since a, b cz w and the decompositions A, B are 
complementary, there holds a n b 4= 0 and since a czx,we have: 

anb = (dnx)nb = dn(xnb)==anb'. 

Consequently: a n V 4= 0 . 

b) Suppose Z ^ J . Then we have (3.7.2a): [B, A] ^ [Z, B]^B and, by the 
above (second) statement, the assertion is correct. 

5.4. Modularity 

Let again A, B stand for complementary decompositions on G. 

If X >̂ A, then B is modular with respect to X, A. 

Proof. Suppose X is a covering of A, i.e., X ^ A. Taking account of 3.7.2, our 
object is to show that [X, [A, B]) ^ [A, (X, B)]. Consider an element u' 6 
£ {X, [A, J5]) so that u' = x n u for convenient elements x £ X, u6 [A, B]. The 
element € is the sum of certain elements of A some of which, let us denote them a, 
are incident with x whereas others, if there are any, are disjoint with x. Since 
X ^ A, there applies to every a the relation x ZD a. Hence u' is the sum of 
all the elements a and we have u' = U a. I t remains to be shown that any two 
elements a may be connected in (X, B). Let, therefore, du a2 be such elements, so 
that du a2 czx nu. Since A, B are complementary and au a2 lie in u, there exists 
an element b € B which lies in u and is incident with au a2: at nb ^= 0,a2 nb 4= 0 ; 
as, moreover, au d2 lie in x, we have dt n b = dx n (x n b), a2 n b = d2 n (x n b). I t 
is easy to see that the elements du d2 are incident with x n b 6 (X, B) so that the 
two-membered sequence du d2 is a binding {A, (X, B)} from % to d2 and the proof 
is accomplished. 

The above theorem cannot be converted. In fact, let us show that for two decom­
positions A 0, B0 on the set G the following statement is correct: if B0 is modular 
with regard to any covering of A0and to A0 itself, then A0, B0neednot be complemen­
tary. 

Assuming the set G to consist of four elements: au a2, az, a4, i.e., G = [au a2, 
az, a4}, let A0, B0 be decompositions on G consisting of the elements: 

d1 = [au a2}, d2 = {az, a4}; 

h = {%L h = {a2, az}, bz = {a4}, 

hence 

A0 = {du d2}, B0 = {bu b2, bz}. 

Then there holds [A0, B0] = {G} and we see that, e.g., the elements ax and&3 

have no points in common; consequently, A0, B0 are not complementary. On the 
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whole, there exist two coverings of AQ, namely: Xx = AQ, X2 = $m a xand j?0 is 
modular with regard to both Xx, AQ and X2, AQ (4.3). 

From the above theorem we realize that the figures generated by the decom­
positions X ^ A, Y ^ B have| all the properties of modular decompositions de­
scribed in (4.3). In particular, for 

A = (X, [A, B]) = [A, (X, B)], 

B = (T, [B, A]) = [B, (T, A)] 

there hold the formulae (1), (2) given in 4.3. A, $ have even further properties 
based on the fact that A,B are complementary. Let us just remark that A,hare 
complementary, as the reader might verify by means of the formula [A, 6] = [A, B]. 

5.5. Local properties 

Let again A, B stand for complementary decompositions onG and X, Y for cover­
ings of i . B so that X ^ A, Y ^ B. Let A, h have the same meaning as in 5.4. 

Let, moreover, a £ G be an arbitrary point and x£X,a(iA,y£Y,b£B the 
elements of X, A, Y, B containing a. 

First, owing to the modularity of A, B, the closures (x n y) c A, (x n y) c B 
are coupled. 

Next, consider the following decompositions in G: 

Xa = x c A (= A n x), Ya = y c B (= B n y). 

We observe that the decomposition Xa lies on x and a £ Xa; analogously, the de­
composition Ya lies on y and b £ Ya. 

We shall prove that Xa and Ya are adjoint with regard toa,b. To that purpose we 
must show that 

s(b c Xa n y) = s(a c 7° n x). 

Indeed, let a 6 A, b 6 & denote elements containing the point a. Since, by 5.3, 
the decompositions A, (X,B) are complementary and A is their least common 
covering, we have (by 5.3) 

a = s((b n x) c A). 

On taking account of X ^ A, we see that the closure (b n x) c A consists of exactly 
those elements of A that lie in x and are incident with b so that (b n x) c A 
= bc Xa. Hence s(b c Xa) = a and, moreover, 

s(b c Xa n y) = s(b c Xa) n y = a n y € (Y, A), 

the last relation following from a n y rr> {a} 4= 0. Thus the set s(b c Xa n y) is an 
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element of (F, A) and, in fact, the element containing a. In a similar way we can 
verify that the set s(a c Y n x) is the element of (X, j§), containing a. From this 
and from (K, j§) = (F, A) there follows the equality we were to prove. 

5.6. Exercises 

1. If the decompositions^ A, B are complementary, then the formulae (A, £) = (X, B) 
= (Y,A) = ((X, Y), [A , B]), valid for modiularjlecompositionsX ^A,Y ^ B (see 4.3. 
(2)),jnay be completed by (A, B) — [(X, B), (Y, A)]. In that case the decompositions 
(K, B), (Y, A) are complementary as well. 

2. Show that in a set of four elements there exist, beside the pairs consisting of a covering 
and a refinement, only the following pairs of complementary decompositions: a) pairs 
of decompositions consisting of two elements each of which comprises only two points of 
the set; b) pairs of disjoint decompositions each of which contains three elements. 

6. Mappings of sets 

The theory of decompositions in sets considered in the previous chapters is the 
set-basis of the theory of groupoids and groups we intend to develop. But the 
results we have hitherto arrived at are only one part of the means necessary to 
attain our object. The other part consists of the theory of the mappings of sets, 
dealt with in the following chapters. The reader will certainly welcome the fact 
that the preceding, at times rather complicated, deliberations will now again be re­
placed by simpler ones. 

6*1. Mappings into a set 

In everyday life we often come across phenomena connected with the mathema­
tical concept of mapping. Such phenomena are, in the simplest case, of the follow­
ing kind: We have two nonempty sets Q, G* and between their elements a cer­
tain relation by which there corresponds, to each element of G, exactly one ele­
ment of (?*. For example: 

[1] Between the spectators at a certain performance and the tickets issued for 
the latter there exists the relation that each of the spectators is present on the 
ground of exactly one ticket. 
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