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46 I. Sets 

element of (F, A) and, in fact, the element containing a. In a similar way we can 
verify that the set s(a c Y n x) is the element of (X, j§), containing a. From this 
and from (K, j§) = (F, A) there follows the equality we were to prove. 

5.6. Exercises 

1. If the decompositions^ A, B are complementary, then the formulae (A, £) = (X, B) 
= (Y,A) = ((X, Y), [A , B]), valid for modiularjlecompositionsX ^A,Y ^ B (see 4.3. 
(2)),jnay be completed by (A, B) — [(X, B), (Y, A)]. In that case the decompositions 
(K, B), (Y, A) are complementary as well. 

2. Show that in a set of four elements there exist, beside the pairs consisting of a covering 
and a refinement, only the following pairs of complementary decompositions: a) pairs 
of decompositions consisting of two elements each of which comprises only two points of 
the set; b) pairs of disjoint decompositions each of which contains three elements. 

6. Mappings of sets 

The theory of decompositions in sets considered in the previous chapters is the 
set-basis of the theory of groupoids and groups we intend to develop. But the 
results we have hitherto arrived at are only one part of the means necessary to 
attain our object. The other part consists of the theory of the mappings of sets, 
dealt with in the following chapters. The reader will certainly welcome the fact 
that the preceding, at times rather complicated, deliberations will now again be re­
placed by simpler ones. 

6*1. Mappings into a set 

In everyday life we often come across phenomena connected with the mathema­
tical concept of mapping. Such phenomena are, in the simplest case, of the follow­
ing kind: We have two nonempty sets Q, G* and between their elements a cer­
tain relation by which there corresponds, to each element of G, exactly one ele­
ment of (?*. For example: 

[1] Between the spectators at a certain performance and the tickets issued for 
the latter there exists the relation that each of the spectators is present on the 
ground of exactly one ticket. 
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[2] Between the pupils of a certain school and its classes there is the relation 
that each of the pupils belongs to exactly one class. 

[3] The number n of certain objects is determined by way of associating each 
object with exactly one integer 1, 2 , . . . , n; this is generally done by taking each 
of the objects, one by one, in hand and marking it, actually or only in mind, with 
one of the integers 1, 2, ..., n. 

Let G, G* stand for nonempty sets. By a mapping of the set G into G* we under­
stand a correspondence between the elements of both sets such that to each ele­
ment of G there corresponds exactly one element of G*; in other words, a relation 
by which each element of G is mapped exactly into one element of G*. 

A mapping of the set G into G* is also called a function the domain of which is 
the set G and the range a part of G*. 

Consider an arbitrary mapping g of the set G into G*. The mapping g associ­
ates, with each element a £ G, a certain element a* £ G*. The element a is called 
an inverse image of a* and the element a* the image of a under the mapping g; 
we write a* = g(a) or only a* = ga. Sometimes we also say that a* is the value 

of the function g in a. Another way of notation is [ ^J; the symbol I ^ " j 
expresses a* = ga, b* = gb,... \ ' \ *"! 

If A is a subset of G and A* the subset of G* consisting of the images of the 
individual elements of A, we write A* = g(A) or only A* = gA. IIA 4= 0, then 
we can associate, with every element a £ A, the element ga £ G* and thus obtain 
a mapping of the set A into G*. I t is called the partial mapping (function) deter­
mined by g and denoted gA. 

By the definition of a mapping of G into G* there corresponds, to an arbitrary 
element a £ G, exactly one image a* £ G*. Accordingly, such mappings are called 
single-valued. 

In our study we shall sometimes meet with several mappings g,h,... simulta­
neously. In such cases we mark the concepts connected with the single mappings 
by a prefix, for example: g-9 h-$... and speak about gf-images, h-inverse images, 
etc. 

If two mappings gr, h of the set G into G* are such that ga = ha for each element 
a £ G, we call them equal and write g = h. In the opposite case we call them dif­
ferent and write g =f= h. 

6.2. Mappings onto a set 

By the definition of a mapping g of the set G into (?*, each element of G has, under 
the mapping g, an image but, conversely, each element of G* need not have an 
inverse image. If each element of G* has an inverse image, then g is said to be a 
mapping oiGoutoG*; we also say that the function g maps the set G onto G*. 
If 0 4- A cz G, then gA is evidently a mapping of the set A onto the set gA. 
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From the above examples, the second [2] as well as the third [3] is a mapping 
onto a set: to each class there belongs at least one pupil associated with it under 
the mentioned mapping; if we have n objects and are to determine their number, 
then each object is marked by one of the numbers 1, 2 , . . . , n. Example [1]? on the 
other hand, is a mapping onto a set only if we assume that the house is quite full. 
In the opposite case, there have still remained some tickets for which there are no 
spectators. 

6.3. Simple (one-to-one) mappings 

In the notion of a mapping of the set G into G* there is a further asymmetry with 
regard to both sets: Under the mapping g each element of G has exactly one image 
in G* whereas, conversely, the same element on G* may have several, even an 
infinite number of, inverse images in G. 

If each element of G* has, under g, at most one inverse image, then g is called a 
simple or one4o-one mapping of the set G into G*. 

I t is clear that g is a simple mapping of the set G onto the set G* if and only if 
each element of G* has exactly one inverse image. 

The above example [3] is a simple mapping onto a set; [2] is an example of a 
simple mapping onto a set only if (in theory) each class has only one pupil; [1] is 
an example of a simple mapping onto a set only if the house is full and no tickets 
have remained. 

6.4. InYerse mappings. Equivalent sets. Ordered finite sets 

The concept of a simple mapping of a set onto a set is connected with two impor­
tant notions: the notion of the inverse mapping and the notion of equivalent sets. 

1. Inverse mapping. Suppose g is a simple mapping of the set G onto G*. Then we 
can define a mapping of G* onto<?, denoted by gr1 and called the inverse mapping 
with regard to g9 in the following way: Each elements* 6 G*is? under g~%> associ­
ated with its gr-inverse image a 6 G. 

In example [1], provided the house is full and no tickets have remained, there 
corresponds, under gn1, to each ticket the spectator who owns it. 

Obviously, the inverse mapping is simple and its inverse, (gV1)"1, is again the 
m a PP i n g 9> h e n c e ( g r V = 9> 

2. Equivalent sets. Given two nonempty sets (?, G*9 there need not exist any 
mapping of G onto G* as we see, for example, in the case when G consists of one 
element and G* of two elements; therefore even a simple mapping of a set onto 
another does not necessarily exist. 
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Note that if there exists a simple mapping g of G onto G*, then there also exists 
a simple mapping, gn1, in the opposite direction, i.e., a mapping of G* onto G. 

If there exists a simple mapping g of G onto G*, then the set G is said to be 
equivalent to G*. Then, of course, the set G* is also equivalent to G. With regard 
to this symmetry, we speak about equivalent sets G, G* without differentiating 
which is equivalent to which. The equivalence of sets is expressed by the formulae: 
G*c±GorG~ G*. 

For example, every set A consisting of n (> 0) elements and the set 1, 2, ..., n 
are equivalent because, if the elements of A are denoted, let us say, at,a2,...,an (it 
makes no difference for which element each symbol stands), then we have a simple 
mapping of A onto the set (1, 2 , . . . , n), namely: 

/«! a2 . . . an\ 
\1 2 ... n)' 

3. Ordered finite sets. If the set A consists of n (> 0) elements and a simple 
mapping of A onto the set {1, 2, ..., n) is given, then A is said to be an ordered set 
and the mapping is called an ordering of A. An ordering of A is obtained, for exam­
ple, by way of ranging its elements in a certain order, i.e., a certain element ax 6 A 
is marked as first, the next one as second, etc. and the last: an £ A as the nth. 
Then A is said to be the ordered set of elements ax,a%, ...,an. This notion therefore 
depends on the order in which the names of the individual elements are quoted or 
written. 

By the inversely ordered set we mean the ordered set {a/ , . . . , a'w_1? an
f) where 

ax ~an,...,an = at. 

6.5. The decompositions of sets, corresponding to mappings 

Let g stand for a mapping of the set G onto G*. We have already noticed that an 
element a* € G* may have, under g, several inverse images. 

Consider the system G of all subsets a of G each of which is formed by all the 
inverse images under g of an element a* £ G*. Each element of G is therefore a 
subset of G, consisting of all the points mapped, under gr, onto the same point of G*. 
Since G* contains at least one element a*, the system G is not empty because it con­
tains the set a consisting of the inverse images of a*. Asg is a mapping of GontoG*, 
each element of G* has at least one inverse image, hence the set a of the inverse of 
each element a* € G* is not empty. G is therefore a nonempty system of nonempty 
subsets of G. 

Moreover, it is easy to see that the system G is disjoint, i.e., every two of its 
elements are disjoint, and that it covers G (each element a 6 (? has exactly one 
image a* 6 G* and therefore lies in exactly one element a € G, namely in the set 
of the inverse images of a*). Consequently, the system G of all subsets of G, each of 

4 Bortvka, Foundations 
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which is formed by all the inverse images under the mapping g of some element of G*9 

is a decomposition of the set G. We say that this decomposition corresponds or belongs 
to the mapping g. 

In the above example [2], the corresponding decomposition consists of single sets 
of pupils belonging to the same class. 

Note, in particular, the following extreme cases: If the set (?* consists of one 
element only, then the corresponding decomposition 6? is (?max. If g is a simple 
mapping, then the corresponding decomposition is Gmin. 

6.6. Mappings of sets into and onto themselves 

The above deliberations do not exclude that 6?* may be identical with(?. If (?* = G, 
then we speak about a mapping of the set G into or onto itself. 

Associating, for example, with every natural number n the number n + 1, we 
obtain a mapping of the set of all natural numbers into itself. 

The simplest mapping of the set G onto itself is obtained by associating, with 
every element a£ff . again the element a; it is the so-called identical mapping of 
G9 denoted e. 

A simple mapping of the set G onto itself is called a permutation of G. Permuta­
tions of finite sets are the object of a more detailed study in Chapter 8. 

6.7. Composition of mappings 

The concept of a composite mapping. Let (?, FT, K stand for arbitrary nonempty sets, 
g denote a mapping of the set G into H and h a mapping of the set H into K. 
Then there corresponds, under the mapping g, to every element a £ G a certain 
element ga 6 H and to ga there corresponds, under the mapping h, an element 
h(ga) € K. Associating with every element a £ G the element h(ga) 6 K, we 
have a mapping of the set G into K. I t is called the composite mapping of g and 
h (in this order) and is denoted by hg. As a mapping of the set G into K, hg has 
the property that, for a € G, there holds (hg)a = h(ga). 

Let us note some particular cases. If g maps the set G onto H and h maps the 
set H onto K, then hg is obviously a mapping of the set G onto K. 

If both g and h are simple mappings, then hg is simple as well because, in that 
case, any two different elements «,&€(? have two different gp-images: ga, gb 6 H 
and the latter have two different fc-images: hga, hgb 6 K. 

Furthermore, it is clear that if the set K is identical with G so that ft is a mapping 
of the set H into G, then hg is a mapping of the set G into itself; if g maps the set 
G onto H and h the set H onto G, then hg is a mapping of the set G onto itself; 
in particular, if the mapping g is simple and h ~ gr1, then hg is the identical 
mapping of the set G. 
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Note, moreover, that if the sets H and K are both identical with G so that both 
g and h are mappings of G into itself, then even hg is a mapping of G into itself; 
if both g and h map G onto itself, then even hg maps G onto itself. 

A simple mapping g of the set G onto itself is called involutory if the composite 
mapping gg is the identical mapping of G: gg = e. The inverse mapping gr1 of 
any involutory mapping gr obviously equals g, i.e., gr1 = g. 

Finally, let us note that for the identical mapping e of the set G and for an 
arbitrary mapping g of G into itself there holds: eg = ge = g. 

Example of a composite mapping: If g denotes the mapping considered in the 
above example [1] and h stands for the mapping of the set of tickets into the set of 
colours associated with the tickets, then the composite mapping hg associates, with 
every spectator, a certain colour, namely the colour of his ticket. 

The associative law for the composition of mappings. Let us now consider three 
mappings g, h, fe, where k stands for a mapping of the set K into some set L 
(without excluding the case that L is identical with one of the sets (?, H, K). An 
important property of the composition of mappings consists in that there holds: 

k(hg) = (kh)g, 

called the associative law for the composition of mappings. 
The above equality expresses that every element of G has, under both the map­

pings k(hg) and (kh)g, the same image lying, of course, in the set L. 
To prove this, let us consider the image of an element a £ G under the mapping 

k(hg). The* fc(ftg)-image of a is the image of the element (hg)a under the mapping 
k and is therefore obtained by associating, with the element ga £ H, its fc-image 
h(ga) 6 K and then, with the latter, its fe-image k(hg)a 6 L. But the fc-image of 
the element h(ga) is, by the definition of the mapping~kh, the same as the (kh)g-
image of the element a. Consequently, the above equality is true. 

Instead of k(hg) or (kh)g we simply write khg. 

6.8. The equivalence theorems 

Let us now introduce three theorems called equivalence theorems. They can, owing 
to their simplicity, be justly regarded as describing the properties of certain equi­
valent sets. Their value is due to the fact that they express the set-structure of 
important situations connected with the so-called theorems of isomorphism we 
shall deal with in the theory of groupoids and groups. 

1. The f i rs t equ iva lence theorem. If there exists a mapping of the set G onto 
the set (?*, then G* is equivalent to a certain decomposition lying on G and vice versa. 
The mapping of the decomposition G belonging to a mapping g of the set G onto G* 
under which there corresponds, to every element a6ff , the g-image of the points lying 
in a, is simple. 

4* 
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Indeed, if there exists a mapping g of the set G onto G*9 then the set G* is equi­
valent to the decomposition G belonging to g. A simple mapping of G onto G* is 
obtained by associating, with every element a € G, the g-image of the points 
a € G lying in a. If, conversely, there exists a simple mapping i of a decomposi­
tion G of the set G onto the set G*, then the composite mapping ij maps the set 
G onto G*; j denotes the mapping of the set G onto the decomposition G, associa­
ting with each point a 6 G that element a € G which contains a: a (i a =ja £ G. 
The decomposition of G belonging to the mapping ij is G. 

2. Second theorem. Every two coupled decompositions A, B in G are equi­
valent, i.e., A cf B. The mapping of the decomposition A onto B under which there 
corresponds, to every element a £ A, the element b 6 B incident with a, is simple. 

An important case of this theorem (see 4.1) concerns the equivalence of the clo­
sure and the intersection of a subset X a G and a decomposition Y in G: If X n sY 
4= 0, then there holds X c Y cz Y n X. The mapping given by the incidence of the 
elements is simple. 

3. Th i rd theorem. A decompositionB of some decomposition B of the set G and 
the covering A of B,jenforced by B, are equivalent sets, i.e., B czA. The mapping 
of the decomposition B onto A under which th§re corresponds, to every element 5 £ B, 
the sum a 6 A of the elements of B lying in %, is simple. 

6.9. Mappings of sequences and a-grade structures 

In this chapter we shall deal with some more complicated notions based on the 
concept of the equivalence of sets. 

1. Mappings of sequences. Let<% (2> 1) be a positive integer. Consider wo arbi­
trary #-membered sequences: 

(a) = (%,..., aa), (b) = (bt,..., ba). 

a) By a mapping a of the sequence (a) onto the sequence (b) we naturally under­
stand a simple mapping (6.10.2) of the set formed by the members of (a) onto the 
set of the members of (b). Under any mapping a of the sequence (a) onto the se­
quence (b) there corresponds, therefore, to each member ay of (a), exactly one member 
6a = aay of (6) and, simultaneously, to members of different indices there corre­
spond, in (b), members with different indices as well. Every mapping a of the se­
quence (a) onto (b) is uniquely determined by a certain permutation p of the set 
{ 1 , . . . , a) in the sense of the formula: aay = bpy (y = 1, . . . , <%). The function in­
verse of a mapping of the sequence (a) onto (6) is, of course, a mapping of the 
sequence (b) onto (a). 
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I t is clear that there exist (even in the number a!) mappings of the sequence (a) 
onto (b) as well as mappings in the opposite direction. We see that the sequences 
(a) and (b) are equivalent. Every two finite sequences of the same length are equi­
valent. 

b) Suppose the members al9 ...,aa of the sequence (a) as well as the members 
bl9 ..., ba of the sequence (b) are nonempty sets. 

The sequence (b) is said to be strongly equivalent to the sequence (a) if the following 
situation occurs: There exists a mapping a of the sequence (a) onto (b) such that, 
to each member ay of (a), there corresponds a simple mapping ay of ay onto the mem­
ber b8 = aay of (b). 

If (b) is strongly equivalent to (a), then (a) has, obviously, the same property 
with regard to (b). On taking account of this symmetry, we call the sequences (a) 
and (b) strongly equivalent. 

c) Assume the members %,. . . , aa of the sequence (a) as well as the members 
bl9 ...9ba of (6) to be decompositions in the set G. 

The sequence (b) is said to be semi-coupled or loosely coupled (coupled) with (a) in 
the following situation: There exists a mapping a of the sequence (a) onto (6) such 
that every member ay of (a) is semi-coupled (coupled) with its a-image bd = aay 

in (b). 
If (6) is semi-coupled (coupled) with (a), then the sequence (a) has evidently the 

same property with regard to (6). In that case, on taking account of this symmetry, 
we call the sequences (a) and (6) semi-coupled (coupled). 

Suppose (b) is semi-coupled with (a) and let a stand for a mapping of the se­
quence (a) onto (6), determining the pairs of semi-coupled (coupled) members. Con­
sider a member ay of (a) and its a-image b$ = aay in (b). Then the closures Hay 

= b§ c ay, H6a = ay cb§ are nonempty and coupled (4.1). According to the second 
equivalence theorem (6.8), the mapping ay of the closure Hay onto the closureH6a, 
determined by the incidence of the elements, is simple. In particular, if the se­
quence (b) is coupled with (a), wehaveHa., = ay9 Hbd = bd. We see that two coupled 
sequences are always strongly equivalent. 

2. Mappings of a~grade structures. Let a ( ^ 1) be a positive integer and ((A) = ) 
(Au ..., Aa), [(B) = ) (Bl9..., Ba) stand for arbitrary sequences of nonempty sets. 
Let, moreover, A be an #-grade structure with regard to the sequence (A) andB a 
structure of the same kind with regard to (B) (1.9). 

Note that any element 1 6 A (5 £ B) is an <%-membered sequence S = (al9..., aa) 
(5 = (bl9..., ba)) every member ay (by) of which is a nonempty part of the set 
Ay (By); (y = 1, ...,&)• 

Suppose there is a simple mapping / of the structure A onto S. 

a) The mapping f is called a strong equivalence-mapping of the structure A onto S9 

briefly, a strong equivalence of A onto B in the following situation: 
There exists a permutationp of the set {1, ...9 a) with the following effect: To 
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every member ay of any element B> = (ax,..,, aa) £ A there exists a simple mapping 
ay of ay onto the member bpy of.the sequence / I = 5 = (bt,..., ba) £ B; (y = 1, 
. . . ,« ) . 

We observe that the inverse function/-1 of an arbitrary strong equivalence/ of 
the structure A onto B is a strong equivalence in the opposite direction, i.e., a 
strong equivalence of S onto A. 

If there exists a strong equivalence of A onto B, then we say that the structure 
B is strongly equivalent to A. The notion of strong equivalence is, of course, symme­
tric with regard to both structures; therefore we also speak about strongly equi­
valent structures A, B. 

b) Let us now assume that the sequences (A), (B) consist of the decompositions 
Al9..., Aa and Bl9..., Ba in the set 0. Then every element E = (al9..., aa) 6 A 
(5 == (bt,,.., ba) € B) is an&-membered sequence every member of which, ay (by), 
is a decomposition in G, namely, a part of the decomposition Ay (By); (y = 1, ...9<x). 

The mapping / of the structure A onto B is called equivalence-mapping connected 
with semi-coupling or equivalence-mapping connected with loose coupling (equiva-
lence-Tnapping connected with coupling), briefly equivalence connected with semi-
coupliftg or with loose coupling (with coupling) if the following situation occurs: 

There exists a permutation p of the set {1, ...,oc] with the following effect: 
Every member ay of any element 5 = (al9 ..., aa) £ A is semi-coupled (coupled) 
with the member bpy of the element / I = B = (bl9 ..., ba) £ J (y = 1, ..., <x). 

I t is easy to see that the inverse function f"1 of an arbitrary equivalence con­
nected with semi-coupling (coupling) of the structure A onto the structure B is an 
equivalence-mapping of B onto A which is of the same type. 

Let / denote an equivalence connected with a loose coupling (coupling) of the 
structure A onto S. Consider arbitrary members dy9 bs (d = py) which are in the 
above relation so that dy is in S, b$ is in fE = 5 and the decompositions ay, bd are 
semi-coupled (coupled). Then the closures Hdy = bd c dy, Hb8 = ay cbd are non­
empty and coupled (4.1). By the second equivalence theorem (6.8), the mapping 
ay of the closure T3.ay onto Hbd, given by the incidence of the elements, is simple. 
In particular, if / is an equivalence connected with coupling, we have TAay = ay, 
Hbd = bd. We observe that every equivalence of the structure A onto S, connected 
with coupling, is a strong equivalence. 

If there exists an equivalence connected with semi-coupling (coupling) of the 
structure A onto B, we say that S is equivalent to and semi-coupled or loosely 
coupled (coupled) with A. These notions are obviously symmetric with regard to 
both structures; for that reason we speak about equivalent and semi-coupled or 
equivalent and loosly coupled (equivalent and coupled) structures A, B. Especi­
ally, every two equivalent and coupled structures A, B are strongly equivalent. 
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6.10. Exercises 

1. Consider some simple real functions (for example y = ax + b or y = x% and similar) as 
particular cases of the above concept of a function. 

2. If the sets G and G* are finite and of the same order, then: a) every mapping of G onto G* 
is simple; b) every simple mapping of G into G* is a mapping onto G*. 

3. Assume A cz G and let g[A] denote the mapping of G into the set {0,1}, defined als follows: 
For a € G there is g[A]a = 1 or 0 according as a lies or does not lie in A. Prove that the 
following relations are true: 
a) g[A n B]a = (g[A]a) • (g[B]a) = the least of the numbers g[A]a, g[B]a; 
b) g[A u B]a = the greatest of the numbers g[A]a, g[B]a; 
c) if A n B = 0, then g[A u B]a = g[A]a + g[B]a. 

4. Let f[a] denote the mapping of a straight line onto itself, defined as follows: to every 
point of the straight line with the coordinate x there corresponds the point with the coordi­
nate x' = x + a, a standing for a real number. Similarly, let g[a] be the mapping of the 
straight line onto itself, given by the formula x' = — x + a. The distance between two 
arbitrary points x±, x% of the straight line, i.e., the number1) \xt — x2\ and the distance 
between their images under both mappings f[a] and g[a] are equal. Under the mapping 
f[a], no point of the straight line is mapped onto itself unless a == 0 and then we have the 
identical mapping of the straight line onto itself; under the mapping g[a] exactly one 
point is mapped onto itself. For the composition of the mappings f[a] and g[a] there 
hold the following formulae: 

/ M / M = /!> + 6], g[b]f[a] = g[-a + b], 

f[b]gfcl = 8T[a + o], g[b] g[a] = f[-a + b]. 

Remark. The mappings/[a] and g[a] are called Euclidean motions on a straight line. 

5. Let f[oc; a, b] denote the mapping of a plane onto itself, defined in the following way: 
to every point in the plane, with the coordinates x, y, there corresponds the point with the 
coordinates x', y', where 

x' = x . cos a + y . sin oc + a, 

y' = —x . sin ex + y . cos a + b, 

a, a, b denoting real numbers. Similarly, let g[<x; a, b] be the mapping of the plane onto 
itself, given by the formulae 

x' = x • cos (x + y • sin oc + a, 

yr = x • sin a — y • cos oc + b. 

The distance between two arbitrary points xx, yx and x2, y2 in the plane, namely, the 
number ]/[(% — #2)

2 + (^i — y2)
2] and the distance between their images in both mappings 

f[a; a, b] and g[oc; a, b] are equal. Under the mapping f[oc; a, b], where a is a multiple of 
%TI, no point in the plane is mapped onto itself except in the case: a = b = 0 and then 
we have the identical mapping of the plane onto itself. If oc is not a multiple of %n, then 

*) If x is an arbitrary number, then |a?| denotes the absolute value of x, namely, the non-
negative number of both x and —x. 
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exactly one point in the plane is mapped onto itself. Under the mapping g[a; a, 6] no 
point in the plane is mapped onto itself unless the numbers a, a, b are connected by the 
relation: 

a . cos - a + b . sin - a — 0: 
2 2 

in that case all the points in the plane that are mapped onto themselves form a straight 
line. For the composition of the mappings f[a; a, 6], g[a; a, 5] there hold the following 
formulae: 

f[j3; c, d] f[a; a, 6] = f[a + f$; a %cos /? + b . sin fi + c, 
—a . sin § + b . cos /3 + d], 

g[@; c, d] f[a; a, b]=g[a + P; a . cos/3 + b . sinjS + c, 
a . sin ft —• b . cos /? + d], 

/[*#; c» fl SuJ*;a* &] = ff[<* ~ P> a . cos jf3 + 6 . sin /> + c, 
—a . sin /? + 6 . cos ft + d], 

gfp?;c,d] ff[a;a,6]--=/[a —j8; a . cos/3 + b . sin£ + c, 
a . sin /? — & . cos /? + d]. 

Remark. The mappings/[a; a, 6] and gr[a; a, 6] are called Euclidean motions in a plane. 

6. Every <%-membered (infinite) sequence on a set A is the set formed from the images of the 
elements of the set {1, . . . , a} ({1, 2,...}) onto A under a convenient mapping of the latter 
onto the set A (1.7). 

7. For the equivalence of nonempty sets A, B, G the following statements are correct: 
a) A ~ A (reflexivity); b) from A ~ B there follows B ~ A (symmetry); c) from A~B, 
BczzG there follows Ac^G (transitivity) (6.4). 

8. Let g, h denote mappings of the set G into itself and Gg, Gh, Ghg be decompositions on G, 
corresponding to the mappings g, h, hg. Show that the following relations apply: 
a) hgG cz hG, Ghg ^ Gg, 
b) the equality hgG — hG yields gG cGh = Gh and vice versa, 

c) the equality Ghg = Gg yields gG n Gh— (g@)min an<i vice versa. ((gG)min is the least 
decomposition of the set gG.) 

9. Any two adjoint chains of decompositions in G have a coupled refinement. (Prove it by 
means of the construction described in 4.2.) 

7. Mappings of decompositions 

Let g denote a mapping of the set G onto a set G*. Thus every element a £ G is, under 
g, mapped onto a certain element a* (i G*; a* is the image of the element a under 
the mapping g, To the mapping g there corresponds a certain decomposition G 
on G; each element of G consists of all 0-inverse images of the same point in G*. 
The decomposition G is equivalent to the set G*. 
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