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70 I. Sets 

9. General (multiple-valued) mappings 

9.1. Basic notions and properties 

The notion of a mapping of the set G into the set G* may be generalized by the 
following definition: 

A general (multiple-valued) mapping of G into G* is a relation between the ele­
ments of both sets by which there corresponds, to every element of G, at least one 
element of G*. 

Let g be a general mapping of G into G*. Then each element a 6 G has at least 
one, generally more, maybe even an infinite number of images in G*; the set of 
these images is denoted by ga. 

If every element a* 6 G* is contained in the set of the images of some element 
a £ G, then g is said to be a general mapping of G onto G*. 

In that case g determines a certain general mapping of G* onto G, called the 
inverse of g and denoted by g~l. I t is defined in the way that to any element a* £ G* 
there corresponds every element a £ G whose set of images under g contains a*. 
By this definition both a* £ ga and a £ g~xa* are simultaneously valid, that is 
to say, if a* £ ga then a £ g~%a*, and conversely. 

I t is easy to show that the mapping inverse of gn1 is the original mapping g, i.e., 
(fiT1)"1 — g. Indeed, the relation a* £ ga yields a £ g-xa* whence a* £ (gr1)-1^, 
so that ga cr (gr1)""1^; vice versa, from a* £ (g-1)-^ follows a £ g~xa* whence 
a* £ ga and so (gf~!)-% cz ga. So we have (fjn1)-1^ == ga and the proof is complete. 

On taking account of the above property of the inverse mapping, we call both 
g and g~% inverse without discerning which is inverse of which. 

If g is single-valued, then g~l is, as a rule, general. In that case the set of the 
images g~xa* cz G of an element a* £ gG consists of all the points of G that are, 
under the function g, mapped onto a*; g~xa* is therefore an element of the de­
composition in G corresponding to g. 

The concept of a general mapping may serve as the basis of an extensive theory 
which, naturally, also comprises results concerning the single-valued mappings 
considered above. From this theory we shall now introduce a few details about the 
composition of general mappings. 

The notion of a composite mapping which we have, in 6.7, introduced for single-
valued mappings may be directly extended to general mappings. Let G, H, K 
denote nonempty sets, g a general mapping of G into H and h a general mapping 
of H into K. Then the mapping hg, composed of the functions g and h (in this 
order), is defined by associating, with every element a £ G, all the fc-images of the 
individual elements lying in ga. Obviously, there holds hga cz K. In particular, 
the set of the images g~lga of an element a £ G consists of elements x £ G such 
that gx n ga 4= 0. 
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Finally, let us remark that the notion of a general mapping of G into (?* may be 
extended by assuming that there exist elements of G with which no element of G* 
is associated. Such a general mapping is called a relation of the set G into the set (?*. 

In the following study of general mappings we shall restrict our attention to the 
case when G and Cr* coincide and we have to deal with general mappings of G onto 
itself. 

9.2. Congruences 

A general mapping g of the set G onto itself is called a congruence on G if it has the 
following properties: 

a) For a 6 G there holds a 6 ga\ 

b) if for a,b, c £ G there holds b € ga, c £ gb, then c £ ga. 

These properties are expressed by saying that g is reflexive or transitive, respec­
tively. 

A congruence on a set is therefore a general mapping of a set onto itself which 
is both reflexive and transitive. 

Suppose gr is a congruence. 
The relation b £ ga is expressed by saying that b is congruent to a under g. 

It is easy to realize that the inverse general mapping g~% is also a congruence. In 
fact, the mapping g~x is obviously reflexive. Moreover, from b £ g~~xa, c £ g-xb 
there follows a £ gb, b £ gc, hence a £gc and. we have c £ g~xa, so that gr1 is even 
transitive. 

The congruence g~x is, of course, called the inverse of g. The congruence inverse 
of sr1 is gr. 

If we have, for example, arbitrary decompositions A, B on G and associate, 
with every element a £ A, all the elements of A that may be connected with a in 
By then we have a congruenceg on A (see 3.1 a, b). In this case, every element b £ A 
that may be connected with a in B is congruent to a. In the inverse congruence gr1 

there correspond, to every element a £ A, all the elements of A with which a may 
be connected in B; the latter are, according to 3.1c, precisely those elements that 
can be connected with a in B. Consequently, in this particular case, the inverse 
congruence g~l is identical with g, i.e., g-1 = g. 

Some other examples of congruences: Let us associate, with every decomposi­
tion A of the set G, all its coverings (refinements). In both cases we obtain a congru­
ence on the set of all decompositions of G (see 2.4 a, b). Every decomposition of G 
which is a covering (refinement) of A is congruent to A. Either of the congruences 
is the inverse of the other. 

Of particular importance are the symmetric and antisymmetric congruences. 
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9.3. Symmetric congruences 

A congruence g on the set G is called symmetric if: 

From b ^ga there follows a 6 gb. (S) 

This property expresses the symmetry of the congruence g: Of every two ele­
ments in G either not one is or both are contained in the set of images of the other. 
If 6 6 ga, then we write b = a (g), briefly b = a. Then, of course, we also have 
a==b and say that the elements a, b are congruent. 

For instance, the congruence on the decomposition A, given in 9.2, first ex­
ample, is symmetric according to 3.1c. 

Let g be an arbitrary symmetric congruence on G. 
The congruence g has the remarkable property that the system of all subsets of G, 

each of which consists of all the elements congruent to some element of G, is a decompo­
sition of G. The latter is said to belong or to correspond to g; its elements are called 
classes of the congruence g. 

The proof of this statement is an easy generalization of the proof in 3.4 where 
we have shown that the system A of subsets of A is a decomposition on A ; we 
leave it to the reader to carry it out himself. 

I t is also easy to see that any two points of G lying in the same class of g are con­
gruent, whereas any two that do not lie in the same class are not. A subset of G which 
has exactly one point of G in common with each element of the decomposition corre­
sponding to g forms a system of representatives of the congruence g in the sense that 
every element of G is congruent to exactly one of the representatives. 

Vice versa, if we have, on the set G, an arbitrary decomposition A, then there exists 
a congruence on G such that the corresponding decomposition is A. This congruence 
is defined in the way that each point a £ G is congruent to any point lying in the 
same element of A as a, whereas the other points of G are not congruent to a. 

Between the study of symmetric congruences and the study of decompositions 
of sets there is no essential difference. 

Finally, we shall show that the inverse congruence g~x is equal to g, i.e., g™1 = g. 
Indeed, b 6 g~x& yields a € gb and hence, on taking account of (S), there holds 
b 6 ga and we have gr% cz ga; conversely: by (S), b ^ ga yields a c£ gb and there­
fore also b € g~~x& so that ga cz g~~xa. Hence g~la = ga, which was to be proved. 

Note that every congruence on G that coincides with its own inverse is symme­
tric. 

Symmetric congruences are also called equivalences. 
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9.4. Antisymmetric congruences 

1. Basic concepts and properties. A congruence g on the set G is called antisym­
metric if: 

From b £ ga, a £ gb there follows a = b. (AS) 

This property expresses the antisymmetry of g: Of any two different elements of 
G either not one or exactly one is congruent to the other. If b is congruent to a, i.e., 
if b £ ga, we write a ^ b (g) or b ^ a (g), briefly a ^ b or b ^ a. 

If the congruence g is antisymmetric, then its inverse, g-1 is antisymmetric as well, 
for b £ g~~xa, a £ g~xb yield a £ gb, b £ ga and, consequently, by (AS), there holds 
a = b. 

For example, by 2.4c, both congruences on the system of all decompositions on 
G considered in 9.2 are antisymmetric; as we have already said, either of them is 
the inverse of the other. 

Antisymmetric congruences are also called partial orderings; partial orderings 
which are inverse of each other are called dual. 

2. The least upper bound (join) and the greatest lower bound (meet) of two elements. 
Remarkable notions based on the concept of antisymmetric congruence are those 
of the least upper bound and the greatest lower bound of two elements. 

Let there be given, on G, an antisymmetric congruence g. 
The least upper bound or the join of a two-membered sequence of elements a,b £ G 

with regard to g, briefly, the least upper bound or the join of a, b is the element c £ G 
such that a 5̂  c, b ^ c and, furthermore, c ^ x for every x £ G satisfying 
a ^_ x, b ^ x. Any two-membered sequence of elements may have at most one 
join because, if c, c' are joins, we have c ^c' and, simultaneously, c' ^ c so that, 
with respect to (AS), there holds c = c'. The join of the elements a, b need not exist 
at all; if it does, it is denoted by a u b. 

Analogously we define the greatest lower bound or the meet of a two-membered 
sequence of elements a, b £ G with regard to g, briefly, the greatest lower bound or 
the meet of a, b £ G; it is the element c £ G such that c ^a,c ^b and, furthermore 
x ^ c for every x £ G satisfying x ^ a, x ^ b. There may exist at most one meet 
b; if it does, it is denoted by a n b. 

Comparing the definitions of the join and the meet we observe that the join (meet) 
of a, b with regard to g, if it exists, is the meet (join) of a, b with regard to gr1. 

We leave it to the reader to verify that, for every three elements a, b, c £ G, the 
following formulae are true whenever the included joins and meets exist: 

a) a u b = b u a, a') a n b = b n a, 
b) a u a = a, V) a n a = a, 
c) a u (b u c) = (a u b) u c, c') a n (6 n c) = (a n 6) n c, 
d) a u (a n b) = a, d') a n (a u b) = a. 
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Since there hold a) and a') we generally speak about the join and the meet of 
two elements without drawing any distinction as to their arrangement. 

To give an example of a join and a meet, let us note the antisymmetric congru­
ence on the system of all decompositions of G under which there correspond, 
to each decomposition of G, all its coverings or refinements. Every two decompo­
sitions A, B of G have the join [A, B] or (A, B) and the meet (A, B) or [A, B]. 

9.5. Exercises 

1. Let the set G be mapped, under the single-valued functions a, b, onto the set A or B, 
respectively, and let its decompositions corresponding to these mappings be equal. Show 
that, in that case,/ = bar1 is a single-valued and simple mapping of A onto B and/™1 = ab~% 

the inverse mapping of B onto A. Hence, in this case the sets A, B are equivalent. 

2. Let n denote an arbitrary positive integer. Associating, with every integer a, each number 
a + vn where v = . . . , —2, —-1, 0 ,1 , 2 , . . . , we obtain a symmetric congruence on the 
set of all integers. The corresponding decomposition consists of n classes; the numbers 
0 , 1 , . . . , n — 1 form a system of representatives of the congruence. 

3. Associating, with every positive integer, each of its positive multiples (each of its positive 
divisors), we obtain an antisymmetric congruence on the set of all positive integers. Every 
two positive integers have, with regard to this congruence, a join formed by their least 
common multiple (greatest common divisor) and a meet formed by their greatest common 
divisor (least common multiple). Either of the congruences is the inverse of the other. 

4. Associating, with every part of G, each of its supersets (subsets), we obtain an anti­
symmetric congruence on the set of all parts of G. Every two parts of G have, with regard 
to this congruence, a join formed by their sum (intersection) and a meet formed by their 
intersection (sum). Either of the congruences is the inverse of the other. 

5. If g is an antisymmetric congruence on G and some elements a,b € G have the join a u b, 
then : 
a) g(a u 5) = ga agb (the right-hand side denotes, of course, the intersection of ga, gb), 
b) g~%(a ub)~D g~xa u g~xb. 

10. Series of decompositions of sets 

In this chapter we shall develop a theory of the so-called series of decompositions 
of sets. We shall make use of many results arrived at in the previous considera­
tions and concerning decompositions and mappings of sets. The mentioned theory 
describes the set-structure of the appropriate sections of the theory of groupoids 
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