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94 II . Groupoids 

3. In 11.3 b, the set 0 may consist only of the numbers 0, . . . , n — 1. Construct the appro­
priate multiplication tables if n = 1, 2, 3, 4, 5. 

4. If the positive integers a, b are less than or equal to a positive integer n^ 5, then the 
number of the prime factors of the number 10a + b is <£ n. Hence a multiplication in the 
set O, consisting of the numbers 1,2, ..., n, can be defined as follows: The product a. b 
of an element a e 0 and an element b e O is the number of the prime factors of 10a + b. 
The reader may verify that, for n = 6, the corresponding table is 

1 2 3 4 5 6 

1 1 3 1 2 2 4 
2 2 2 1 4 2 2 
3 1 5 2 2 2 4 
4 1 3 1 3 3 2 
5 2 3 1 4 2 4 
6 1 2 3 6 2 3 

5. In the system of all the subsets of a nonempty set the multiplication can be defined by 
associating, with each ordered pair of subsets, their sum. May the multiplication be 
similarly defined by means of intersection? 

6. Find some other examples of multiplication in sets. 

12. Basic notions relative to groupoids 

12.1, Definition 

A nonempty set G together with a multiplication M in G is called a groupoid. G is 
the field and M the multiplication of or in the groupoid. The groupoids will gen­
erally be denoted by German capitals corresponding to the Latin capitals used for 
their fields. Thus, for a groupoid whose field is denoted by G, we use the notation 
@; if a groupoid is denoted by <S, then G generally stands for its field. 

12.2. Further notions. The groupoids 3? 3«? ®» 

To groupoids we may apply the notions and symbols defined for their fields. So 
we speak, for example, about elements of a groupoid instead of elements of the 
field of a groupoid and write a 6 & instead of a 6 G; we speak about subsets of a 
groupoid and write, e.g., A cz 6$ or @ => A, we speak about decompositions in a 
groupoid and on a groupoid, about the order of a groupoid, a mapping of a group-
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oid into a certain set, into a certain groupoid or onto a groupoid, etc. A nonempty 
subset of a groupoid is also called a complex. If G is an abstract set, then the group­
oid & is called abctract. 

The notions and symbols defined for multiplication apply to groupoids as well. 
Thus, in particular, every two-membered sequence of elements a, b 6 & has a well 
determined products.b,briefly ab; if for each a, b 6 © there holds ab = ba, then 
the groupoid is called commutative or Abelian. With every finite groupoid we can 
also associate a multiplication table describing the multiplication in %. In 11.3 
we have given several examples of multiplication; each of them simultaneously 
applies to a groupoid. 

In what follows we shall often refer to three groupoids denoted by Q, Qn, ©n : 
3 consists of the set Z of all integers and its multiplication is defined by the usual 
addition (11.3a). Qn consists of the set Z = {0,..., n —- 1} where n is a positive 
integer and the multiplication is defined by addition modulo n (11.3b). The group­
oid ®n consists of the set Sn formed by all permutations of a finite set H of order 
n ( ^ 1) and the multiplication is defined by the composition of permutations. 
Any groupoid whose elements are permutations of a (finite or infinite) set and the 
multiplication is defined by composing permutations is called a, permutation group­
oid, e.g., the groupoid ©w. 

12.3. Interchangeable subsets 

Let @ denote (throughout the book) a groupoid. 
Suppose A, B are subsets of &. The subset of & consisting of the products ab of 

each element a £ A and each element b 6 B is called the product of the subsets A 
and B; notation: A . B or AB. If any of the subsets A, Bis empty, then the symbols 
A .B, AB denote the empty set. For a 6 & we generally write aA instead of {a} A 
and, similarly, Aa instead of A {a}; for example, aA denotes the set of all the 
products of a and each element of A or, if A = 0, the empty set. Instead of A A we 
sometimes write, briefly, A*. 

If AB = BA, then the subsets A, B are called interchangeable. In that case the 
product of any element a £ A and any element 6 £ B is the product of an element 
b' 6 B and an element a' £ A; simultaneously, the product of any element b € B 
and any element a £ A is the product of an element a' 6 A and an element b' 6 B. 
If ($5 is Abelian, then, of course, every two subsets of & are interchangeable. In the 
opposite case there holds, for some elements a, b £ @J, the inequality ab =}= ba, 
hence every two subsets A, B cz @ need not be interchangeable, for example, if 
A = {a}, B = {b}. The product AB of the subset A = {1} and the subset 
2? =={..., — 2, 0, 2,...} of the groupoid 3 is {..., ™• 1? 1> 3,...} and, evidently, 
equals the product BA; if A = {0, 1}, B = {..., —2, 0, 2, . . . } , then we have AB 
= BA = Z. Note that for every groupoid @5 the relation GG cz & is true. 



9 6 I I . Groupoids 

12.4. Subgroupoids, supergroupoids, ideals 

Suppose A stands for a certain complex in ®. If A A cz A, that is to say, if the 
product of any a 6 A and b £ A is again an element of A, then A is said to be a 
groupoidal subset of ®. In that case the multiplication M in ® determines a, so-
called partial multiplication MA in A, defined as follows: MA associates, with any 
two-membered sequence of elements a, b £ A, the same product ab £ A as the mul­
tiplication M. The set A together with the partial multiplication MA is a groupoid 31. 
We say that 21 is a subgroupoid of ® and ® a supergroupoid of 21 and we write: 
21 cz ® or ® ZD 21. If A is a proper subset of ®, then 21 is said to be a proper sub­
groupoid of ® and ® a proper supergroupoid of %.® always contains the greatest 
subgroupoid, identical with itself. 

If even GA cz A (or AG cz A or, simultaneously, GA cz A ZD AG), then 21 is 
called a left (or a right or a bilateral) ideal of ®. The case of A 4= G is again char­
acterized by the attribute: proper. 

For example, the complex of Q, consisting of all integer multiples of a given 
positive integer m, is groupoidal because the product (i.e., the sum in the usual 
sense) of any two integer multiples of m is again an integer multiple of m; this com­
plex together with addition in the usual sense is therefore a subgroupoid of Q; 
in case of m > 1 it is obviously a proper subgroupoid of Q. Another example: The 
subset of all elements of Sn that leave a given element a £ H invariant is groupoidal 
because, if any two permutations p, q £ ©n do not change the element a, then the 
same, naturally, holds for their productp.qr (i.e., for the composite permutation 
qp); this subset, together with the composition of permutations in the usual sense, 
is therefore a subgroupoid of ©„. 

I t is easy to see that for any groupoids %,%,® there evidently hold the follow­
ing statements: 

If 33 is a subgroupoid of 2t and 2t a subgroupoid of &, then 93 is a subgroupoid of ®. 

If 21, S3 are subgroupoids of ® and for their fields A, B there holds B cz A, then 93 is 
a subgroupoid of 21. 

12.5. Further notions 

Since we apply to groupoids the notions and symbols we have defined for their 
fields, we sometimes speak, e.g., about the intersection of a subset B cz ® and a 
subgroupoid 2t cz ® in the sense of the intersection of the subset B and the field 
A of 2C; analogously, we speak about the product of a subset B and a subgrou­
poid % about the product of a subgroupoid 21 and a subset B, about the closure 
of a subgroupoid 2C in a certain decomposition A, about the intersection of A and 
a subgroupoid % etc;notation,e.g., B n U or 21 n B, B% %B, U c A or A 3 % 
1 n i o r l n 1 , etc. 
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X2.6. The intersection of groupoids 

Let us now consider two subgroupoids 9t, 93 cz & and suppose the intersection 
A n B of their fields A, B is not empty, A n B 4= 0- -For any elements a, b £ A n B 
there holds ab 6 A A cz A, on the one hand, and ab 6 BB cz B, on the other hand, 
and so ab £ A n B; hence A n B is a groupoidal subset of (U. The corresponding 
subgroupoid of & is called the intersection of 91 ami S3 and denoted by 91 n 39 or 
93 n 91. We observe that any two subgroupoids of & whose fields are incident have an 
intersection which is a subgroupoid of ©. This intersection is, of course, a sub­
groupoid of either of the two subgroupoids. Note that the concept of the intersec­
tion of two subgroupoids of © is defined only if the fields of both subgroupoids have 
common elements. There exists, for example, the intersection of the subgroupoids 
91, 93 cz @» where the field A of % consists of all the elements of ©« that do not 
change a certain element a £ H, whereas the field B of 93 consists of all the ele­
ments of <3W that do not change a certain element b 6 H, as both A and B have 
at least one common element, namely, the identical permutation of H which does 
not change any of the elements of H. 

The concept of the intersection of two subgroupoids of % may easily be extended 
to the intersection of a system of subgroupoids of @: If we have a system {a!, a2,...} 
of subgroupoids of © and the intersection of their fields is not empty, then this 
intersection is a groupoidal subset of <B; the corresponding groupoid of & is called 
the intersection of the system of subgroupoids {at, a2, ...} and denoted ax n a2n ..., 
briefly, f) a or similarly. 

12.7. Product of a finite sequence of elements 

1. Definition. Consider an %-membered sequence of elements ax, ..., an 6 @, where 
n ^ 2. What do we mean by the product of this sequence? The product of a two-
membered sequence ax, a% (n = 2) has already been defined and denoted ax.a% or 
axa%. The product of a three-membered sequence ax, a%, az (n = 3) is defined as fol­
lows: I t is the set consisting of the so-called product-elements: ax(a%az), (axa%)az. 
This product is denoted by {ax . a%. az} or {axa%az}; the symbol at.a%. az or ata%az 

stands for any of the product-elements so that it denotes the product of at and a%az 

as well as the product of axa% and az. The product of a four-membered sequence 
ax, a%, az, a4 (n ~ 4) is the set consisting of the three product-elements ax(a%aza±), 
(ata%)(aza4), (a^a^a^. I t is denoted by {at .a%.az. a4} or {axa%aza^}; the symbol 
ax.a%.az. a4 or axa%aza^ stands for any of the product-elements so that it denotes 
any of the elements: %(a2(a3a4)), ax((a%az)a^), (axa%) (azaA), (a

x(a%az))a^, ((axa%)az)aA. 
From these examples we can understand the following definition: 

The product of an n-membered sequence of elements ax,a2,...,an is the set [au a%, 
..., an} defined as follows: If n = 2, then the set [au a2} consists of one single ele-

7 Bortrvkn, Foundations 
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ment axa%; if n > 2, then it is defined by the formula 

\axa% . . .«„} = \ax} \a%... an] u \axa%\ \az ... an) u -. . u \ax... an„x) \an]. 

Sometimes we also use the notation [ax . a% ... an). The individual elements of this 
set, the so-called product-elements, are denoted by the symbol ax .a% ... an or 
axa%... an. Naturally, there exists only a finite number of product-elements. If 
n = 2, then we generally do not draw any difference between the product and the 
corresponding product-element. 

2. Associative gro^lpoids. From what we have said in the preceding paragraph 
it follows that every three-membered sequence of elements au a2, a3 € © has, at 
most, two different product-elements: ax(a%az), (axa%)az. If they always coincide, i.e., 
if for any three elements ax, a%, az £ (B there holds ax(a%az) = (axa2)az, then the 
multiplication in & as well as the groupoid itself is called associative. 

The groupoids that have most been studied in mathematics have the property 
that every finite sequence of their elements has only one product-element; as we 
shall show later (18.1), it is exactly the associative groupoids that have this re­
markable property. 

The groupoid Q, for example, is associative because, by the definition of its multi­
plication, the product-elements a(bc), (ab)c of any three-membered sequence of the 
elements a,b,c £ Q are sums in the usual sense a + (6 + c), (a -f- b) -f- c and 
therefore equal. 

Analogously, even the groupoid Qn (n ^ 1) is associative. Indeed, by the defi­
nition of its multiplication, the product-elements a(bc), (ab)c of any three-membered 
sequence of elements a, b, c € Qn are the remainders of the division of the numbers 
a -f- r, s + c by n, r (s) denoting the remainder of the division of b + c (a + b) by 
n. Since a + r and a + (b -f- c) differ only by an integer multiple of n, a(bc) is the 
remainder of the division of a -j- (b -f- c) by n; analogously, (ab)c is the remainder 
of the division of (a-f- b) + c by n. From a + (b + c) = (a + 5) + c there fol­
lows a(bc) = (ab)c. 

The groupoid ©# (n ̂ z 1) is associative as well because, if p, q, r are arbitrary 
elements of ©B, then, by the definition of the multiplication in ©B, the product-
elements jp .(q .r),(p .q). r are composite permutations (rq)p, r(qp) and, with 
respect to the results in 8.7.3, equal. 

3. Example. To illustrate the process of determining a product, let us find the 
product {1, 2 .3 .4} in the groupoid described in 11.5.4. By the appropriate multi­
plication table we have 

{1.2 .3} = {1} . {2 . 3} u {1. 2} . {3} = {1} . {1} u {3} . {3} 

= {1}U{2} = { 1 , 2 } ; 

{2.3 .4} = {2} . {3 .4} u {2 . 3} . {4} = {2} . {2} u {1} . {4} 
= { 2 } u { 2 } = {2}; 



12. Basic notions relative to groupoids 99 

{1. 2 . 3 . 4} = {1} . {2 . 3 .4} u {1. 2} . {3 . 4} u {1. 2 . 3} . {4} 
= {1} . {2} u {3} . {2} u {1, 2} . {4} = {3} u {5} u {2, 4} 
= {2,3,4,5}. 

All the product-elements 1 . 2 . 3 . 4 are therefore 2, 3, 4, 5. 

12.8. The product of a finite sequence of subsets 

1. Definition. Now let At, ...,An(n^ 2) stand for arbitrary subsets of @. 
The product of the n-membered sequence of subsets Ax, A2, ...,An is the sum of 

all the products {axa2... an], the elements ax £ Ax, a2 £ A2, ...,an^An running over 
all the elements of the corresponding subsets Ax, A2, ..., An. We denote it by 
At . A%... An or AtA2... An. If any of the subsets Au ...,An is empty, then the 
product in question is defined as the empty set. By the above definition and the 
meaning of the symbol {al ... an], each element a € AXA%... An is the result of 
the multiplication of a product-element at ... ak and one of the elements 
ak+1 ..»an where l ^ i ^ % - l ; hence 

a e (A1...Ak)(Ak+1...An). 

Conversely, the product of any element of the set At...Ak and any element 
Ak+1 ... An is an element a £ At.. ,An. So we have 

At ...An = At(A2 ...An) u (AtA2) (Ad ...An) u . . . u (At ...An.x)An, 

If A denotes a subset of ©, then we write An instead of A . . . A so that, for n ^ 2, 
we have JT""̂  

An = AAn~x u A%An~~% u • • - u An^A. 

The above definitions of the product of a finite sequence of elements or sets ob­
viously generalize the definitions of the product of a two-membered sequence of 
elements or sets, respectively. 

2. Example. Let A denote the subset {1, 2, 4} of the groupoid described in 11.5.4. 
Then: 

^ = { 1 , 2 , 4}. {1,2, 4} 
= {1 . 1, 1 . 2, 1 . 4, 2 . 1, 2 . 2, 2 . 4, 4 . 1, 4 . 2, 4 . 4} 
= {1,2,3,4}; 

A* = {1, 2, 4} . {1, 2, 3, 4} u {1, 2, 3, 4} . {1, 2, 4} 
- { 1 , 2 , 3 , 4 , 5 } ; 

A* = {1, 2, 4} . {1, 2, 3, 4, 5} u {1, 2, 3, 4} . {1, 2, 3, 4} 
u {1,2, 3, 4, 5}. {1,2, 4} 

= {1,2,3,4,5}. 

7* 
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12.9. Exercises 

1. H i e ® and B cz © are the sums of some subsets ax, a%,... and b19 b%,..., respectively, 
then AB is the sum of the products of each subset ax, a%,... and each bl9 b%,.... 

2. If the subsets A cz @ and B cz © are the intersections of some subsets at,a%,... and 
bl9 b%,..., respectively, then AB is a part of the intersection of the products of each sub­
set %, a%,... and each bl9 b%, — Thus for any subsets A, B,G cz ® there hold, in parti­
cular, the relations: a) (A n B)0 cz AG n BO; b) 0(A nB)czOAn OB. Give suitable 
examples to show that the symbol cz can, in these relations, not always be replaced 
b y = . 

3. Show that the number Nn of the product-elements of an w-membered sequence of elements 
of © (n J"> 2) is expressed, in general, by the formula Nn = (2n — 2)\/(n — l)\n\ 

4. Let A stand for a subset of © and m, n denote arbitrary positive integers. Then the following 
relations are true: a) AmAn cz Am+n; b) (Am)n cz Amn. 

5. Suppose A cz B are subsets of © and n denotes an arbitrary positive integer. There holds 
A* cz Bn. 

6. Let n be an arbitrary positive integer. For the field G of © there holds the relation Gn ZD Gn+1 * 
so that G ZD G2 ZD G3 ZD ••> 

7. Let G, n be the same as in Exercise 6. Gn is a groupoidal subset of © and the corresponding 
subgroupoid of © is a bilateral ideal. —- Remark. The latter is denoted by @w. 

8. If © is an associative groupoid, then: a) every subgroupoid of © is associative; b) for 
any subsets A, B, G cz © there holds A(BG) = (AB)G. 

9. If © is an associative groupoid and A, B are groupoidal and interchangeable subsets of ©, 
then the subset AB is groupoidal as well. — Remark. If %, $ are interchangeable sub-
groupoids of @, then the subgroupoid of @, corresponding to the product of their fields, 
is called the product of the subgroupoids %, S and denoted by SCSB or SB9t. 

10. If © is an associative groupoid, then the set of all the elements of © that are inter­
changeable with each element of © is groupoidal unless it is empty. — Remark. The 
corresponding subgroupoid of © is called the center of ©. 

11. Suppose © is a groupoid whose field consists of all positive integers, and the multipli­
cation is defined, as follows: The product of any element a € © and any element & € © 
is the least common multiple or the greatest common divisor of the numbers a and b. 
Show that in both cases © is Abelian and associative. 
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