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13. Homomorphic mappings (deformations) of groupoids 

13.1. Definition 

Let @$, @* be arbitrary groupoids. As we have already said (in 12.2), a mapping of 
@ into @* is a mapping of the field G of @ into the field 0* of ($*. In a similar way 
we apply to groupoids all the other concepts and symbols we have described (in 
Chapter 6) while studying the mappings of sets. By the above definition, the con­
cept of a mapping of & into @* concerns only the fields and does in no way depend 
on the multiplications in the groupoids. Some mappings may, however, be in cer­
tain relations with the multiplications in (& and ©*. Of great importance to the 
theory of groupoids are the so-called homomorphic mappings characterized by 
preserving the multiplications of both groupoids. A detailed definition: 

A mapping d of the groupoid @ into ($* is called homomorphic if the product ab 
of an arbitrary element a 6 & and an element b £ @ is mapped onto the product 
of the <f-image of a and the d-image of b, i.e., if, for a, b 6 @, there holds 
dab = da . db. 

For convenience, a homomorphic mapping of the groupoid @ into @* is called 
a deformation of the groupoid Q$ into @*. A deformation of @ onto @5* is sometimes 
called a homom,orphism. 

While studying the mapping of sets, we have realized that there need not always 
exist a mapping of a given set onto another set; consequently, a mapping of % 
onto ©* and, of course, a deformation of % onto @* need not exist at all. If it 
exists, then the groupoid @$* is said to be homomorphic with &. 

13.2. Example of a deformation 

Let n denote a positive integer and d the mapping of the groupoid Q onto $n, de­
fined as follows: da 6 $n is, for a 6 $ , * n e remainder of the division of a by n. I t 
is easy to verify that d is a deformation and therefore a homomorphism of 3 o n^° 
3n- Indeed, let a, b stand for arbitrary elements of $ . The product ab of a and b is, 
by the definition of the multiplication in Q, the sum a + b and da, db, dab are, 
by the definition of the mapping d, the remainders of the division of a, b, a -f- b by n, 
respectively. The product dadb of da and db is, by the definition, the remainder of 
the division of da + db by n and, since the numbers da + db and a + b differ 
only by an integral multiple of n, the product dadb is the remainder of the division 
a + 6 by n. Hence we have dadb = dab and see that d is a deformation. In the 
following study o"f groupoids we shall often meet with cases of deformation, so we 
shall, meanwhile, be satisfied with this single example. 
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13.3. Properties of deformations 

Let d be an arbitrary deformation of ® into ®*. 
Suppose A, B,G are nonempty subsets of ®. 

1. The symbol dA 'denotes, as we know, the image of the set A under the ex­
tended mapping d, i.e., the subset of ®* consisting of the d-images of the indi­
vidual elements of A. 

I t is easy to show that there holds 

d(AB) = dA . dB. 

Every element c* £ d(AB) is, on the one hand, the <f-image of the product ab 
of an element a £ A and an element b £ B so that c* = dab = da . db £ dA . dB; 
consequently, there holds d(AB) cz dA . dB. On the other hand, every element 
c* £ dA . dB is the product of an element a* £ dA and an element b* £ dB so 
that there exist elements a £ A, b £ B such that a* = da, b* = db and we have: 
c* = a*6* = da .db = dab £ d(ALB); consequently: dL4 . dB cz d(AB) and the 
proof is complete. 

2. With respect to this result we conclude that if the set AB is a part of C, then 
the set dA . dB is a part of dC; that is to say, AB cz C yields dA . dB cz dC. 

3. If A is the field of a subgroupoid % cz ® so that it is groupoidal, then we have 
AA cz A whence dA . dA cz dA and we see that the d-image of the field of the 
subgroupoid % is a groupoidal subset of ®*. The subgroupoid of ®* whose field is dA 
is called the image of the subgroupoid 91 under the deformation d and is denoted d2t; 
the subgroupoid % is called an inverse image of d% under the deformation d. I t is 
obvious that d is a deformation of % onto d% so that d% is homomorphic with %. 

The above notions and results apply, in particular, in case of the field 0 of ®. 
We observe that the d4mage d® of ® is a subgroupoid of ©*, homomorphic with ®. 
If d is a deformation of ® onto ©*, then we, naturally, have ®* = d®. 

4. If d is a deformation of ® into ®* a n d / a deformation of ®* into a groupoid 
15, then fd is a deformation of ® into %. Indeed, in accordance with the definition of 
the composite mapping fd, and d, f being deformations, there holds, for a, b £ ®: 

fd(ab) = f(dab) = f(da . db) = f(da). f(db) = fda . fdb, 

and therefore, in fact, fd(ab) = fda . fdb. 

13*4. Isomorphic mappings 

1. The concept of a deformation includes other important notions, first of all, the 
notion of a simple deformation of the groupoid ® into (U*, i.e., a deformation in 
which each element of ®* has, at most, one inverse image. A simple deformation of 
® into (onto) ®* is called isomorphic mapping of ® into (onto) ®*. 
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From the results in 6.7 and 13.3.4 there follows that if d is an isomorphic mapping 
of © into ©* and fan isomorphic mapping of ©* into %, then the composite mapping 
fd of © into % is also isomorphic. 

2. An isomorphic mapping of © onto @* is called isomorphism. To every simple 
deformation d of © onto ©* there? naturally, exists an inverse mapping d~% of ©* 
onto © which is simple and? as we shall easily verify, a deformation. Assuming a*, 
b* to be arbitrary elements of @*? let a, b £ © be their inverse images under d so 
that da = a*9 db = &*, dab = a*b*. Hence we have, by the definition of the in­
verse mapping d'1, the equalities: a =-. dHa*, b = d^b*, ab — d^a^b* which, in 
fact, yield $-%*&* = d^a* . d-xb*. Thus, if there exists an isomorphism d of © 
onto ©*, then there exists an isomorphism drx of ©* onto ©; in that case we say 
that © (©*) is isomorphic with ©* (©) or that ©, ©* are isomorphic and write 
© cz ©* or @* cz ©. I t is obvious that the fields of any two isomorphic groupoids 
are equivalent sets. 

A mapping composite of two isomorphisms is again an isomorphism. 

3. Examples. The abstract groupoid with the field {e} and the multiplication 
described in the first multiplication table in 11.4.2 is isomorphic with the groupoid 
@x- The abstract groupoid with the field fe, a) and the multiplication described in 
the second multiplication table in 11.4.2 is isomorphic with the groupoid ®2? the 
abstract groupoid with the field {e, a, 6, c, d,f) and the multiplication described 
in the third multiplication table in 11.4.2 is isomorphic with the groupoid ©3. 

13.5. Operators, meromorphic and automorphic mappings 

1. Further notions included in the concept of a deformation concern the case of a 
deformation of © into or onto itself. 

A deformation of © into itself is also called an operator on (or of) the groupoid © 
or an endomorphic mapping of ©. 

A simple operator on ©, i.e., an isomorphic mapping of © into itself is some­
times called a meromorphic mapping of ©. If the image of © is a proper subgroupoid 
of ©, then the meromorphic mapping of © is said to be proper. 

2. An isomorphic mapping of © onto itself is also called an automorphic mapping 
of @, briefly, an automorphism of ©. 

3. Examples. The mapping of the groupoid 3 into itself where each element a 6 3 
is mapped onto the product (in arithmetic sense) ha £ 3> & denoting a non-nega­
tive integer, is an operator on 3« ^or k ^ 1 it is a meromorphic mapping of 3? for 
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h = 1 it is an automorphism of 3 and for k = 0 an operator but not a meromor-
phic mapping of 3-

The simplest example of an automorphism of any groupoid @ is the identical 
mapping of 6$, the so-called identical automorphism of ($. 

13.6. Exercises 

1. If any two elements of @ are interchangeable, then their images under every deformation 
of <S into @* are also interchangeable. The image of every Abelian groupoid is also Abelian. 

2. If the product of a three-membered sequence of elements a, b, c € @ consists of a single 
element, then the same holds for the sequence of images da, db9 dc € @* under any de­
formation d of ($ into @*. The image of every associative groupoid under any deformation 
is also associative. 

3. If © is associative and has a center, then the image of the center under any deformation 
of @ onto @* lies in the center of @*. 

4. The inverse image of a groupoidal subset of ©* under a deformation of @ onto @* need 
not be groupoidal. 

5. Every meromorphic mapping of a finite groupoid @ is an automorphism of @. 

6. For isomorphisms of the groupoids % S? ® the following statements are true: a) % ~ $ 
(reflexivity); b) % ~ fd yields B -=* % (symmetry); c) from % ~ B, %$ -=- (£ there follows 
% ~ (.£ (transitivity). 

7. I t is left to the reader to give some examples of deformation himself. 

14. Generating decompositions 

14.1, Basic concepts 

Suppose (B is an arbitrary groupoid. 
Def ini t ion. Any decomposition A in & is called generating if there exists, to 

any two-membered sequence of the elements fl.6 6 i . a n element c £ i such that 
ah € c. 

As to the generating decompositions on the groupoid (&, note that the greatest 
decomposition Crmax and the least decomposition Gmin are generating. On every grou­
poid there exist at least these two extreme generating decompositions. 

The equivalence belonging to a generating decomposition (9.3) is usually called 
a congruence. 
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